Curr. Opin. Plant Biol.
89.
Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott, M.F. et al. (2013). Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar. Drugs , 11, 4662-4697.
90.
Nakamura, M.T. & Nara, T.Y. (2004). Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. , 24, 345-376.
91.
Nosil, P. (2012). Ecological Speciation . Oxford University Press.
92.
Oboh, A., Kabeya, N., Carmona-Antoñanzas, G., Castro, L.F.C., Dick, J.R., Tocher, D.R. et al. (2017). Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Scientific Reports , 7.
93.
Ohno, S. (1970). Evolution by Gene Duplication . Springer, Berlin, Heidelberg.
94.
Olson-Manning, C.F., Wagner, M.R. & Mitchell-Olds, T. (2012). Adaptive evolution: evaluating empirical support for theoretical predictions.Nat. Rev. Genet. , 13, 867-877.
95.
Orr, H.A. (2005). The genetic theory of adaptation: a brief history.Nature Reviews Genetics , 6, 119-127.
96.
Piepho, M., Arts, M.T. & Wacker, A. (2012). Species-specific variation in fatty acid concentrations of four phytoplankton species: does phosphorus supply influence the effect of light intensity or temperature? 1. J. Phycol. , 48, 64-73.
97.
Rabosky, D.L. (2017). Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Philos. Trans. R. Soc. Lond. B Biol. Sci. , 372.
98.
Remington, D.L. (2015). Alleles versus mutations: Understanding the evolution of genetic architecture requires a molecular perspective on allelic origins. Evolution , 69, 3025-3038.
99.
Rivers, J.P., Sinclair, A.J. & Craqford, M.A. (1975). Inability of the cat to desaturate essential fatty acids. Nature , 258, 171-173.
100.
Roqueta-Rivera, M., Stroud, C.K., Haschek, W.M., Akare, S.J., Segre, M., Brush, R.S. et al. (2010). Docosahexaenoic acid supplementation fully restores fertility and spermatogenesis in male delta-6 desaturase-null mice. J. Lipid Res. , 51, 360-367.
101.
Schaeffer, L., Gohlke, H., Müller, M., Heid, I.M., Palmer, L.J., Kompauer, I. et al. (2006). Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Human molecular genetics , 15, 1745-1756.
102.
Schluter, D. (1996). Adaptive radiation along genetic lines of least resistance. Evolution , 50, 1766-1774.
103.
Schluter, D. (2000). The ecology of adaptive radiation . OUP Oxford.
104.
Shchepinov, M.S., Roginsky, V.A., Brenna, J.T., Molinari, R.J., To, R., Tsui, H. et al. (2014). Chapter 31 - Deuterium Protection of Polyunsaturated Fatty Acids against Lipid Peroxidation: A Novel Approach to Mitigating Mitochondrial Neurological Diseases. In: Omega-3 Fatty Acids in Brain and Neurological Health (eds. Watson, RR & De Meester, F). Academic Press Boston, pp. 373-383.
105.
Simpson, G.G. (1945). Tempo and mode in evolution. Trans. N. Y. Acad. Sci. , 8, 45-60.
106.
Simpson, G.G. (1953). The Major Features of Evolution.
107.
Sinedino, L.D.P., Honda, P.M., Souza, L.R.L., Lock, A.L., Boland, M.P., Staples, C.R. et al. (2017). Effects of supplementation with docosahexaenoic acid on reproduction of dairy cows. Reproduction , 153, 707-723.
108.
Sinensky, M. (1974). Homeoviscous adaptation–a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli.Proceedings of the National Academy of Sciences of the United States of America , 71, 522-525.
109.
Stanton, R.L., Morrissey, C.A. & Clark, R.G. (2016). Tree Swallow (Tachycineta bicolor) foraging responses to agricultural land use and abundance of insect prey. Can. J. Zool. , 94, 637-642.
110.
Stern, D.L. & Frankel, N. (2013). The structure and evolution of cis-regulatory regions: the shavenbaby story. Philosophical Transactions of the Royal Society B: Biological Sciences , 368, 20130028.
111.
Sui, N., Li, M., Li, K., Song, J. & Wang, B.S. (2010). Increase in unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances protection of photosystem II under high salinity.Photosynthetica , 48, 623-629.
112.
Sunshine, H. & Iruela-Arispe, M.L. (2017). Membrane lipids and cell signaling. Curr Opin Lipidol , 28, 408-413.
113.
Taipale, S., Strandberg, U., Peltomaa, E., Galloway, A.W.E., Ojala, A. & Brett, M.T. (2013). Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. , 71, 165-178.
114.
Tocher, D.R., Betancor, M.B., Sprague, M., Olsen, R.E. & Napier, J.A. (2019). Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients , 11.
115.
Tucci, S., Vohr, S.H., McCoy, R.C., Vernot, B., Robinson, M.R., Barbieri, C. et al. (2018). Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. Science , 361, 511-516.
116.
Twining, C.W., Brenna, J.T., Hairston, N.G., Jr. & Flecker, A.S. (2016). Highly unsaturated fatty acids in nature: what we know and what we need to learn. Oikos , 125, 749-760.
117.
Twining, C.W., Brenna, J.T., Lawrence, P., Shipley, J.R., Tollefson, T.N. & Winkler, D.W. (2016). Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity.Proc. Natl. Acad. Sci. U. S. A. , 113, 10920-10925.
118.
Twining, C.W., Brenna, J.T., Lawrence, P., Winkler, D.W., Flecker, A.S. & Hairston, N.G., Jr. (2019). Aquatic and terrestrial resources are not nutritionally reciprocal for consumers. Funct. Ecol. , 33, 2042-2052.
119.
Twining, C.W., Lawrence, P., Winkler, D.W., Flecker, A.S. & Brenna, J.T. (2018). Conversion efficiency of α-linolenic acid to omega-3 highly unsaturated fatty acids in aerial insectivore chicks. J. Exp. Biol. , 221.
120.
Twining, C.W., Shipley, J.R. & Winkler, D.W. (2018). Aquatic insects rich in omega-3 fatty acids drive breeding success in a widespread bird.Ecol. Lett. , 21, 1812-1820.
121.
Wagner, A. (2012). Metabolic networks and their evolution. Adv. Exp. Med. Biol. , 751, 29-52.
122.
Wang, S., Wang, M., Zhang, H., Yan, X., Guo, H., You, C. et al.(2020). Long‐chain polyunsaturated fatty acid metabolism in carnivorous marine teleosts: Insight into the profile of endogenous biosynthesis in golden pompano Trachinotus ovatus. Aquac. Res. , 51, 623-635.
123.
Watson, H., Videvall, E., Andersson, M.N. & Isaksson, C. (2017). Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci Rep , 7, 44180.
124.
Watson, R.A., Wagner, G.P., Pavlicev, M., Weinreich, D.M. & Mills, R. (2014). The evolution of phenotypic correlations and ”developmental memory”. Evolution , 68, 1124-1138.
125.
Watts, J.L. & Browse, J. (2002). Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc. Natl. Acad. Sci. U. S. A. , 99, 5854-5859.
126.
Wright, K.M. & Rausher, M.D. (2010). The evolution of control and distribution of adaptive mutations in a metabolic pathway.Genetics , 184, 483-502.
127.
Xia, J.H., Lin, G., He, X., Yunping, B., Liu, P., Liu, F. et al.(2014). Mapping quantitative trait loci for omega-3 fatty acids in Asian seabass. Marine biotechnology , 16, 1-9.
128.
Ye, K., Gao, F., Wang, D., Bar-Yosef, O. & Keinan, A. (2017). Dietary adaptation of FADS genes in Europe varied across time and geography.Nat Ecol Evol , 1, 167.
129.
Zhang, J. (2003). Evolution by gene duplication: an update. Trends Ecol. Evol. , 18, 292-298.
130.
Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H. et al.(2016). Genetic architecture of fatty acid composition in the longissimusdorsi muscle revealed by genome-wide association studies on diverse pig populations. Genetics Selection Evolution , 48, 5.