
Table 1. Significant siRNA chemical modifications to address siRNA drawbacks.
siRNA modified 
moiety 

siRNA chemical 
modification

Example Functions/comments Ref.

Sugar 2ʹ-O-Me ALN-VSP02 (ASC-06),
ALN-HBV, 
ONPATTRO 
(Patisiran), ARO-HBV, 
ALN-HBV02, Atu027

Enhancing binding affinity, melting temperature (Tm), 
and nuclease stability; reducing immune activation 

[1, 2]

2ʹ-O-MOE This alteration commonly has been employed in the 3ʹ-
overhangs of siRNA (employed just in the sense 
strand); enhancing melting temperature (Tm) and 
nuclease stability; reducing immune activation

[3, 4]

2ʹ-F ALN-HBV, 
ONPATTRO 
(Patisiran), ARO-HBV, 
ALN-HBV02

In every part of both sense and antisense strands can be
partially modified, and there are studies of active 
siRNAs, which are completely changed with 2ʹF-RNA;
enhancing binding affinity, melting temperature (Tm), 
and nuclease stability; reducing immune activation

[2]

2ʹ-O-cyanoethyl Improving interaction affinity and nuclease resistance [5]

2ʹ-O-acetalester Can be employed to develop protected siRNA 
molecules

[6]

2ʹ-esterified units 
(levulinates)

Can be employed to develop protected siRNA 
molecules

[7]

2ʹ-O-DNP Improving interaction affinity and resistance to 
nucleases while in some cases, somewhat reducing 
activity

[8]

4ʹ-S Enhancing binding affinity and nuclease stability; is 
compatible with siRNA activity when placed close to 
the terminal of siRNA duplexes

[9, 10]

Simultaneous application of 
2ʹ-O-MOE with 4ʹS-RNA 
and 2ʹ-O-Me

Improving potency and serum stability [11]

2ʹF-ANA Can be tolerated in completely modified sense strands 
and partially modified antisense strands siRNA; 
improving binding affinity and nuclease resistance

[12]

4ʹS-2ʹF-ANA Does not hinder siRNA activity at different positions in
both strands. 2ʹF-ANA modifications in the sense 
strand are synergistic with 4ʹS-2ʹF-ANA in the 
antisense strand; limited modifications can be applied 
following the reduction of interaction affinity.

[13]

LNA Improving binding affinity to RNA, which results from
conformational rigidity

[14]

UNA Reducing binding affinity to RNA [15]



tc-DNA Can improve silencing activity when placed in the 
overhangs

[16]

CeNA Can improve the potency of siRNA [17]

ANAs Can increase the potency and duration of silencing 
activity when placed at the proper position

[17]

HNAs Improving the potency of siRNA [18]

Morpholino Can be employed in the sense strand and on the 
overhangs; can suppress silencing activity in the 
antisense strand; can eliminate backbone charges

[19]

Backbone 
Linkage 
Modifications

PS ALN-VSP02 (ASC-06),
ALN-HBV, ARO-
HBV, ALN-HBV02

Enhancing nonspecific protein binding [2]

Amide-linked Enhancing thermodynamic stability and nuclease 
resistance of siRNA duplex

[11]

Phosphonoacetate can eliminate backbone charges via esterification 
leading to cellular uptake without transfection reagent

[20]

Phosphorothioate Can increase potency of siRNA [21]

PNA Enhancing thermodynamic stability, hydrophobicity, 
and nuclease resistance of siRNA duplex; can eliminate
backbone charges 

[22, 23]

2ʹ,5ʹ-linked Reducing the potency of siRNA [24]

Base 
Modifications

5-Me-U Enhancing siRNA stability and effective gene silencing
by siRNA

[25]

5-Me-C Enhancing siRNA stability and effective gene silencing
by siRNA

[25]

GNA ALN-HBV02, ALN-
AGT

Improving thermal stability; enhancing siRNA stability
against snake venom phosphodiesterase; increasing 
siRNA potencies

[2, 26]

Diaminopurine Can improve the strength of A-U base pairs [27]

2-thiouracil Improving binding affinity, potency, and specificity of 
siRNA

[28]

Pseudouracil Can improve the strength of A-U base pairs [28]

2,4-difluorobenzene Can be tolerated in specific positions of siRNA; in 
some cases, can increase the specificity of siRNA 

[29]

2,4-dichlorobenzene Can be tolerated in specific positions of siRNA; in 
some cases, can increase the specificity of siRNA

[29]

Terminal 
Conjugates

Inverted abasic end cap ARO-HBV, AMG 890, 
ARO-ANG3

Can improve exonuclease stability; can be used in 
biophysical/biochemical studies as a result of biotin or 
fluorescent dyes conjugation

[2]



Cholesterol conjugated Can protect siRNA duplex from HSV-2 after 
intravaginal administration

[30]

Abbreviation: 2′-O-Me, 2′-methoxy group substitution; 2′-F, 2′- fluoro substitution; 2ʹ-O-DNP, 2′-O-dinitrophenyl ethers; 2ʹF-ANA, HNAs,
hexitol nucleic acids; 2′-deoxy-2′- fluoroarabinonucleic acids; LNA, locked nucleic acid; UNA, unlocked nucleic acid; CeNA, cyclohexenyl
nucleic acids;  ANAs, altritol  nucleic acids;  PS, Phosphorothioate;  PNA, peptide nucleic acid; GNA, glycol nucleic acid; 2′-O-MOE, 2′-O-
methoxyethyl; tc-DNA, tricyclo-DNA modification
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