References

Abedini, F., Ebrahimi, M., & Hosseinkhani, H. (2018). Technology of RNA Interference in Advanced Medicine. MicroRNA, 7 (2), 74-84. doi:10.2174/2211536607666180129153307
Adiseshaiah, P. P., Crist, R. M., Hook, S. S., & McNeil, S. E. (2016). Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol, 13 (12), 750-765. doi:10.1038/nrclinonc.2016.119
Adler, A. F., & Leong, K. W. (2010). Emerging links between surface nanotechnology and endocytosis: Impact on nonviral gene delivery.Nano Today, 5 (6), 553-569. doi:https://doi.org/10.1016/j.nantod.2010.10.007
Aghamiri, S., Jafarpour, A., Gomari, M. M., Ghorbani, J., Rajabibazl, M., & Payandeh, Z. (2019). siRNA nanotherapeutics: a promising strategy for anti-HBV therapy. IET Nanobiotechnology, 13 (5), 457-463. doi:10.1049/iet-nbt.2018.5286
Aghamiri, S., Jafarpour, A., Malekshahi, Z. V., Mahmoudi Gomari, M., & Negahdari, B. (2019). Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view. Journal of Cellular Physiology, 234 (9), 14818-14827. doi:10.1002/jcp.28281
Aghamiri, S., Jafarpour, A., & Shoja, M. (2019). Effects of silver nanoparticles coated with anti-HER2 on irradiation efficiency of SKBR3 breast cancer cells. IET Nanobiotechnology, 13 (8), 808-815. https://digital-library.theiet.org/content/journals/10.1049/iet-nbt.2018.5258
Aghamiri, S., Mehrjardi, K. F., Shabani, S., Keshavarz-Fathi, M., Kargar, S., & Rezaei, N. (2019). Nanoparticle-siRNA: a potential strategy for ovarian cancer therapy? Nanomedicine, 14 (15), 2083-2100. doi:10.2217/nnm-2018-0379
Aslan, M., Shahbazi, R., Ulubayram, K., & Ozpolat, B. J. A. r. (2018). Targeted Therapies for Pancreatic Cancer and Hurdles Ahead.38 (12), 6591-6606.
Banerjee, S., & Saluja, A. K. (2018). A Theranostic Approach to Target Gastrin in Pancreatic Cancer. Cell Mol Gastroenterol Hepatol, 6 (1), 117-118.e111. doi:10.1016/j.jcmgh.2018.04.002
Bapat, A. A., Hostetter, G., Von Hoff, D. D., & Han, H. (2011). Perineural invasion and associated pain in pancreatic cancer.Nature Reviews Cancer, 11 , 695. doi:10.1038/nrc3131
Behlke, M. A. (2008). Chemical Modification of siRNAs for In Vivo Use.Oligonucleotides, 18 (4), 305-320. doi:10.1089/oli.2008.0164
Biscans, A., Rouanet, S., Bertrand, J.-R., Vasseur, J.-J., Dupouy, C., & Debart, F. (2015). Synthesis, binding, nuclease resistance and cellular uptake properties of 2′-O-acetalester-modified oligonucleotides containing cationic groups. Bioorganic & Medicinal Chemistry, 23 (17), 5360-5368. doi:https://doi.org/10.1016/j.bmc.2015.07.054
Burks, J., Nadella, S., Mahmud, A., Mankongpaisarnrung, C., Wang, J., Hahm, J.-I., . . . Smith, J. P. (2018). Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer. Cellular and Molecular Gastroenterology and Hepatology, 6 (1), 17-32. doi:https://doi.org/10.1016/j.jcmgh.2018.02.013
Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., . . . Kataoka, K. (2011). Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 6 (12), 815-823. doi:10.1038/nnano.2011.166
Cabral, H., Murakami, M., Hojo, H., Terada, Y., Kano, M. R., Chung, U.-i., . . . Kataoka, K. (2013). Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis. Proceedings of the National Academy of Sciences, 110 (28), 11397. doi:10.1073/pnas.1301348110
Chen, K., Li, Z., Jiang, P., Zhang, X., Zhang, Y., Jiang, Y., . . . Li, X. (2014). Co-expression of CD133, CD44v6 and human tissue factor is associated with metastasis and poor prognosis in pancreatic carcinoma.Oncol Rep, 32 (2), 755-763. doi:10.3892/or.2014.3245
Chernikov, I. V., Vlassov, V. V., & Chernolovskaya, E. L. (2019). Current Development of siRNA Bioconjugates: From Research to the Clinic.Frontiers in Pharmacology, 10 (444). doi:10.3389/fphar.2019.00444
Chiu, Y.-L., & Rana, T. M. (2002). RNAi in Human Cells: Basic Structural and Functional Features of Small Interfering RNA.Molecular Cell, 10 (3), 549-561. doi:https://doi.org/10.1016/S1097-2765(02)00652-4
CHIU, Y.-L., & RANA, T. M. (2003). siRNA function in RNAi: A chemical modification analysis. RNA, 9 (9), 1034-1048. doi:10.1261/rna.5103703
Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Itty Ipe, B., . . . Frangioni, J. V. (2007). Renal clearance of quantum dots.Nature Biotechnology, 25 (10), 1165-1170. doi:10.1038/nbt1340
Cives, M., & Strosberg, J. R. (2018). Gastroenteropancreatic Neuroendocrine Tumors. CA Cancer J Clin, 68 (6), 471-487. doi:10.3322/caac.21493
Das, M., Musetti, S., & Huang, L. (2018). RNA Interference-Based Cancer Drugs: The Roadblocks, and the “Delivery” of the Promise.Nucleic Acid Therapeutics, 29 (2), 61-66. doi:10.1089/nat.2018.0762
Davis, M. E., Zuckerman, J. E., Choi, C. H. J., Seligson, D., Tolcher, A., Alabi, C. A., . . . Ribas, A. (2010). Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.Nature, 464 (7291), 1067-1070. doi:10.1038/nature08956
Davoodi, P., Lee, L. Y., Xu, Q., Sunil, V., Sun, Y., Soh, S., & Wang, C.-H. (2018). Drug delivery systems for programmed and on-demand release. Advanced Drug Delivery Reviews, 132 , 104-138. doi:https://doi.org/10.1016/j.addr.2018.07.002
de la Fuente, M., Jones, M.-C., Santander-Ortega, M. J., Mirenska, A., Marimuthu, P., Uchegbu, I., & Schätzlein, A. (2015). A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer.Nanomedicine: Nanotechnology, Biology and Medicine, 11 (2), 369-377. doi:https://doi.org/10.1016/j.nano.2014.09.010
Demeure, M. J., Armaghany, T., Ejadi, S., Ramanathan, R. K., Elfiky, A., Strosberg, J. R., . . . Kowalski, M. M. (2016). A phase I/II study of TKM-080301, a PLK1-targeted RNAi in patients with adrenocortical cancer (ACC). J. Clin. Oncol., 34 .
Ding, N., Zou, Z., Sha, H., Su, S., Qian, H., Meng, F., . . . Liu, B. (2019). iRGD synergizes with PD-1 knockout immunotherapy by enhancing lymphocyte infiltration in gastric cancer. Nature Communications, 10 (1), 1336. doi:10.1038/s41467-019-09296-6
Dong, Y., Siegwart, D. J., & Anderson, D. G. (2019). Strategies, design, and chemistry in siRNA delivery systems. Advanced Drug Delivery Reviews, 144 , 133-147. doi:https://doi.org/10.1016/j.addr.2019.05.004
Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafrański, O., Karnas, K., & Karewicz, A. (2019). Superparamagnetic Iron Oxide Nanoparticles—Current and Prospective Medical Applications.12 (4), 617.
Duong, H. T. T., Jung, K., Kutty, S. K., Agustina, S., Adnan, N. N. M., Basuki, J. S., . . . Boyer, C. (2014). Nanoparticle (Star Polymer) Delivery of Nitric Oxide Effectively Negates Pseudomonas aeruginosa Biofilm Formation. Biomacromolecules, 15 (7), 2583-2589. doi:10.1021/bm500422v
Dvorak, A. M., Kohn, S., Morgan, E. S., Fox, P., Nagy, J. A., & Dvorak, H. F. (1996). The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. Journal of Leukocyte Biology, 59 (1), 100-115. doi:10.1002/jlb.59.1.100
Elahi, F. M., Farwell, D. G., Nolta, J. A., & Anderson, J. D. (2019). Preclinical translation of exosomes derived from mesenchymal stem/stromal cells. STEM CELLS, 0 (0). doi:10.1002/stem.3061
Erkan, M., Hausmann, S., Michalski, C. W., Fingerle, A. A., Dobritz, M., Kleeff, J., & Friess, H. (2012). The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nature Reviews Gastroenterology & Hepatology, 9 (8), 454-467. doi:10.1038/nrgastro.2012.115
Fisher, M., Abramov, M., Van Aerschot, A., Rozenski, J., Dixit, V., Juliano, R. L., & Herdewijn, P. (2009). Biological effects of hexitol and altritol-modified siRNAs targeting B-Raf. European Journal of Pharmacology, 606 (1), 38-44. doi:https://doi.org/10.1016/j.ejphar.2009.01.030
Fujita, N., Watanabe, S., Ichimura, T., Tsuruzoe, S., Shinkai, Y., Tachibana, M., . . . Nakao, M. (2003). Methyl-CpG Binding Domain 1 (MBD1) Interacts with the Suv39h1-HP1 Heterochromatic Complex for DNA Methylation-based Transcriptional Repression. Journal of Biological Chemistry, 278 (26), 24132-24138. doi:10.1074/jbc.M302283200
Gao, H., Shi, W., & Freund, L. B. (2005). Mechanics of receptor-mediated endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 102 (27), 9469. doi:10.1073/pnas.0503879102
Gao, Y., Liu, X.-L., & Li, X.-R. (2011). Research progress on siRNA delivery with nonviral carriers. International journal of nanomedicine, 6 , 1017-1025. doi:10.2147/IJN.S17040
Gibori, H., Eliyahu, S., Krivitsky, A., Ben-Shushan, D., Epshtein, Y., Tiram, G., . . . Satchi-Fainaro, R. (2018). Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer. Nature Communications, 9 (1), 16. doi:10.1038/s41467-017-02283-9
Godsey, M. E., Suryaprakash, S., & Leong, K. W. (2013). Materials innovation for co-delivery of diverse therapeutic cargos. RSC Advances, 3 (47), 24794-24811. doi:10.1039/C3RA43094D
Golan, T., Khvalevsky, E. Z., Hubert, A., Gabai, R. M., Hen, N., Segal, A., . . . Galun, E. (2015). RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients.Oncotarget, 6 (27), 24560-24570. doi:10.18632/oncotarget.4183
Gustafson, H. H., Holt-Casper, D., Grainger, D. W., & Ghandehari, H. (2015). Nanoparticle uptake: The phagocyte problem. Nano Today, 10 (4), 487-510. doi:https://doi.org/10.1016/j.nantod.2015.06.006
Habraken, W., Habibovic, P., Epple, M., & Bohner, M. (2016). Calcium phosphates in biomedical applications: materials for the future?Materials Today, 19 (2), 69-87. doi:https://doi.org/10.1016/j.mattod.2015.10.008
Han, Y., Ding, B., Zhao, Z., Zhang, H., Sun, B., Zhao, Y., . . . Ding, Y. (2018). Immune lipoprotein nanostructures inspired relay drug delivery for amplifying antitumor efficiency. Biomaterials, 185 , 205-218. doi:https://doi.org/10.1016/j.biomaterials.2018.09.016
Hashemi Goradel, N., Ghiyami-Hour, F., Jahangiri, S., Negahdari, B., Sahebkar, A., Masoudifar, A., & Mirzaei, H. (2018). Nanoparticles as new tools for inhibition of cancer angiogenesis. Journal of Cellular Physiology, 233 (4), 2902-2910. doi:10.1002/jcp.26029
Hill, A. B., Chen, M., Chen, C.-K., Pfeifer, B. A., & Jones, C. H. (2016). Overcoming Gene-Delivery Hurdles: Physiological Considerations for Nonviral Vectors. Trends in Biotechnology, 34 (2), 91-105. doi:https://doi.org/10.1016/j.tibtech.2015.11.004
Hoshika, S., Minakawa, N., Kamiya, H., Harashima, H., & Matsuda, A. (2005). RNA interference induced by siRNAs modified with 4′-thioribonucleosides in cultured mammalian cells. FEBS Letters, 579 (14), 3115-3118. doi:10.1016/j.febslet.2005.04.073
Hoshika, S., Minakawa, N., Shionoya, A., Imada, K., Ogawa, N., & Matsuda, A. (2007). Study of Modification Pattern–RNAi Activity Relationships by Using siRNAs Modified with 4′-Thioribonucleosides.ChemBioChem, 8 (17), 2133-2138. doi:10.1002/cbic.200700342
Hu, J., Sheng, Y., Shi, J., Yu, B., Yu, Z., & Liao, G. (2018). Long Circulating Polymeric Nanoparticles for Gene/Drug Delivery.Current Drug Metabolism, 19 (9), 723-738. doi:10.2174/1389200219666171207120643
Hu, Q. L., Jiang, Q. Y., Jin, X., Shen, J., Wang, K., Li, Y. B., . . . Li, Z. H. (2013). Cationic microRNA-delivering nanovectors with bifunctional peptides for efficient treatment of PANC-1 xenograft model.Biomaterials, 34 (9), 2265-2276. doi:https://doi.org/10.1016/j.biomaterials.2012.12.016
Huang, H., Li, J., Liao, L., Li, J., Wu, L., Dong, C., . . . Liu, D. (2012). Poly(l-glutamic acid)-based star-block copolymers as pH-responsive nanocarriers for cationic drugs. European Polymer Journal, 48 (4), 696-704. doi:https://doi.org/10.1016/j.eurpolymj.2012.01.011
Hui, Y., Yi, X., Hou, F., Wibowo, D., Zhang, F., Zhao, D., . . . Zhao, C.-X. (2019). Role of Nanoparticle Mechanical Properties in Cancer Drug Delivery. ACS Nano, 13 (7), 7410-7424. doi:10.1021/acsnano.9b03924
Ilic, M., & Ilic, I. (2016). Epidemiology of pancreatic cancer.World journal of gastroenterology, 22 (44), 9694-9705. doi:10.3748/wjg.v22.i44.9694
Ittig, D., Schümperli, D., & Leumann, C. J. (2008). Tc-DNA modified siRNA. Nucleic Acids Symposium Series, 52 (1), 501-502. doi:10.1093/nass/nrn254
Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., . . . Linsley, P. S. (2006). Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing.RNA, 12 (7), 1197-1205. doi:10.1261/rna.30706
Jahns, H., Roos, M., Imig, J., Baumann, F., Wang, Y., Gilmour, R., & Hall, J. (2015). Stereochemical bias introduced during RNA synthesis modulates the activity of phosphorothioate siRNAs. Nature Communications, 6 (1), 6317. doi:10.1038/ncomms7317
Kalyane, D., Raval, N., Maheshwari, R., Tambe, V., Kalia, K., & Tekade, R. K. (2019). Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Materials Science and Engineering: C, 98 , 1252-1276. doi:https://doi.org/10.1016/j.msec.2019.01.066
Kami, K., Doi, R., Koizumi, M., Toyoda, E., Mori, T., Ito, D., . . . Imamura, M. (2005). Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells. Surgery, 138 (2), 299-305. doi:https://doi.org/10.1016/j.surg.2005.05.009
Kamisawa, T., Wood, L. D., Itoi, T., & Takaori, K. (2016). Pancreatic cancer. The Lancet, 388 (10039), 73-85. doi:https://doi.org/10.1016/S0140-6736(16)00141-0
Khan, S., Ebeling, M. C., Zaman, M. S., Sikander, M., Yallapu, M. M., Chauhan, N., . . . Kumar, D. J. O. (2014). MicroRNA-145 targets MUC13 and suppresses growth and invasion of pancreatic cancer. 5 (17), 7599.
Khvorova, A., & Watts, J. K. (2017). The chemical evolution of oligonucleotide therapies of clinical utility. Nature Biotechnology, 35 (3), 238-248. doi:10.1038/nbt.3765
Kim, B., Park, J. H., & Sailor, M. J. (2019). Rekindling RNAi Therapy: Materials Design Requirements for In Vivo siRNA Delivery. Adv Mater , e1903637. doi:10.1002/adma.201903637
Kim, B. S., Chuanoi, S., Suma, T., Anraku, Y., Hayashi, K., Naito, M., . . . Kataoka, K. (2019). Self-Assembly of siRNA/PEG-b-Catiomer at Integer Molar Ratio into 100 nm-Sized Vesicular Polyion Complexes (siRNAsomes) for RNAi and Codelivery of Cargo Macromolecules. Journal of the American Chemical Society, 141 (8), 3699-3709. doi:10.1021/jacs.8b13641
Kim, H. A., Nam, K., & Kim, S. W. (2014). Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery. Biomaterials, 35 (26), 7543-7552. doi:10.1016/j.biomaterials.2014.05.021
Kleeff, J., Korc, M., Apte, M., La Vecchia, C., Johnson, C. D., Biankin, A. V., . . . Neoptolemos, J. P. (2016). Pancreatic cancer. Nature Reviews Disease Primers, 2 , 16022. doi:10.1038/nrdp.2016.22
Koide, H., Fukuta, T., Okishim, A., Ariizumi, S., Kiyokawa, C., Tsuchida, H., . . . Shea, K. J. (2019). Engineering the Binding Kinetics of Synthetic Polymer Nanoparticles for siRNA Delivery.Biomacromolecules, 20 (10), 3648-3657. doi:10.1021/acs.biomac.9b00611
Kulhari, H., Jangid, A. K., & Adams, D. J. (2019). Monoclonal Antibody-Conjugated Dendritic Nanostructures for siRNA Delivery.Methods Mol Biol, 1974 , 195-201. doi:10.1007/978-1-4939-9220-1_14
Kumar, P., Parmar, R. G., Brown, C. R., Willoughby, J. L. S., Foster, D. J., Babu, I. R., . . . Manoharan, M. (2019). 5′-Morpholino modification of the sense strand of an siRNA makes it a more effective passenger.Chemical Communications, 55 (35), 5139-5142. doi:10.1039/C9CC00977A
Kumar, S., & Kim, J. (2015). PLK-1 Targeted Inhibitors and Their Potential against Tumorigenesis. Biomed Res Int, 2015 , 705745. doi:10.1155/2015/705745
Kumar, S., Sharma, A. R., Sharma, G., Chakraborty, C., & Kim, J. (2016). PLK-1: Angel or devil for cell cycle progression. Biochim Biophys Acta, 1865 (2), 190-203. doi:10.1016/j.bbcan.2016.02.003
Kurtanich, T., Roos, N., Wang, G., Yang, J., Wang, A., & Chung, E. J. (2018). Pancreatic Cancer Gene Therapy Delivered by Nanoparticles.SLAS TECHNOLOGY: Translating Life Sciences Innovation, 24 (2), 151-160. doi:10.1177/2472630318811108
Kurtanich, T., Roos, N., Wang, G., Yang, J., Wang, A., & Chung, E. J. J. S. T. T. L. S. I. (2019). Pancreatic Cancer Gene Therapy Delivered by Nanoparticles. 24 (2), 151-160.
Lai, W.-F., & Wong, W.-T. (2018). Design of Polymeric Gene Carriers for Effective Intracellular Delivery. Trends in Biotechnology, 36 (7), 713-728. doi:https://doi.org/10.1016/j.tibtech.2018.02.006
Lancet, J. E., Cortes, J. E., Hogge, D. E., Tallman, M. S., Kovacsovics, T. J., Damon, L. E., . . . Feldman, E. J. (2014). Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. Blood, 123 (21), 3239-3246. doi:10.1182/blood-2013-12-540971
Langkjær, N., Pasternak, A., & Wengel, J. (2009). UNA (unlocked nucleic acid): A flexible RNA mimic that allows engineering of nucleic acid duplex stability. Bioorganic & Medicinal Chemistry, 17 (15), 5420-5425. doi:https://doi.org/10.1016/j.bmc.2009.06.045
Lei, Y., Tang, L., Xie, Y., Xianyu, Y., Zhang, L., Wang, P., . . . Jiang, X. (2017). Gold nanoclusters-assisted delivery of NGF siRNA for effective treatment of pancreatic cancer. Nature Communications, 8 (1), 15130. doi:10.1038/ncomms15130
Li, J., Chen, Y., Zeng, L., Lian, G., Chen, S., Li, Y., . . . Huang, K. (2016). A Nanoparticle Carrier for Co-Delivery of Gemcitabine and Small Interfering RNA in Pancreatic Cancer Therapy. Journal of Biomedical Nanotechnology, 12 (8), 1654-1666. doi:10.1166/jbn.2016.2269
Lin, G., Hu, R., Law, W.-C., Chen, C.-K., Wang, Y., Li Chin, H., . . . Yong, K.-T. (2013). Biodegradable Nanocapsules as siRNA Carriers for Mutant K-Ras Gene Silencing of Human Pancreatic Carcinoma Cells.Small, 9 (16), 2757-2763. doi:10.1002/smll.201201716
Liu, X., Lin, P., Perrett, I., Lin, J., Liao, Y.-P., Chang, C. H., . . . Meng, H. (2017). Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. The Journal of Clinical Investigation, 127 (5), 2007-2018. doi:10.1172/JCI92284
Lu, Z.-R., & Qiao, P. (2018). Drug Delivery in Cancer Therapy, Quo Vadis? Molecular Pharmaceutics, 15 (9), 3603-3616. doi:10.1021/acs.molpharmaceut.8b00037
Luo, G., Jin, C., Long, J., Fu, D., Yang, F., Xu, J., . . . Ni, Q. (2009). RNA interference of MBD1 in BxPC-3 human pancreatic cancer cells delivered by PLGA-poloxamer nanoparticles. Cancer Biol Ther, 8 (7), 594-598. doi:10.4161/cbt.8.7.7790
Maeda, H. (2015). Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Advanced Drug Delivery Reviews, 91 , 3-6. doi:https://doi.org/10.1016/j.addr.2015.01.002
Mahajan, U. M., Teller, S., Sendler, M., Palankar, R., van den Brandt, C., Schwaiger, T., . . . Mayerle, J. (2016). Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut, 65 (11), 1838. doi:10.1136/gutjnl-2016-311393
Maiti, D., Tong, X., Mou, X., & Yang, K. (2019). Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study.Frontiers in pharmacology, 9 , 1401-1401. doi:10.3389/fphar.2018.01401
Matsumoto, Y., Nichols, J. W., Toh, K., Nomoto, T., Cabral, H., Miura, Y., . . . Kataoka, K. (2016). Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery. Nature Nanotechnology, 11 , 533. doi:10.1038/nnano.2015.342
Meng, H., & Nel, A. E. (2018). Use of nano engineered approaches to overcome the stromal barrier in pancreatic cancer. Advanced Drug Delivery Reviews, 130 , 50-57. doi:https://doi.org/10.1016/j.addr.2018.06.014
Min, H. S., Kim, H. J., Ahn, J., Naito, M., Hayashi, K., Toh, K., . . . Kataoka, K. (2018). Tuned Density of Anti-Tissue Factor Antibody Fragment onto siRNA-Loaded Polyion Complex Micelles for Optimizing Targetability into Pancreatic Cancer Cells. Biomacromolecules, 19 (6), 2320-2329. doi:10.1021/acs.biomac.8b00507
Naeye, B., Deschout, H., Caveliers, V., Descamps, B., Braeckmans, K., Vanhove, C., . . . Raemdonck, K. (2013). In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier.Biomaterials, 34 (9), 2350-2358. doi:https://doi.org/10.1016/j.biomaterials.2012.11.058
Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., & Wise, J. G. (2018). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Scientific Reports, 8 (1), 967. doi:10.1038/s41598-018-19325-x
Negahdari, B., Darvishi, M., & Saeedi, A. A. (2019). Gold nanoparticles and hepatitis B virus. Artificial Cells, Nanomedicine, and Biotechnology, 47 (1), 455-461. doi:10.1080/21691401.2018.1553786
Nielsen, P. E., Egholm, M., & Buchardt, O. (1994). Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjugate Chemistry, 5 (1), 3-7. doi:10.1021/bc00025a001
Nikolaou, M., Pavlopoulou, A., Georgakilas, A. G., & Kyrodimos, E. (2018). The challenge of drug resistance in cancer treatment: a current overview. Clinical & Experimental Metastasis, 35 (4), 309-318. doi:10.1007/s10585-018-9903-0
Oh, Y.-K., & Park, T. G. (2009). siRNA delivery systems for cancer treatment. Advanced Drug Delivery Reviews, 61 (10), 850-862. doi:https://doi.org/10.1016/j.addr.2009.04.018
Onoue, S., Yamada, S., & Chan, H.-K. (2014). Nanodrugs: pharmacokinetics and safety. International journal of nanomedicine, 9 , 1025-1037. doi:10.2147/IJN.S38378
Öztürk-Atar, K., Eroğlu, H., & Çalış, S. (2018). Novel advances in targeted drug delivery. Journal of Drug Targeting, 26 (8), 633-642. doi:10.1080/1061186X.2017.1401076
Pan, X., Zhu, Q., Sun, Y., Li, L., Zhu, Y., Zhao, Z., . . . Li, K. (2015). PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo. Int J Mol Med, 35 (4), 995-1002. doi:10.3892/ijmm.2015.2096
Paris, J. L., Baeza, A., & Vallet-Regí, M. (2019). Overcoming the stability, toxicity, and biodegradation challenges of tumor stimuli-responsive inorganic nanoparticles for delivery of cancer therapeutics. Expert Opinion on Drug Delivery, 16 (10), 1095-1112. doi:10.1080/17425247.2019.1662786
Paryan, M., Tavakoli, R., Rad, S. M. A. H., Feizi, N., Kamani, F., Mostafavi, E., & Mohammadi-Yeganeh, S. (2016). Over-expression of NOTCH1 as a biomarker for invasive breast ductal carcinoma. 3 Biotech, 6 (1), 58. doi:10.1007/s13205-016-0373-2
Perrault, S. D., Walkey, C., Jennings, T., Fischer, H. C., & Chan, W. C. W. (2009). Mediating Tumor Targeting Efficiency of Nanoparticles Through Design. Nano Letters, 9 (5), 1909-1915. doi:10.1021/nl900031y
Pirollo, K. F., Rait, A., Zhou, Q., Hwang, S. H., Dagata, J. A., Zon, G., . . . Chang, E. H. (2007). Materializing the Potential of Small Interfering RNA via a Tumor-Targeting Nanodelivery System. Cancer Research, 67 (7), 2938. doi:10.1158/0008-5472.CAN-06-4535
Pittella, F., Zhang, M., Lee, Y., Kim, H. J., Tockary, T., Osada, K., . . . Kataoka, K. (2011). Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials, 32 (11), 3106-3114. doi:https://doi.org/10.1016/j.biomaterials.2010.12.057
Potenza, N., Moggio, L., Milano, G., Salvatore, V., Di Blasio, B., Russo, A., & Messere, A. (2008). RNA interference in mammalia cells by RNA-3’-PNA chimeras. Int J Mol Sci, 9 (3), 299-315.
Prakash, T. P., Kraynack, B., Baker, B. F., Swayze, E. E., & Bhat, B. (2006). RNA interference by 2′,5′-linked nucleic acid duplexes in mammalian cells. Bioorganic & Medicinal Chemistry Letters, 16 (12), 3238-3240. doi:https://doi.org/10.1016/j.bmcl.2006.03.053
Riley, R. S., June, C. H., Langer, R., & Mitchell, M. J. (2019). Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 18 (3), 175-196. doi:10.1038/s41573-018-0006-z
Ripka, S., Neesse, A., Riedel, J., Bug, E., Aigner, A., Poulsom, R., . . . Michl, P. (2010). CUX1: target of Akt signalling and mediator of resistance to apoptosis in pancreatic cancer. Gut, 59 (8), 1101. doi:10.1136/gut.2009.189720
Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., & Gottesman, M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews Cancer, 18 (7), 452-464. doi:10.1038/s41568-018-0005-8
Rossi, M., De Laurenzi, V., Munarriz, E., Green, D. R., Liu, Y. C., Vousden, K. H., . . . Melino, G. (2005). The ubiquitin-protein ligase Itch regulates p73 stability. Embo j, 24 (4), 836-848. doi:10.1038/sj.emboj.7600444
Sahay, G., Alakhova, D. Y., & Kabanov, A. V. (2010). Endocytosis of nanomedicines. Journal of Controlled Release, 145 (3), 182-195. doi:https://doi.org/10.1016/j.jconrel.2010.01.036
Samanta, K., Setua, S., Kumari, S., Jaggi, M., Yallapu, M. M., & Chauhan, S. C. (2019). Gemcitabine Combination Nano Therapies for Pancreatic Cancer. Pharmaceutics, 11 (11). doi:10.3390/pharmaceutics11110574
Satoh, K., Kaneko, K., Hirota, M., Masamune, A., Satoh, A., & Shimosegawa, T. (2001). Expression of survivin is correlated with cancer cell apoptosis and is involved in the development of human pancreatic duct cell tumors. Cancer, 92 (2), 271-278. doi:10.1002/1097-0142(20010715)92:2<271::AID-CNCR1319>3.0.CO;2-0
Schlegel, M. K., Foster, D. J., Kel’in, A. V., Zlatev, I., Bisbe, A., Jayaraman, M., . . . Manoharan, M. (2017). Chirality Dependent Potency Enhancement and Structural Impact of Glycol Nucleic Acid Modification on siRNA. J Am Chem Soc, 139 (25), 8537-8546. doi:10.1021/jacs.7b02694
Schultheis, B., Strumberg, D., Kuhlmann, J., Wolf, M., Link, K., Seufferlein, T., . . . Pelzer, U. (2018). Combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma - a Phase Ib/IIa study. Oncol. Res. Treat., 41 , 64.
Sekine, M. (2018). Recent Development of Chemical Synthesis of RNA. In S. Obika & M. Sekine (Eds.), Synthesis of Therapeutic Oligonucleotides (pp. 41-65). Singapore: Springer Singapore.
Setua, S., Khan, S., Yallapu, M. M., Behrman, S. W., Sikander, M., Khan, S. S., . . . Chauhan, S. C. (2017). Restitution of Tumor Suppressor MicroRNA-145 Using Magnetic Nanoformulation for Pancreatic Cancer Therapy. Journal of Gastrointestinal Surgery, 21 (1), 94-105. doi:10.1007/s11605-016-3222-z
Sheehan, D., Lunstad, B., Yamada, C. M., Stell, B. G., Caruthers, M. H., & Dellinger, D. J. (2003). Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Research, 31 (14), 4109-4118. doi:10.1093/nar/gkg439
Shmushkovich, T., Monopoli, K. R., Homsy, D., Leyfer, D., Betancur-Boissel, M., Khvorova, A., & Wolfson, A. D. (2018). Functional features defining the efficacy of cholesterol-conjugated, self-deliverable, chemically modified siRNAs. Nucleic Acids Research, 46 (20), 10905-10916. doi:10.1093/nar/gky745
Sipa, K., Sochacka, E., Kazmierczak-Baranska, J., Maszewska, M., Janicka, M., Nowak, G., & Nawrot, B. (2007). Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA, 13 (8), 1301-1316. doi:10.1261/rna.538907
Smith, C. I. E., & Zain, R. (2019). Therapeutic Oligonucleotides: State of the Art. 59 (1), 605-630. doi:10.1146/annurev-pharmtox-010818-021050
Smith, S. A., Selby, L. I., Johnston, A. P. R., & Such, G. K. (2019). The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chemistry, 30 (2), 263-272. doi:10.1021/acs.bioconjchem.8b00732
Somoza, A., Silverman, A. P., Miller, R. M., Chelliserrykattil, J., & Kool, E. T. (2008). Steric Effects in RNA Interference: Probing the Influence of Nucleobase Size and Shape. Chemistry – A European Journal, 14 (26), 7978-7987. doi:10.1002/chem.200800837
Sousa, A. R., Oliveira, A. V., Oliveira, M. J., & Sarmento, B. (2019). Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. International Journal of Pharmaceutics, 568 , 118530. doi:https://doi.org/10.1016/j.ijpharm.2019.118530
Strumberg, D., Schultheis, B., Meyer-Sabellek, W., Vank, C., Gebhardt, F., Santel, A., . . . Drevs, J. (2012). Antimetastatic activity of Atu027, a liposomal small interfering RNA formulation, targeting protein kinase N3 (PKN3): Final results of a phase I study in patients with advanced solid tumors. Journal of Clinical Oncology, 30 (15_suppl), e13597-e13597. doi:10.1200/jco.2012.30.15_suppl.e13597
Sugahara, K. N., Teesalu, T., Karmali, P. P., Kotamraju, V. R., Agemy, L., Greenwald, D. R., & Ruoslahti, E. (2010). Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs.Science, 328 (5981), 1031. doi:10.1126/science.1183057
Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99 , 28-51. doi:https://doi.org/10.1016/j.addr.2015.09.012
Sun, Q., Barz, M., De Geest, B. G., Diken, M., Hennink, W. E., Kiessling, F., . . . Shi, Y. (2019). Nanomedicine and macroscale materials in immuno-oncology. Chem Soc Rev, 48 (1), 351-381. doi:10.1039/c8cs00473k
Sun, Y., Kang, C., Liu, F., Zhou, Y., Luo, L., & Qiao, H. (2017). RGD Peptide-Based Target Drug Delivery of Doxorubicin Nanomedicine.Drug Dev Res, 78 (6), 283-291. doi:10.1002/ddr.21399
Suurs, F. V., Lub-de Hooge, M. N., de Vries, E. G. E., & de Groot, D. J. A. (2019). A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacology & Therapeutics, 201 , 103-119. doi:https://doi.org/10.1016/j.pharmthera.2019.04.006
Takebe, N., Harris, P. J., Warren, R. Q., & Ivy, S. P. (2011). Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nature Reviews Clinical Oncology, 8 (2), 97-106. doi:10.1038/nrclinonc.2010.196
Tao, W., Zhu, X., Yu, X., Zeng, X., Xiao, Q., Zhang, X., . . . Mei, L. (2017). Black Phosphorus Nanosheets as a Robust Delivery Platform for Cancer Theranostics. Advanced Materials, 29 (1), 1603276. doi:10.1002/adma.201603276
Teo, J., McCarroll, J. A., Boyer, C., Youkhana, J., Sagnella, S. M., Duong, H. T. T., . . . Phillips, P. A. (2016). A Rationally Optimized Nanoparticle System for the Delivery of RNA Interference Therapeutics into Pancreatic Tumors in Vivo. Biomacromolecules, 17 (7), 2337-2351. doi:10.1021/acs.biomac.6b00185
Terrazas, M., & Kool, E. T. (2008). RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Research, 37 (2), 346-353. doi:10.1093/nar/gkn958
Vester, B., & Wengel, J. (2004). LNA (Locked Nucleic Acid): High-Affinity Targeting of Complementary RNA and DNA.Biochemistry, 43 (42), 13233-13241. doi:10.1021/bi0485732
Wang, J., Lu, Z., Wang, J., Cui, M., Yeung, B. Z., Cole, D. J., . . . Au, J. L. S. (2015). Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.Journal of Controlled Release, 216 , 103-110. doi:https://doi.org/10.1016/j.jconrel.2015.08.012
Wang, Y., Zhao, Q., Han, N., Bai, L., Li, J., Liu, J., . . . Wang, S. (2015). Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology and Medicine, 11 (2), 313-327. doi:https://doi.org/10.1016/j.nano.2014.09.014
Warram, J. M., de Boer, E., Sorace, A. G., Chung, T. K., Kim, H., Pleijhuis, R. G., . . . Rosenthal, E. L. (2014). Antibody-based imaging strategies for cancer. Cancer and Metastasis Reviews, 33 (2), 809-822. doi:10.1007/s10555-014-9505-5
Watts, J. K., Choubdar, N., Sadalapure, K., Robert, F., Wahba, A. S., Pelletier, J., . . . Damha, M. J. (2007). 2′-Fluoro-4′-thioarabino-modified oligonucleotides: conformational switches linked to siRNA activity. Nucleic Acids Research, 35 (5), 1441-1451. doi:10.1093/nar/gkl1153
Watts, J. K., Katolik, A., Viladoms, J., & Damha, M. J. (2009). Studies on the hydrolytic stability of 2′-fluoroarabinonucleic acid (2′F-ANA).Organic & Biomolecular Chemistry, 7 (9), 1904-1910. doi:10.1039/B900443B
Weng, Y., Xiao, H., Zhang, J., Liang, X.-J., & Huang, Y. (2019). RNAi therapeutic and its innovative biotechnological evolution.Biotechnology Advances, 37 (5), 801-825. doi:https://doi.org/10.1016/j.biotechadv.2019.04.012
Wolfgang, C. L., Herman, J. M., Laheru, D. A., Klein, A. P., Erdek, M. A., Fishman, E. K., & Hruban, R. H. (2013). Recent progress in pancreatic cancer. CA Cancer J Clin, 63 (5), 318-348. doi:10.3322/caac.21190
Wu, D., Han, H., Xing, Z., Zhang, J., Li, L., Shi, W., & Li, Q. (2016). Ideal and Reality: Barricade in the Delivery of Small Interfering RNA for Cancer Therapy. Current Pharmaceutical Biotechnology, 17 (3), 237-247.
Xia, T., Kovochich, M., Liong, M., Meng, H., Kabehie, S., George, S., . . . Nel, A. E. (2009). Polyethyleneimine Coating Enhances the Cellular Uptake of Mesoporous Silica Nanoparticles and Allows Safe Delivery of siRNA and DNA Constructs. ACS Nano, 3 (10), 3273-3286. doi:10.1021/nn900918w
Yang, C., Chan, K. K., Lin, W.-J., Soehartono, A. M., Lin, G., Toh, H., . . . Yong, K.-T. (2017). Biodegradable nanocarriers for small interfering ribonucleic acid (siRNA) co-delivery strategy increase the chemosensitivity of pancreatic cancer cells to gemcitabine. Nano Research, 10 (9), 3049-3067. doi:10.1007/s12274-017-1521-7
Yang, J., Zhang, X., Zhang, Y., Zhu, D., Zhang, L., Li, Y., . . . Zhou, J. (2016). HIF-2alpha promotes epithelial-mesenchymal transition through regulating Twist2 binding to the promoter of E-cadherin in pancreatic cancer. J Exp Clin Cancer Res, 35 , 26. doi:10.1186/s13046-016-0298-y
Yin, F., Hu, K., Chen, Y., Yu, M., Wang, D., Wang, Q., . . . Li, Z. (2017). SiRNA Delivery with PEGylated Graphene Oxide Nanosheets for Combined Photothermal and Genetherapy for Pancreatic Cancer.Theranostics, 7 (5), 1133-1148. doi:10.7150/thno.17841
Yin, F., Yang, C., Wang, Q., Zeng, S., Hu, R., Lin, G., . . . Yong, K.-T. (2015). A Light-Driven Therapy of Pancreatic Adenocarcinoma Using Gold Nanorods-Based Nanocarriers for Co-Delivery of Doxorubicin and siRNA. Theranostics, 5 (8), 818-833. doi:10.7150/thno.11335
Yu, S., Bi, X., Yang, L., Wu, S., Yu, Y., Jiang, B., . . . Duan, S. (2019). Co-Delivery of Paclitaxel and PLK1-Targeted siRNA Using Aptamer-Functionalized Cationic Liposome for Synergistic Anti-Breast Cancer Effects In Vivo. Journal of Biomedical Nanotechnology, 15 (6), 1135-1148. doi:10.1166/jbn.2019.2751
Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., & Jain, R. K. (1995). Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research, 55 (17), 3752.
Zahednezhad, F., Saadat, M., Valizadeh, H., Zakeri-Milani, P., & Baradaran, B. (2019). Liposome and immune system interplay: Challenges and potentials. J Control Release, 305 , 194-209. doi:10.1016/j.jconrel.2019.05.030
Zeng, L., Li, J., Wang, Y., Qian, C., Chen, Y., Zhang, Q., . . . Huang, K. (2014). Combination of siRNA-directed Kras oncogene silencing and arsenic-induced apoptosis using a nanomedicine strategy for the effective treatment of pancreatic cancer. Nanomedicine: Nanotechnology, Biology and Medicine, 10 (2), 463-472. doi:https://doi.org/10.1016/j.nano.2013.08.007
Zhang, L., Chan, J. M., Gu, F. X., Rhee, J.-W., Wang, A. Z., Radovic-Moreno, A. F., . . . Farokhzad, O. C. (2008). Self-Assembled Lipid−Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform.ACS Nano, 2 (8), 1696-1702. doi:10.1021/nn800275r
Zhang, P., An, K., Duan, X., Xu, H., Li, F., & Xu, F. (2018). Recent advances in siRNA delivery for cancer therapy using smart nanocarriers.Drug Discovery Today, 23 (4), 900-911. doi:https://doi.org/10.1016/j.drudis.2018.01.042
Zhao, J., & Stenzel, M. H. (2018). Entry of nanoparticles into cells: the importance of nanoparticle properties. Polymer Chemistry, 9 (3), 259-272. doi:10.1039/C7PY01603D
Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., . . . Hao, J. (2015). Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials, 46 , 13-25. doi:https://doi.org/10.1016/j.biomaterials.2014.12.028
Zheng, Y., Lai, L., Liu, W., Jiang, H., & Wang, X. (2017). Recent advances in biomedical applications of fluorescent gold nanoclusters.Advances in Colloid and Interface Science, 242 , 1-16. doi:https://doi.org/10.1016/j.cis.2017.02.005
Zhi, D., Bai, Y., Yang, J., Cui, S., Zhao, Y., Chen, H., & Zhang, S. (2018). A review on cationic lipids with different linkers for gene delivery. Advances in Colloid and Interface Science, 253 , 117-140. doi:https://doi.org/10.1016/j.cis.2017.12.006
Zhu, W., Shan, X., Wang, T., Shu, Y., & Liu, P. (2010). miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. International Journal of Cancer, 127 (11), 2520-2529. doi:10.1002/ijc.25260
Zhu, Y., Meng, Y., Zhao, Y., Zhu, J., Xu, H., Zhang, E., . . . Zhang, S. (2019). Toxicological exploration of peptide-based cationic liposomes in siRNA delivery. Colloids and Surfaces B: Biointerfaces, 179 , 66-76. doi:https://doi.org/10.1016/j.colsurfb.2019.03.052
Zhu, Z., Kleeff, J., Kayed, H., Wang, L., Korc, M., Büchler, M. W., & Friess, H. (2002). Nerve growth factor and enhancement of proliferation, invasion, and tumorigenicity of pancreatic cancer cells. 35 (3), 138-147. doi:10.1002/mc.10083
Zuckerman, J. E., Choi, C. H. J., Han, H., & Davis, M. E. (2012). Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Proceedings of the National Academy of Sciences, 109 (8), 3137. doi:10.1073/pnas.1200718109
Figure 1. Instances of nanocarriers for pancreatic cancer therapy.
Figure 2. Schematic illustration of extracellular barriers in pancreatic cancer siRNA delivery.
Figure 3. Schematic illustration of intracellular barriers in pancreatic cancer siRNA delivery.
Figure 4. Schematic illustration of pump resistance and PLK1-mediated nom-pump resistance mechanism.
Figure 5. A new potential therapeutic avenue for pancreatic cancer including both pump and non-pump resistance genes targeting, via co-delivery of siRNAs and chemotherapy agents, and imaging.