References
1. Baumgartner H, Falk V, Bax JJ, De Bonis M, Hamm C, Holm PJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017 Sep;38(36):2739–91.
2. Nitsche C, Kammerlander AA, Knechtelsdorfer K, Kraiger JA, Goliasch G, Dona C, et al. Determinants of Bioprosthetic Aortic Valve Degeneration. JACC Cardiovasc Imaging [Internet]. 2020 Feb;13(2):345–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1936878X19301652
3. Moore M, Chen J, Mallow PJ, Rizzo JA. The direct health-care burden of valvular heart disease: Evidence from US national survey data. Clin Outcomes Res. 2016;8:613–27.
4. Yacoub MH, Takkenberg JJM. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005;2(2):60–1.
5. Stassano P, Di Tommaso L, Monaco M, Iorio F, Pepino P, Spampinato N, et al. Aortic Valve Replacement. A Prospective Randomized Evaluation of Mechanical Versus Biological Valves in Patients Ages 55 to 70 Years. J Am Coll Cardiol. 2009;54(20):1862–8.
6. Hammermeister K, Sethi GK, Henderson WG, Grover FL, Oprian C, Rahimtoola SH. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: Final report of the Veterans Affairs randomized trial. J Am Coll Cardiol. 2000;36(4):1152–8.
7. Oxenham H, Bloomfield P, Wheatley DJ, Lee RJ, Cunningham J, Prescott RJ, et al. Twenty year comparison of a Bjork-Shiley mechanical heart valve with porcine bioprostheses. Heart. 2003;89(7):715–21.
8. Degeneration TV. Aortic Bioprosthetic Valve Durability. 2017;70(8).
9. Bartus K, Sadowski J, Litwinowicz R, Filip G, Jasinski M, Deja M, et al. Changing trends in aortic valve procedures over the past ten years — From mechanical prosthesis via stented bioprosthesis to TAVI procedures — Analysis of 50,846 aortic valve cases based on a polish national cardiac surgery database. J Thorac Dis. 2019;11(6):2340–9.
10. Dunning J, Gao H, Chambers J, Moat N, Murphy G, Pagano D, et al. Aortic valve surgery: Marked increases in volume and significant decreases in mechanical valve use - An analysis of 41,227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National database. J Thorac Cardiovasc Surg. 2011;142(4):776-782.e3.
11. Salaun E, Clavel MA, Rodés-Cabau J, Pibarot P. Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation. Heart. 2018;104(16):1323–32.
12. Capodanno D, Petronio AS, Prendergast B, Eltchaninoff H, Vahanian A, Modine T, et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: A consensus statement from the European Association of Percutaneous Cardiovascular Interven. Eur J Cardio-thoracic Surg. 2017;52(3):408–17.
13. Johnston DR, Soltesz EG, Vakil N, Rajeswaran J, Roselli EE, Sabik JF, et al. Long-term durability of bioprosthetic aortic valves: Implications from 12,569 implants. Ann Thorac Surg. 2015;99(4):1239–47.
14. Bourguignon T, Bouquiaux-Stablo AL, Candolfi P, Mirza A, Loardi C, May MA, et al. Very long-term outcomes of the carpentier-edwards perimount valve in aortic position. Ann Thorac Surg. 2015;99(3):831–7.
15. Sewell-Loftin MK, Young WC, Khademhosseini A, Merryman WD. EMT-inducing biomaterials for heart valve engineering. J Cardiovasc Transl Res. 2012;4(5):658–71.
16. Armstrong E, Bischoff J. Heart Valve Development: Endothelial Cell Signaling and Differentiation Ehrin. Circ Res. 2004;95(5):458–70.
17. Blum KM, Drews JD, Breuer CK. Tissue-Engineered Heart Valves: A Call for Mechanistic Studies. Tissue Eng - Part B Rev. 2018;24(3):240–53.
18. Arjunon S, Rathan S, Jo H, Yoganathan AP. Aortic Valve: Mechanical Environment and Mechanobiology. Ann Biomed Eng. 2017;41(7):1331–46.
19. Chester AH, Taylor PM. Molecular and functional characteristics of heart-valve interstitial cells. Philos Trans R Soc B Biol Sci. 2007;362(1484):1437–43.
20. Vesely I, Noseworthy R. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J Biomech. 1992;25(1).
21. Vesely I. The role of elastin in aortic valve mechanics. J Biomech. 1997;31(2):115–23.
22. Christie GW. Anatomy of aortic heart valve leaflets: The influence of glutaraldehyde fixation on function. Eur J Cardio-thoracic Surg. 1992;6:S25–33.
23. Schoen FJ. Evolving concepts of cardiac valve dynamics: The continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.
24. Nachlas ALY, Li S, Davis ME. Developing a Clinically Relevant Tissue Engineered Heart Valve—A Review of Current Approaches. Adv Healthc Mater. 2017;6(24):1–30.
25. Li RL, Russ J, Paschalides C, Ferrari G, Waisman H, Kysar JW, et al. Mechanical Considerations for Polymeric Heart Valve Development : Biomechanics , Materials , Design and Manufacturing. Biomaterials. 2019;119493.
26. Sacks MS, Schoen FJ, Mayer JE. Bioengineering Challenges for Heart Valve Tissue Engineering. :289–314.
27. Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–18.
28. El-Hamamsy I, Balachandran K, Yacoub MH, Stevens LM, Sarathchandra P, Taylor PM, et al. Endothelium-Dependent Regulation of the Mechanical Properties of Aortic Valve Cusps. J Am Coll Cardiol. 2009;53(16):1448–55.
29. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA. Valvular myofibroblast activation by transforming growth factor-β: Implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004;95(3):253–60.
30. Deck JD. Endothelial cell orientation on aortic valve leaflets. Cardiovasc Res. 1986;20(10):760–7.
31. Leask RL, Jain N, Butany J. Endothelium and valvular diseases of the heart. Microsc Res Tech. 2003;60(2):129–37.
32. Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos Trans R Soc B Biol Sci. 2007;362(1484):1445–57.
33. Bosse K, Hans CP, Zhao N, Koenig SN, Huang N, Guggilam A, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60(1):27–35.
34. Cheung DY, Duan B, Butcher JT. Current progress in tissue engineering of heart valves: Multiscale problems, multiscale solutions. Expert Opin Biol Ther. 2015;15(8):1155–72.
35. Davies PF. Multiple signaling pathways in flow-mediated endothelial mechanotransduction: PYK-ing the right location. Arterioscler Thromb Vasc Biol. 2002;22(11):1755–7.
36. Hilbert SL, Barrick MK, Ferrans VJ. Porcine aortic valve bioprostheses: A morphologic comparison of the effects of fixation pressure. J Biomed Mater Res. 1990;24(6):773–87.
37. Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure: Effects of transvalvular pressure. J Biomed Mater Res. 1998;41(1):131–41.
38. Lo D, Vesely I. Biaxial strain distributions in expanded porcine bioprosthetic valves. J Heart Valve Dis. 2002;11(5):688–95.
39. Vesely I. Reconstruction of loads in the fibrosa and ventricularis of porcine aortic valves. ASAIO J. 1996;42(5).
40. Scott M, Vesely I. Morphology of porcine aortic valve cusp elastin. J Hear Valve Dis. 1996;5(5):464–71.
41. Schoen FJ, Levy RJ. Founder ’ s Award , 25th Annual Meeting of the Society for Biomaterials , Providence , RI , April 28 – May 2 , 1999 Tissue Heart Valves : Current Challenges and Future Research Perspectives. 1999;
42. Ferrans VJ, Spray TL, Billingham ME, Roberts WC. Structural changes in glutaraldehyde-treated porcine heterografts used as substitute cardiac valves. Transmission and scanning electron microscopic observations in 12 patients. Am J Cardiol. 1978;41(7):1159–84.
43. Golomb G, Schoen F, Smith M, Linden J, Dixon M, Levy R. The role of glutaraldehyde-induced cross-links in calcification of bovine pericardium used in cardiac valve bioprostheses. Am J Pathol. 1987;127(1):122–30.
44. Southern L, Hughes H, Lawford P, Clench M, Manning N. Glutaraldehyde-induced cross-links: a study of model compounds and commercial bioprosthetic valves. J Hear Valve Dis. 2000;9(2):241–8.
45. Jayakrishnan A, Jameela SR. Glutaraldehyde as a fixative in bioprostheses and drug delivery matrices. Biomaterials. 1996;17(5):471–84.
46. Grant M, Prockop D. The biosynthesis of collagen. N Engl J Med. 1972;286(4):194–9.
47. Chen W, Schoen FJ, Levy RJ. Mechanism of efficacy of 2-amino oleic acid for inhibition of calcification of glutaraldehyde-pretreated porcine bioprosthetic heart valves. Circulation. 1994;90(1):323–9.
48. Valente M, Bortolotti U, Thiene G. Ultrastructural Substrates of Dystrophic Calc fi cation in Porcine Bioprosthetic Valve Failure. Am J Pathol. 1985;119(1):12–21.
49. Schoen FJ, Tsao JW, Levy RJ. Calcification of bovine pericardium used in cardiac valve bioprostheses: Implications for the mechanisms of bioprosthetic tissue mineralization. Am J Pathol. 1986;123(1):134–45.
50. Vyavahare N, Ogle M, Schoen FJ, Levy RJ. Mechanisms of elastin calcification and its prevention with aluminum chloride pretreatment. Annu Int Conf IEEE Eng Med Biol - Proc. 1999;2(3):760.
51. Lopez-Moya M, Melgar-Lesmes P, Kolandaivelu K, Hernandez J, Edelman E, Balcells M. Optimizing glutaraldehyde-fixed tissue heart valves with chondroitin sulfate hydrogel for endothelialization and shield against deterioration. Biomacromolecules. 2018;19(4):1234–44.
52. Vesely I. Heart valve tissue engineering. Circ Res. 2005;97(8):743–55.
53. Vesely I, Boughner D, Song T. Tissue Buckling as a Mechanism of Bioprosthetic Valve Failure. Ann Thorac Surg. 1988 Sep;46(3):302–8.
54. Fisher J, Davies GA. Buckling in bioprosthetic valves. Ann Thorac Surg. 1989 Jul;48(1):147–8.
55. Schoen F. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J Hear Valve Dis. 1997;6(1):1–6.
56. Broom ND. An “in vitro” study of mechanical fatigue in glutaraldehyde-treated porcine aortic valve tissue. Biomaterials. 1980;1(1):3–8.
57. Gabbay S, Kadam P, Factor S, Cheung T. Do heart valve bioprostheses degenerate for metabolic or mechanical reasons? J Thorac Cardiovasc Surg. 1988;95(2):208–15.
58. Broom ND, Thomson FJ. Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis. Thorax. 1979;34(2):166–76.
59. Sellke F, Del Nido P, Swanson S. Sabiston and Spencer Surgery of the Chest. 9th ed. Elsevier; 2015.
60. Revanna P, Fisher J, Watterson K. The influence of free hand suturing technique and zero pressure fixation on the hydrodynamic function of aortic root and aortic valve leaflets. Eur J Cardio-Thoracic Surg. 1997 Feb;11(2):280–6.
61. Shah SR, Vyavahare NR. The Effect of Glycosaminoglycan Stabilization on Tissue Buckling in Bioprosthetic Heart Valves. Biomaterials. 2008;29(11):1645–53.
62. Villa ML, De Biasi S, Pilotto F. Residual Heteroantigenicity of Glutaraldehyde‐Treated Porcine Cardiac Valves. Tissue Antigens. 1980;16(1):62–9.
63. Human P, Zilla P. The possible role of immune responses in bioprosthetic heart valve failure. J Hear Valve Dis. 2001;10(4):460–6.
64. Hooper D, Hawkins J, Fuller T, Profaizer T, Shaddy R. Panel-reactive antibodies late after allograft implantation in children. Ann Thorac Surg. 2005;79(2):641–4.
65. Ketchedjian A, Kreuger P, Lukoff H, Robinson E, Linthurst-Jones A, Crouch K, et al. Ovine panel reactive antibody assay of HLA responsivity to allograft bioengineered vascular scaffolds. J Thorac Cardiovasc Surg. 2005;129(1):159–66.
66. Dignan R, O’Brien M, Hogan P, Thornton A, Fowler K, Byrne D, et al. Aortic valve allograft structural deterioration is associated with a subset of antibodies to human leukocyte antigens. J Hear Valve Dis. 2003;12(3):382–90.
67. Pibarot P, Dumesnil JG. Prosthetic heart valves: Selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.
68. Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFTTM in pediatric patients. Eur J Cardio-thoracic Surg. 2003;23(6):1002–6.
69. Li H, Forstermann U. Nitric oxide in the pathogenesis of cardiac disease. J Pathol. 2000;190:144–254.
70. Manji RA, Zhu LF, Nijjar NK, Rayner DC, Korbutt GS, Churchill TA, et al. Glutaraldehyde-fixed bioprosthetic heart valve conduits calcify and fail from xenograft rejection. Circulation. 2006;114(4):318–27.
71. Vattikuti R, Towler DA. Osteogenic regulation of vascular calcification: An early perspective. Am J Physiol - Endocrinol Metab. 2004;286(5 49-5):686–96.
72. Briand M, Pibarot P, Després JP, Voisine P, Dumesnil JG, Dagenais F, et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation. 2006;114(SUPPL. 1).
73. O’Brien KD. Do bioprosthetic aortic valves deteriorate more rapidly in patients with the metabolic syndrome?: Commentary. Nat Clin Pract Cardiovasc Med. 2007;4(4):192–3.
74. Shetty R, Côté N. Elevated Proportion of Small , Dense Low-Density Lipoprotein Particles and Lower Adiponectin Blood Levels Predict Early Structural Valve Degeneration of Bioprostheses. 2012;20–6.
75. Mahmut A, Mahjoub H, Boulanger MC, Fournier D, Després JP, Pibarot P, et al. Lp-PLA2 is associated with structural valve degeneration of bioprostheses. Eur J Clin Invest. 2014;44(2):136–45.
76. McGregor C, Kogelberg H, Vlasin M, Byrne G. Gal-knockout bioprostheses exhibit less immune stimulation compared to standard biological heart valves. J Hear Valve Dis. 2013;22(3):383–90.
77. McGregor CGA, Carpentier A, Lila N, Logan JS, Byrne GW. Cardiac xenotransplantation technology provides materials for improved bioprosthetic heart valves. J Thorac Cardiovasc Surg. 2011;141(1):269–75.
78. Lila N, McGregor CGA, Carpentier S, Rancic J, Byrne GW, Carpentier A. Gal knockout pig pericardium: New source of material for heart valve bioprostheses. J Hear Lung Transplant. 2010;29(5):538–43.
79. Oveissi F, Naficy S, Lee A, Winlaw DS, Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio. 2020;5(September 2019).
80. Meuris B, De Praetere H, Strasly M, Trabucco P, Lai JC, Verbrugghe P, et al. A novel tissue treatment to reduce mineralization of bovine pericardial heart valves. J Thorac Cardiovasc Surg. 2018;156(1):197–206.
81. Flameng W, Hermans H, Verbeken E, Meuris B. A randomized assessment of an advanced tissue preservation technology in the juvenile sheep model. J Thorac Cardiovasc Surg. 2015;149(1):340–5.
82. Vyavahare NR, Hirsch D, Lerner E, Baskin JZ, Zand R, Schoen FJ, et al. Prevention of calcification of glutaraldehyde-crosslinked porcine aortic cusps by ethanol preincubation: Mechanistic studies of protein structure and water-biomaterial relationships. J Biomed Mater Res. 1998;40(4):577–85.
83. Vyavahare N, Hirsch D, Lerner E, Baskin JZ, Schoen FJ, Bianco R, et al. Prevention of Bioprosthetic Heart Valve Calcification by Ethanol Preincubation. Circulation. 1997 Jan 21;95(2):479–88.
84. Perez de Arenaza D, Lees B, Flather M, Nugara F, Husebye T, Jasinski M, et al. Randomized Comparison of Stentless Versus Stented Valves for Aortic Stenosis. Circulation. 2005 Oct 25;112(17):2696–702.
85. Repossini A, Rambaldini M, Lucchetti V, Da Col U, Cesari F, Mignosa C, et al. Early clinical and haemodynamic results after aortic valve replacement with the Freedom SOLO bioprosthesis (experience of Italian multicenter study). Eur J Cardio-Thoracic Surg. 2012 May 1;41(5):1104–10.
86. Stacchino C, Bona G, Bonetti F, Rinaldi S, Della Ciana L, Grignani A. Detoxification Process for Glutaraldehyde-Treated Bovine Pericardium: Biological, Chemical and Mechanical Characterization. J Hear Valve Dis. 1998;7(2):190–4.
87. David TE, Armstrong S, Maganti M. Hancock II Bioprosthesis for Aortic Valve Replacement: The Gold Standard of Bioprosthetic Valves Durability? Ann Thorac Surg. 2010 Sep;90(3):775–81.
88. Bortolotti U, Milano A, Mazzucco A, Guerra F, Magni A, Santini F, et al. The Hancock II porcine bioprosthesis. A preliminary report. J Thorac Cardiovasc Surg. 1989 Mar;97(3):415–20.
89. Arbustini E, Jones M, Moses RD, Eidbo EE, Carroll RJ, Ferrans VJ. Modification by the hancock T6 process of calcification of bioprosthetic cardiac valves implanted in sheep. Am J Cardiol. 1984 May;53(9):1388–96.
90. Rieß F-C, Fradet G, Lavoie A, Legget M. Long-Term Outcomes of the Mosaic Bioprosthesis. Ann Thorac Surg. 2018 Mar;105(3):763–9.
91. Schoen FJ, Levy RJ. Calcification of Tissue Heart Valve Substitutes : Progress Toward Understanding and Prevention. 2005;
92. Dove J, Howanec M, Thubrikar M. Carpentier-Edwards ThermaFix Process: a method for extracting calcium binding sites from pericardial tissue. Edwards Lifesciences LLC. 2006;
93. Flameng W, Hermans H, Verbeken E, Meuris B. A randomized assessment of an advanced tissue preservation technology in the juvenile sheep model. J Thorac Cardiovasc Surg . 2015;149(1):340–5.
94. Lifesciences E. INSPIRIS RESILIA Aortic Valve, Model 11500A, DRAFT. 2018;
95. Gabbay S, Wheatley DJ. Advances in Anticalcific and Antidegenerative Treatment of Heart Valve Bioprostheses. Silent Partners, Inc.; 1997. 105–113 p.
96. McGonagle-Wolff K, Schoen FJ. Morphologic findings in explanted mitroflow pericardial bioprosthetic valves. Am J Cardiol. 1992 Jul;70(2):263–4.
97. Ruzicka DJ, Hettich I, Hutter A, Bleiziffer S, Badiu CC, Bauernschmitt R, et al. The Complete Supraannular Concept: In Vivo Hemodynamics of Bovine and Porcine Aortic Bioprostheses. Circulation. 2009 Sep 15;120(11_suppl_1):S139–45.
98. Meuris B, De Praetere H, Strasly M, Trabucco P, Lai JC, Verbrugghe P, et al. A novel tissue treatment to reduce mineralization of bovine pericardial heart valves. J Thorac Cardiovasc Surg. 2018;156(1):197–206.