References
Abell, G.C.J., Robert, S.S., Frampton, D.M.F., Volkman, J.K., Rizwi, F.,
Csontos, J. et al. (2012). High-Throughput Analysis of Ammonia
Oxidiser Community Composition via a Novel, amoA-Based Functional Gene
Array. Plos One , 7.
Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Bluthgen,
N. et al. (2015). Land use intensification alters ecosystem
multifunctionality via loss of biodiversity and changes to functional
composition. Ecol. Lett. , 18, 834-843.
Banerjee, S., Kirkby, C.A., Schmutter, D., Bissett, A., Kirkegaard, J.A.
& Richardson, A.E. (2016). Network analysis reveals functional
redundancy and keystone taxa amongst bacterial and fungal communities
during organic matter decomposition in an arable soil. Soil. Biol.
Biochem. , 97, 188-198.
Banerjee, S., Schlaeppi, K. & van der Heijden, M.G.A. (2018). Keystone
taxa as drivers of microbiome structure and functioning. Nat. Rev.
Microbiol. , 16, 567-576.
Banerjee, S., Walder, F., Buchi, L., Meyer, M., Held, A.Y., Gattinger,
A. et al. (2019). Agricultural intensification reduces microbial
network complexity and the abundance of keystone taxa in roots.ISME J. , 13, 1722-1736.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity
and ecosystem functioning. Nature , 515, 505-511.
Bell, T., Newman, J.A., Silverman, B.W., Turner, S.L. & Lilley, A.K.
(2005). The contribution of species richness and composition to
bacterial services. Nature , 436, 1157-1160.
Bender, S.F., Wagg, C. & van der Heijden, M.G.A. (2016). An Underground
Revolution: Biodiversity and Soil Ecological Engineering for
Agricultural Sustainability. Trends Ecol. Evol. , 31, 440-452.
Benjamini, Y., Krieger, A.M. & Yekutieli, D. (2006). Adaptive linear
step-up procedures that control the false discovery rate.Biometrika , 93, 491-507.
Berry, D. & Widder, S. (2014). Deciphering microbial interactions and
detecting keystone species with co-occurrence networks. Front.
Microbiol. , 5, 219.
Bossio, D.A. & Scow, K.M. (1998). Impacts of Carbon and Flooding on
Soil Microbial Communities: Phospholipid Fatty Acid Profiles and
Substrate Utilization Patterns. Microb. Ecol. , 35, 265-278.
Brose, U. & Hillebrand, H. (2016). Biodiversity and ecosystem
functioning in dynamic landscapes. Philos. Trans. R. Soc. Lond. B
Biol. Sci. , 371, 20150267.
Campbell, C.D., Chapman, S.J., Cameron, C.M., Davidson, M.S. & Potts,
J.M. (2003). A rapid microtiter plate method to measure carbon dioxide
evolved from carbon substrate amendments so as to determine the
physiological profiles of soil microbial communities by using whole
soil. Appl. Environ. Microbiol. , 69, 3593-3599.
Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman,
F.D., Costello, E.K. et al. (2010). QIIME allows analysis of
high-throughput community sequencing data. Nat Methods , 7,
335-336.
Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C.,
Venail, P. et al. (2012). Biodiversity loss and its impact on
humanity. Nature , 486, 59-67.
Chen, Q.-L., Ding, J., Zhu, D., Hu, H.-W., Delgado-Baquerizo, M., Ma,
Y.-B. et al. (2020). Rare microbial taxa as the major drivers of
ecosystem multifunctionality in long-term fertilized soils. Soil
Biol. Biochem. , 141, 107686.
Cheng, X., Yang, Y., Li, M., Dou, X. & Zhang, Q. (2013). The impact of
agricultural land use changes on soil organic carbon dynamics in the
Danjiangkou Reservoir area of China. Plant Soil , 366, 415-424.
Daam, M.A., Teixeira, H., Lillebø, A.I. & Nogueira, A.J.A. (2019).
Establishing causal links between aquatic biodiversity and ecosystem
functioning: Status and research needs. Sci. Total Environ. , 656,
1145-1156.
Dai, S., Liu, Q., Zhao, J. & Zhang, J. (2018). Ecological niche
differentiation of ammonia-oxidising archaea and bacteria in acidic
soils due to land use change. Soil Res. , 56, 71–79.
de Vries, F.T. & Shade, A. (2013). Controls on soil microbial community
stability under climate change. Front. Microbiol. , 4, 265.
Delgado-Baquerizo, M., Eldridge, D.J., Ochoa, V., Gozalo, B., Singh,
B.K. & Maestre, F.T. (2017). Soil microbial communities drive the
resistance of ecosystem multifunctionality to global change in drylands
across the globe. Ecol. Lett. , 20, 1295-1305.
Delgado-Baquerizo, M., Giaramida, L., Reich, P.B., Khachane, A.N.,
Hamonts, K., Edwards, C. et al. (2016a). Lack of functional
redundancy in the relationship between microbial diversity and ecosystem
functioning. J. Ecol. , 104, 936-946.
Delgado-Baquerizo, M., Maestre, F.T., Reich, P.B., Jeffries, T.C.,
Gaitan, J.J., Encinar, D. et al. (2016b). Microbial diversity
drives multifunctionality in terrestrial ecosystems. Nat.
Commun. , 7, 10541.
Deng, Y., Jiang, Y.H., Yang, Y.F., He, Z.L., Luo, F. & Zhou, J.Z.
(2012). Molecular ecological network analyses. Bmc
Bioinformatics , 13, 113.
Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. & Knight, R.
(2011). UCHIME improves sensitivity and speed of chimera detection.Bioinformatics , 27, 2194-2200.
Fan, K., Weisenhorn, P., Gilbert, J.A. & Chu, H. (2018). Wheat
rhizosphere harbors a less complex and more stable microbial
co-occurrence pattern than bulk soil. Soil Biol. Biochem. , 125,
251-260.
Feng, J., Wu, J.J., Zhang, Q., Zhang, D.D., Li, Q.X., Long, C.Y.et al. (2018). Stimulation of nitrogen-hydrolyzing enzymes in
soil aggregates mitigates nitrogen constraint for carbon sequestration
following afforestation in subtropical China. Soil. Biol.
Biochem. , 123, 136-144.
Fierer, N. (2017). Embracing the unknown: disentangling the complexities
of the soil microbiome. Nat. Rev. Microbiol. , 15, 579-590.
Francis, C.A., Roberts, K.J., Beman, J.M., Santoro, A.E. & Oakley, B.B.
(2005). Ubiquity and diversity of ammonia-oxidizing archaea in water
columns and sediments of the ocean. Proc. Natl. Acad. Sci. U S A ,
102, 14683-14688.
Gao, S.J., Cao, W.D., Zou, C.Q., Gao, J.S., Huang, J., Bai, J.S.et al. (2018). Ammonia-oxidizing archaea are more sensitive than
ammonia-oxidizing bacteria to long-term application of green manure in
red paddy soil. Appl Soil Ecol , 124, 185-193.
Hatzenpichler, R. (2012). Diversity, Physiology, and Niche
Differentiation of Ammonia-Oxidizing Archaea. Appl. Environ.
Microbiol. , 78, 7501-7510.
Hink, L., Gubry-Rangin, C., Nicol, G.W. & Prosser, J.I. (2018). The
consequences of niche and physiological differentiation of archaeal and
bacterial ammonia oxidisers for nitrous oxide emissions. ISME J. ,
12, 1084-1093.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P.,
Lavorel, S. et al. (2005). Effects of biodiversity on ecosystem
functioning: a consensus of current knowledge. Ecol. Monogr. , 75,
3-35.
Hu, A.Y., Ju, F., Hou, L.Y., Li, J.W., Yang, X.Y., Wang, H.J. et
al. (2017). Strong impact of anthropogenic contamination on the
co-occurrence patterns of a riverine microbial community. Environ.
Microbiol. , 19, 4993-5009.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B.,
Beierkuhnlein, C. et al. (2015). Biodiversity increases the
resistance of ecosystem productivity to climate extremes. Nature ,
526, 574-U263.
Jia, Z., Zhou, X., Xia, W., Fornara, D., Wang, B., Wasson, E.A. et
al. (2020). Evidence for niche differentiation of nitrifying
communities in grassland soils after 44 years of different field
fertilization scenarios. Pedosphere , 30, 87-97.
Kaiser, K., Wemheuer, B., Korolkow, V., Wemheuer, F., Nacke, H.,
Schoning, I. et al. (2016). Driving forces of soil bacterial
community structure, diversity, and function in temperate grasslands and
forests. Sci. Rep-Uk , 6, 33696.
Ke, X.B., Angel, R., Lu, Y.H. & Conrad, R. (2013). Niche
differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy
soil. Environ. Microbiol. , 15, 2275-2292.
Li, Z., Zeng, Z., Tian, D., Wang, J., Fu, Z., Zhang, F. et al.(2020). Global patterns and controlling factors of soil nitrification
rate. Glob. Change Biol. , 26, 4147-4157.
Liu, J., Yu, Z., Yao, Q., Sui, Y., Shi, Y., Chu, H. et al.(2018). Ammonia-Oxidizing Archaea Show More Distinct Biogeographic
Distribution Patterns than Ammonia-Oxidizing Bacteria across the Black
Soil Zone of Northeast China. Front. Microbiol. , 9.
Liu, J.J., Yu, Z.H., Yao, Q., Sui, Y.Y., Shi, Y., Chu, H.Y. et
al. (2019). Biogeographic Distribution Patterns of the Archaeal
Communities Across the Black Soil Zone of Northeast China. Front.
Microbiol. , 10, 23.
Louca, S., Parfrey, L.W. & Doebeli, M. (2016). Decoupling function and
taxonomy in the global ocean microbiome. Science , 353, 1272-1277.
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T.,
Mace, G. et al. (2018). Redefining ecosystem multifunctionality.Nat. Ecol. Evol. , 2, 427-436.
Meyer, S.T., Ptacnik, R., Hillebrand, H., Bessler, H., Buchmann, N.,
Ebeling, A. et al. (2018). Biodiversity–multifunctionality
relationships depend on identity and number of measured functions.Nat. Ecol. Evol. , 2, 44-49.
Nie, M., Pendall, E., Bell, C., Gasch, C.K., Raut, S., Tamang, S.et al. (2013). Positive climate feedbacks of soil microbial
communities in a semi-arid grassland. Ecol. Lett. , 16, 234-241.
Pester, M., Rattei, T., Flechl, S., Grongroft, A., Richter, A.,
Overmann, J. et al. (2012). amoA-based consensus phylogeny of
ammonia-oxidizing archaea and deep sequencing of amoA genes from soils
of four different geographic regions. Environ Microbiol , 14,
525-539.
Peters, M.K., Hemp, A., Appelhans, T., Becker, J.N., Behler, C.,
Classen, A. et al. (2019). Climate-land-use interactions shape
tropical mountain biodiversity and ecosystem functions. Nature ,
568, 88-92.
Qiao, N., Schaefer, D., Blagodatskaya, E., Zou, X.M., Xu, X.L. &
Kuzyakov, Y. (2014). Labile carbon retention compensates for CO2
released by priming in forest soils. Glob. Change Biol. , 20,
1943-1954.
Rivett, D.W. & Bell, T. (2018). Abundance determines the functional
role of bacterial phylotypes in complex communities. Nat.
Microbiol. , 3, 767-772.
Rotthauwe, J.H., Witzel, K.P. & Liesack, W. (1997). The ammonia
monooxygenase structural gene amoA as a functional marker: molecular
fine-scale analysis of natural ammonia-oxidizing populations.Appl. Environ. Microbiol. , 63, 4704-4712.
Schimel, J.P. & Schaeffer, S.M. (2012). Microbial control over carbon
cycling in soil. Front. Microbiol. , 3, 348.
Shen, J.-P., Zhang, L.-M., Di, H.J. & He, J.-Z. (2012). A review of
ammonia-oxidizing bacteria and archaea in Chinese soils. Front.
Microbiol. , 3, 296.
Srivastava, D.S. & Vellend, M. (2005). Biodiversity-Ecosystem Function
Research: Is It Relevant to Conservation? Annu. Rev. Ecol. Evol.
Syst. , 36, 267-294.
Strong, J.A., Andonegi, E., Bizsel, K.C., Danovaro, R., Elliott, M.,
Franco, A. et al. (2015). Marine biodiversity and ecosystem
function relationships: The potential for practical monitoring
applications. Estuar. Coast. Shelf Sci. , 161, 46-64.
Tilman, D., Isbell, F. & Cowles, J.M. (2014). Biodiversity and
Ecosystem Functioning. Annu. Rev. Ecol. Evol. Syst. , 45, 471-493.
Tilman, D., Reich, P.B., Knops, J.M.H., Wedin, D.A., Mielke, T. &
Lehman, C. (2001). Diversity and Productivity in a Long-Term Grassland
Experiment. Science , 294, 843-845.
Torsvik, V. & Øvreås, L. (2002). Microbial diversity and function in
soil: from genes to ecosystems. Curr. Opin. Microbiol. , 5,
240-245.
Trivedi, C., Delgado-Baquerizo, M., Hamonts, K., Lai, K.T., Reich, P.B.
& Singh, B.K. (2019a). Losses in microbial functional diversity reduce
the rate of key soil processes. Soil. Biol. Biochem. , 135,
267-274.
Trivedi, C., Reich, P.B., Maestre, F.T., Hu, H.W., Singh, B.K. &
Delgado-Baquerizo, M. (2019b). Plant-driven niche differentiation of
ammonia-oxidizing bacteria and archaea in global drylands. ISME
J. , 13, 2727-2736.
Trivedi, P., Delgado-Baquerizo, M., Jeffries, T.C., Trivedi, C.,
Anderson, I.C., Lai, K. et al. (2017a). Soil aggregation and
associated microbial communities modify the impact of agricultural
management on carbon content. Environ. Microbiol. , 19, 3070-3086.
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hamonts, K., Anderson,
I.C. & Singh, B.K. (2017b). Keystone microbial taxa regulate the
invasion of a fungal pathogen in agro-ecosystems. Soil. Biol.
Biochem. , 111, 10-14.
Trivedi, P., Delgado-Baquerizo, M., Trivedi, C., Hu, H.W., Anderson,
I.C., Jeffries, T.C. et al. (2016). Microbial regulation of the
soil carbon cycle: evidence from gene-enzyme relationships. ISME
J. , 10, 2593-2604.
Turnbull, L.A., Isbell, F., Purves, D.W., Loreau, M. & Hector, A.
(2016). Understanding the value of plant diversity for ecosystem
functioning through niche theory. Proc. R Soc. B-Biol. Sci. , 283,
20160536.
van der Plas, F. (2019). Biodiversity and ecosystem functioning in
naturally assembled communities. Biol Rev , 94, 1220-1245.
Veen, G.F., van der Putten, W.H. & Bezemer, T.M. (2018).
Biodiversity-ecosystem functioning relationships in a long-term
non-weeded field experiment. Ecology , 99, 1836-1846.
Veum, K.S., Lorenz, T. & Kremer, R.J. (2019). Phospholipid Fatty Acid
Profiles of Soils under Variable Handling and Storage Conditions.Agron. J. , 111, 1090-1096.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E. & Van Der Heijden,
M.G.A. (2019). Fungal-bacterial diversity and microbiome complexity
predict ecosystem functioning. Nat. Commun. , 10, 4841.
Wang, L., Delgado-Baquerizo, M., Wang, D., Isbell, F., Liu, J., Feng, C.et al. (2019). Diversifying livestock promotes multidiversity and
multifunctionality in managed grasslands. Proc. Natl. Acad. Sci. U
S A , 116, 6187-6192.
Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng,
Y. et al. (2016). Correlation detection strategies in microbial
data sets vary widely in sensitivity and precision. ISME J. , 10,
1669-1681.
Yang, F., Wu, J., Zhang, D., Chen, Q., Zhang, Q. & Cheng, X. (2018).
Soil bacterial community composition and diversity in relation to
edaphic properties and plant traits in grasslands of southern China.Appl. Soil Ecol. , 128, 43-53.
Zhang, Q., Wu, J.J., Yang, F., Lei, Y., Zhang, Q.F. & Cheng, X.L.
(2016). Alterations in soil microbial community composition and biomass
following agricultural land use change. Sci. Rep-Uk , 6, 36587.
Zhou, Z.-F., Wang, M.-X., Liu, W.-L., Li, Z.-L., Luo, F. & Xie, D.-T.
(2015). A comparative study of ammonia-oxidizing archaea and bacteria in
acidic and alkaline purple soils. Ann. Microbiol. , 66, 615-623.
Zhou, Z., Wang, C. & Luo, Y. (2020). Meta-analysis of the impacts of
global change factors on soil microbial diversity and functionality.Nat. Commun. , 11, 3072.