References
1.
Ameur, A., Enroth, S., Johansson, Å., Zaboli, G., Igl, W., Johansson,
Anna C.V. et al. (2012). Genetic Adaptation of Fatty-Acid
Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of
Long-Chain Omega-3 and Omega-6 Fatty Acids. The American Journal
of Human Genetics , 90, 809-820.
2.
Amini Khoeyi, Z., Seyfabadi, J. & Ramezanpour, Z. (2012). Effect of
light intensity and photoperiod on biomass and fatty acid composition of
the microalgae, Chlorella vulgaris. Aquac. Int. , 20, 41-49.
3.
Amorim, C.E.G., Nunes, K., Meyer, D., Comas, D., Bortolini, M.C.,
Salzano, F.M. et al. (2017). Genetic signature of natural
selection in first Americans. Proceedings of the National Academy
of Sciences , 114, 2195-2199.
4.
Andersson, M.N., Wang, H.-L., Nord, A., Salmon, P. & Isaksson, C.
(2015). Composition of physiologically important fatty acids in great
tits differs between urban and rural populations on a seasonal basis.Frontiers in Ecology and Evolution , 3.
5.
Arts, M.T. & Kohler, C.C. (2009). Health and condition in fish: the
influence of lipids on membrane competency and immune response. In:Lipids in Aquatic Ecosystems (eds. Kainz, M, Brett, MT & Arts,
MT). Springer New York New York, NY, pp. 237-256.
6.
Badyaev, A.V. (2019). Evolutionary transitions in controls reconcile
adaptation with continuity of evolution. Semin. Cell Dev. Biol. ,
88, 36-45.
7.
Badyaev, A.V., Posner, A.B., Morrison, E.S. & Higginson, D.M. (2019).
Cycles of external dependency drive evolution of avian carotenoid
networks. Nat. Commun. , 10, 1596.
8.
Barrett, R.D. & Schluter, D. (2008). Adaptation from standing genetic
variation. Trends in ecology & evolution , 23, 38-44.
9.
Barton, N.H. & Keightley, P.D. (2002). Understanding quantitative
genetic variation. Nature Reviews Genetics , 3, 11-21.
10.
Bell, J.G., McEvoy, J., Tocher, D.R., McGhee, F., Campbell, P.J. &
Sargent, J.R. (2001). Replacement of fish oil with rapeseed oil in diets
of Atlantic salmon (Salmo salar) affects tissue lipid compositions and
hepatocyte fatty acid metabolism. The Journal of nutrition , 131,
1535-1543.
11.
Betancor, M.B., Oboh, A., Ortega, A., Mourente, G., Navarro, J.C., de la
Gándara, F. et al. (2020). Molecular and functional
characterisation of a putative elovl4 gene and its expression in
response to dietary fatty acid profile in Atlantic bluefin tuna (Thunnus
thynnus). Comp. Biochem. Physiol. B Biochem. Mol. Biol. , 240,
110372.
12.
Bickel, R.D., Kopp, A. & Nuzhdin, S.V. (2011). Composite effects of
polymorphisms near multiple regulatory elements create a major-effect
QTL. PLoS Genet , 7, e1001275.
13.
Blomquist, G.J., Borgeson, C.E. & Vundla, M. (1991). Polyunsaturated
fatty acids and eicosanoids in insects. Insect Biochem. , 21,
99-106.
14.
Borenstein, E., Kupiec, M., Feldman, M.W. & Ruppin, E. (2008).
Large-scale reconstruction and phylogenetic analysis of metabolic
environments. Proc. Natl. Acad. Sci. U. S. A. , 105, 14482-14487.
15.
Boschetti, E., Bordoni, A., Meluzzi, A., Castellini, C., Dal Bosco, A.
& Sirri, F. (2016). Fatty acid composition of chicken breast meat is
dependent on genotype-related variation of FADS1 and FADS2 gene
expression and desaturating activity. Animal , 10, 700-708.
16.
Buzzi, M., Henderson, R.J. & Sargent, J.R. (1996). The desaturation and
elongation of linolenic acid and eicosapentaenoic acid by hepatocytes
and liver microsomes from rainbow trout (Oncorhynchus mykiss) fed diets
containing fish oil or olive oil. Biochim Biophys Acta , 1299,
235-244.
17.
Calder, P.C. (2002). Dietary modification of inflammation with lipids.Proceedings of the Nutrition Society , 61, 345-358.
18.
Carroll, S.B. (2005). Evolution at two levels: on genes and form.PLoS Biol. , 3, e245.
19.
Cashman, M.J., Wehr, J.D. & Truhn, K. (2013). Elevated light and
nutrients alter the nutritional quality of stream periphyton.Freshwater Biology , 58, 1447-1457.
20.
Castro, L.F.C., Monroig, Ó., Leaver, M.J., Wilson, J., Cunha, I. &
Tocher, D.R. (2012). Functional desaturase Fads1 (Δ5) and Fads2 (Δ6)
orthologues evolved before the origin of jawed vertebrates. PLoS
One , 7, e31950.
21.
Cesar, A.S., Regitano, L.C., Mourão, G.B., Tullio, R.R., Lanna, D.P.,
Nassu, R.T. et al. (2014). Genome-wide association study for
intramuscular fat deposition and composition in Nellore cattle.BMC genetics , 15, 39.
22.
Chaguaceda, F., Eklöv, P. & Scharnweber, K. (2020). Regulation of fatty
acid composition related to ontogenetic changes and niche
differentiation of a common aquatic consumer. Oecologia , 193,
325-336.
23.
Charette, C. & Derry, A.M. (2016). Climate alters intraspecific
variation in copepod effect traits through pond food webs.Ecology , 97, 1239-1250.
24.
Chen, M., Liu, H. & Chen, B. (2012). Effects of dietary essential fatty
acids on reproduction rates of a subtropical calanoid copepod, Acartia
erythraea. Mar. Ecol. Prog. Ser. , 455, 95-110.
25.
Colombo, S.M., Wacker, A., Parrish, C.C., Kainz, M.J. & Arts, M.T.
(2017). A fundamental dichotomy in long-chain polyunsaturated fatty acid
abundance between and within marine and terrestrial ecosystems.Environ. Rev. , 25, 163-174.
26.
Cunnane, S.C., Plourde, M., Pifferi, F., Bégin, M., Féart, C. &
Barberger-Gateau, P. (2009). Fish, docosahexaenoic acid and Alzheimer’s
disease. Prog. Lipid Res. , 48, 239-256.
27.
Feller, S.E., Gawrisch, K. & MacKerell, A.D. (2002). Polyunsaturated
fatty acids in lipid bilayers: intrinsic and environmental contributions
to their unique physical properties. Journal of the American
Chemical Society , 124, 318-326.
28.
Fuiman, L.A. & Perez, K.O. (2015). Metabolic programming mediated by an
essential fatty acid alters body composition and survival skills of a
marine fish. Proceedings of the Royal Society B: Biological
Sciences , 282, 20151414.
29.
Fumagalli, M., Moltke, I., Grarup, N., Racimo, F., Bjerregaard, P.,
Jørgensen, M.E. et al. (2015). Greenlandic Inuit show genetic
signatures of diet and climate adaptation. Science , 349,
1343-1347.
30.
Galloway, A.W.E., Britton-Simmons, K.H., Duggins, D.O., Gabrielson, P.W.
& Brett, M.T. (2012). Fatty acid signatures differentiate marine
macrophytes at ordinal and family ranks. J. Phycol. , 48, 956-965.
31.
Galloway, A.W.E. & Winder, M. (2015). Partitioning the Relative
Importance of Phylogeny and Environmental Conditions on Phytoplankton
Fatty Acids. PLoS ONE , 10, e0130053.
32.
Garrido, D., Kabeya, N., Hontoria, F., Navarro, J.C., Reis, D.B.,
Martín, M.V. et al. (2019). Methyl-end desaturases with ∆12 and
ω3 regioselectivities enable the de novo PUFA biosynthesis in the
cephalopod Octopus vulgaris. Biochim. Biophys. Acta Mol. Cell
Biol. Lipids , 1864, 1134-1144.
33.
Gregory, M.K. & James, M.J. (2014). Functional characterization of the
duck and turkey fatty acyl elongase enzymes ELOVL5 and ELOVL2. J.
Nutr. , 144, 1234-1239.
34.
Guo, F., Bunn, S.E., Brett, M.T. & Kainz, M.J. (2017). Polyunsaturated
fatty acids in stream food webs – high dissimilarity among producers
and consumers. Freshwater Biology , 62, 1325-1334.
35.
Guo, F., Kainz, M.J., Sheldon, F. & Bunn, S.E. (2016). The importance
of high-quality algal food sources in stream food webs – current status
and future perspectives. Freshwater Biology , 61, 815-831.
36.
Guo, F., Kainz, M.J., Sheldon, F. & Bunn, S.E. (2016). Effects of light
and nutrients on periphyton and the fatty acid composition and somatic
growth of invertebrate grazers in subtropical streams. Oecologia ,
181, 449-462.
37.
Guschina, I.A. & Harwood, J.L. (2009). Algal lipids and effect of the
environment on their biochemistry. In: Lipids in aquatic
ecosystems . Springer, pp. 1-24.
38.
Halliwell, B. & Gutteridge, J.M.C. (1985). Free radicals in biology and
medicine.
39.
Hastings, N., Agaba, M., Tocher, D.R., Leaver, M.J., Dick, J.R.,
Sargent, J.R. et al. (2001). A vertebrate fatty acid desaturase
with Delta 5 and Delta 6 activities. Proc. Natl. Acad. Sci. U. S.
A. , 98, 14304-14309.
40.
Heintz, R.A., Nelson, B.D., Hudson, J., Larsen, M., Holland, L. &
Wipfli, M. (2004). Marine subsidies in freshwater: Effects of salmon
carcasses on lipid class and fatty acid composition of juvenile coho
salmon. Transactions of the American Fisheries Society , 133,
559-567.
41.
Heissenberger, M., Watzke, J. & Kainz, M.J. (2010). Effect of nutrition
on fatty acid profiles of riverine, lacustrine, and aquaculture-raised
salmonids of pre-alpine habitats. Hydrobiologia , 650, 243-254.
42.
Henshaw, J.M., Morrissey, M.B. & Jones, A.G. 2020. Quantifying the
causal pathways contributing to natural selection. Evolution .
43.
Hessen, D.O. & Leu, E. (2006). Trophic transfer and trophic
modification of fatty acids in high Arctic lakes. Freshwater
Biology , 51, 1987-1998.
44.
Hill, W.R., Rinchard, J. & Czesny, S. (2011). Light, nutrients and the
fatty acid composition of stream periphyton. Freshw. Biol. , 56,
1825-1836.
45.
Hixson, S.M. & Arts, M.T. (2016). Climate warming is predicted to
reduce omega-3, long-chain, polyunsaturated fatty acid production in
phytoplankton. Glob. Chang. Biol. , 22, 2744-2755.
46.
Hixson, S.M., Sharma, B., Kainz, M.J., Wacker, A. & Arts, M.T. (2015).
Production, distribution, and abundance of long-chain omega-3
polyunsaturated fatty acids: a fundamental dichotomy between freshwater
and terrestrial ecosystems. Environmental Reviews , 23, 414-424.
47.
Hoffman, D.R., Boettcher, J.A. & Diersen-Schade, D.A. (2009). Toward
optimizing vision and cognition in term infants by dietary
docosahexaenoic and arachidonic acid supplementation: a review of
randomized controlled trials. Prostaglandins Leukot. Essent. Fatty
Acids , 81, 151-158.
48.
Horn, S.S., Ruyter, B., Meuwissen, T.H., Moghadam, H., Hillestad, B. &
Sonesson, A.K. (2020). GWAS identifies genetic variants associated with
omega-3 fatty acid composition of Atlantic salmon fillets.Aquaculture , 514, 734494.
49.
Hu, S., Wang, J., Han, T., Li, X., Jiang, Y. & Wang, C. (2017). Effects
of dietary DHA/EPA ratios on growth performance, survival and fatty acid
composition of juvenile swimming crab (Portunus trituberculatus).Aquac. Res. , 48, 1291-1301.
50.
Isaksson, C., Andersson, M.N., Nord, A., von Post, M. & Wang, H.-L.
(2017). Species-dependent effects of the urban environment on fatty acid
composition and oxidative stress in birds. Frontiers in Ecology
and Evolution , 5.
51.
Ishikawa, A., Kabeya, N., Ikeya, K., Kakioka, R., Cech, J.N., Osada, N.et al. (2019). A key metabolic gene for recurrent freshwater
colonization and radiation in fishes. Science , 364, 886-889.
52.
Jiang, Y. & Chen, F. (1999). Effects of salinity on cell growth and
docosahexaenoic acid content of the heterotrophic marine microalga
Crypthecodinium cohnii. J. Ind. Microbiol. Biotechnol. , 23,
508-513.
53.
Kabeya, N., Fonseca, M.M., Ferrier, D.E.K., Navarro, J.C., Bay, L.K.,
Francis, D.S. et al. (2018). Genes for de novo biosynthesis of
omega-3 polyunsaturated fatty acids are widespread in animals. Sci
Adv , 4, eaar6849.
54.
Kabeya, N., Gür, İ., Oboh, A., Evjemo, J.O., Malzahn, A.M., Hontoria, F.et al. (2020). Unique fatty acid desaturase capacities uncovered
in Hediste diversicolor illustrate the roles of aquatic invertebrates in
trophic upgrading. Philos. Trans. R. Soc. Lond. B Biol. Sci. ,
375, 20190654.
55.
Kacser, H. & Burns, J.A. (1981). The molecular basis of dominance.Genetics , 97, 639-666.
56.
Kalacheva, G.S., Sushchik, N.N., Gladyshev, M.I. & Makhutova, O.N.
(2009). Seasonal dynamics of fatty acids in the lipids of water moss
Fontinalis antipyretica from the Yenisei River. Russ. J. Plant
Physiol. , 56, 795-807.
57.
Katan, T., Caballero-Solares, A., Taylor, R.G., Rise, M.L. & Parrish,
C.C. (2019). Effect of plant-based diets with varying ratios of omega 6
to omega 3 fatty acids on growth performance, tissue composition, fatty
acid biosynthesis and lipid-related gene expression in Atlantic salmon
(Salmo solar). Comp. Biochem. Physiol. D-Genomics Proteomics , 30,
290-304.
58.
Kelly, M., Tume, R., Fortes, M. & Thompson, J. (2014). Whole-genome
association study of fatty acid composition in a diverse range of beef
cattle breeds. Journal of Animal Science , 92, 1895-1901.
59.
Kim, J., Yin, T., Shinozaki, K., Lampe, J.W. & Becker, L.B. (2016).
DHA-supplemented diet increases the survival of rats following
asphyxia-induced cardiac arrest and cardiopulmonary bypass
resuscitation. Sci. Rep. , 6, 36545.
60.
Koussoroplis, A.-M., Lemarchand, C., Bec, A., Desvilettes, C., Amblard,
C., Fournier, C. et al. (2008). From Aquatic to Terrestrial Food
Webs: Decrease of the Docosahexaenoic Acid/Linoleic Acid Ratio.Lipids , 43, 461-466.
61.
Lande, R. & Arnold, S.J. (1983). The measurement of selection on
correlated characters. Evolution , 1210-1226.
62.
Lang, I., Hodac, L., Friedl, T. & Feussner, I. (2011). Fatty acid
profiles and their distribution patterns in microalgae: a comprehensive
analysis of more than 2000 strains from the SAG culture collection.BMC Plant Biol. , 11, 124.
63.
Laughlin, D.C., Gremer, J.R., Adler, P.B., Mitchell, R.M. & Moore, M.M.
(2020). The Net Effect of Functional Traits on Fitness. Trends in
Ecology & Evolution .
64.
Lee, Y.W., Gould, B.A. & Stinchcombe, J.R. (2014). Identifying the
genes underlying quantitative traits: a rationale for the QTN programme.AoB Plants , 6.
65.
Lemos, M.V., Chiaia, H.L.J., Berton, M.P., Feitosa, F.L., Aboujaoud, C.,
Camargo, G.M. et al. (2016). Genome-wide association between
single nucleotide polymorphisms with beef fatty acid profile in Nellore
cattle using the single step procedure. BMC genomics , 17, 213.
66.
Leonard, A.E., Kelder, B., Bobik, E.G., Chuang, L.-T., Lewis, C.J.,
Kopchick, J.J. et al. (2002). Identification and expression of
mammalian long-chain PUFA elongation enzymes. Lipids , 37,
733-740.
67.
Li, Y., Monroig, O., Zhang, L., Wang, S., Zheng, X., Dick, J.R. et
al. (2010). Vertebrate fatty acyl desaturase with Δ4 activity.Proc. Natl. Acad. Sci. U. S. A. , 107, 16840-16845.
68.
Lin, G., Wang, L., Te Ngoh, S., Ji, L., Orbán, L. & Yue, G.H. (2018).
Mapping QTL for omega-3 content in hybrid saline tilapia. Marine
biotechnology , 20, 10-19.
69.
Loehlin, D.W., Ames, J.R., Vaccaro, K. & Carroll, S.B. (2019). A major
role for noncoding regulatory mutations in the evolution of enzyme
activity. Proc. Natl. Acad. Sci. U. S. A. , 116, 12383-12389.
70.
Loehlin, D.W. & Carroll, S.B. (2016). Expression of tandem gene
duplicates is often greater than twofold. Proc. Natl. Acad. Sci.
U. S. A. , 113, 5988-5992.
71.
Lynch, M. (2007). The Origins of Genome Architecture . Sinauer
Associates.
72.
Lynch, M. & Walsh, B. (1998). Genetics and analysis of
quantitative traits . Sinauer Sunderland, MA.
73.
Maeda, H.A. (2019). Evolutionary Diversification of Primary Metabolism
and Its Contribution to Plant Chemical Diversity. Front. Plant
Sci. , 10, 881.
74.
Malcicka, M., Visser, B. & Ellers, J. (2018). An Evolutionary
Perspective on Linoleic Acid Synthesis in Animals. Evol. Biol. ,
45, 15-26.
75.
Martin-Creuzburg, D., Sperfeld, E. & Wacker, A. (2009). Colimitation of
a freshwater herbivore by sterols and polyunsaturated fatty acids.Proc. Biol. Sci. , 276, 1805-1814.
76.
Martin-Creuzburg, D. & von Elert, E. (2009). Good food versus bad food:
the role of sterols and polyunsaturated fatty acids in determining
growth and reproduction of Daphnia magna. Aquatic Ecology , 43,
943-950.
77.
Matsunari, H., Hashimoto, H., Oda, K., Masuda, Y., Imaizumi, H., Teruya,
K. et al. (2013). Effects of docosahexaenoic acid on growth,
survival and swim bladder inflation of larval amberjack (Seriola
dumerili, Risso). Aquac. Res. , 44, 1696-1705.
78.
McCann, J.C. & Ames, B.N. (2005). Is docosahexaenoic acid, an n-3
long-chain polyunsaturated fatty acid, required for development of
normal brain function? An overview of evidence from cognitive and
behavioral tests in humans and animals. Am. J. Clin. Nutr. , 82,
281-295.
79.
McCarty, J.P. & Winkler, D.W. (1999). Foraging Ecology and Diet
Selectivity of Tree Swallows Feeding Nestlings. Condor , 101,
246-254.
80.
Melián, C.J., Matthews, B., de Andreazzi, C.S., Rodríguez, J.P., Harmon,
L.J. & Fortuna, M.A. (2018). Deciphering the Interdependence between
Ecological and Evolutionary Networks. Trends Ecol. Evol. , 33,
504-512.
81.
Mesa-Rodriguez, A., Maria Hernandez-Cruz, C., Beatriz Betancor, M.,
Fernandez-Palacios, H., Izquierdo, M.S. & Roo, J. (2018). Effect of
increasing docosahexaenoic acid content in weaning diets on survival,
growth and skeletal anomalies of longfin yellowtail (Seriola rivoliana,
Valenciennes 1833). Aquac. Res. , 49, 1200-1209.
82.
Michelson, C.I., Clark, R.G. & Morrissey, C.A. (2018). Agricultural
land cover does not affect the diet of Tree Swallows in
wetland-dominated habitats. Condor , 120, 751-764.
83.
Miller, A.H. (1949). Some ecologic and morphologic considerations in the
evolution of higher taxonomic categories. Ornithologie als
biologische Wissenschaft , 84-88.
84.
Møller, I.M., Jensen, P.E. & Hansson, A. (2007). Oxidative
Modifications to Cellular Components in Plants. Annu. Rev. Plant
Biol. , 58, 459-481.
85.
Monroig, Ó. & Kabeya, N. (2018). Desaturases and elongases involved in
polyunsaturated fatty acid biosynthesis in aquatic invertebrates: a
comprehensive review. Fish. Sci. , 84, 911-928.
86.
Morais, S., Castanheira, F., Martinez-Rubio, L., Conceição, L.E.C. &
Tocher, D.R. (2012). Long chain polyunsaturated fatty acid synthesis in
a marine vertebrate: ontogenetic and nutritional regulation of a fatty
acyl desaturase with Δ4 activity. Biochim. Biophys. Acta , 1821,
660-671.
87.
Morrison, E.S. & Badyaev, A.V. (2016). Structuring evolution:
biochemical networks and metabolic diversification in birds. BMC
Evol. Biol. , 16, 168.
88.
Mueller, M.J. (2004). Archetype signals in plants: the phytoprostanes.