Curr. Opin. Plant Biol.
89.
Mühlroth, A., Li, K., Røkke, G., Winge, P., Olsen, Y., Hohmann-Marriott,
M.F. et al. (2013). Pathways of lipid metabolism in marine algae,
co-expression network, bottlenecks and candidate genes for enhanced
production of EPA and DHA in species of Chromista. Mar. Drugs ,
11, 4662-4697.
90.
Nakamura, M.T. & Nara, T.Y. (2004). Structure, function, and dietary
regulation of delta6, delta5, and delta9 desaturases. Annu. Rev.
Nutr. , 24, 345-376.
91.
Nosil, P. (2012). Ecological Speciation . Oxford University Press.
92.
Oboh, A., Kabeya, N., Carmona-Antoñanzas, G., Castro, L.F.C., Dick,
J.R., Tocher, D.R. et al. (2017). Two alternative pathways for
docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among
teleost fish. Scientific Reports , 7.
93.
Ohno, S. (1970). Evolution by Gene Duplication . Springer, Berlin,
Heidelberg.
94.
Olson-Manning, C.F., Wagner, M.R. & Mitchell-Olds, T. (2012). Adaptive
evolution: evaluating empirical support for theoretical predictions.Nat. Rev. Genet. , 13, 867-877.
95.
Orr, H.A. (2005). The genetic theory of adaptation: a brief history.Nature Reviews Genetics , 6, 119-127.
96.
Piepho, M., Arts, M.T. & Wacker, A. (2012). Species-specific variation
in fatty acid concentrations of four phytoplankton species: does
phosphorus supply influence the effect of light intensity or
temperature? 1. J. Phycol. , 48, 64-73.
97.
Rabosky, D.L. (2017). Phylogenetic tests for evolutionary innovation:
the problematic link between key innovations and exceptional
diversification. Philos. Trans. R. Soc. Lond. B Biol. Sci. , 372.
98.
Remington, D.L. (2015). Alleles versus mutations: Understanding the
evolution of genetic architecture requires a molecular perspective on
allelic origins. Evolution , 69, 3025-3038.
99.
Rivers, J.P., Sinclair, A.J. & Craqford, M.A. (1975). Inability of the
cat to desaturate essential fatty acids. Nature , 258, 171-173.
100.
Roqueta-Rivera, M., Stroud, C.K., Haschek, W.M., Akare, S.J., Segre, M.,
Brush, R.S. et al. (2010). Docosahexaenoic acid supplementation
fully restores fertility and spermatogenesis in male delta-6
desaturase-null mice. J. Lipid Res. , 51, 360-367.
101.
Schaeffer, L., Gohlke, H., Müller, M., Heid, I.M., Palmer, L.J.,
Kompauer, I. et al. (2006). Common genetic variants of the FADS1
FADS2 gene cluster and their reconstructed haplotypes are associated
with the fatty acid composition in phospholipids. Human molecular
genetics , 15, 1745-1756.
102.
Schluter, D. (1996). Adaptive radiation along genetic lines of least
resistance. Evolution , 50, 1766-1774.
103.
Schluter, D. (2000). The ecology of adaptive radiation . OUP
Oxford.
104.
Shchepinov, M.S., Roginsky, V.A., Brenna, J.T., Molinari, R.J., To, R.,
Tsui, H. et al. (2014). Chapter 31 - Deuterium Protection of
Polyunsaturated Fatty Acids against Lipid Peroxidation: A Novel Approach
to Mitigating Mitochondrial Neurological Diseases. In: Omega-3
Fatty Acids in Brain and Neurological Health (eds. Watson, RR & De
Meester, F). Academic Press Boston, pp. 373-383.
105.
Simpson, G.G. (1945). Tempo and mode in evolution. Trans. N. Y.
Acad. Sci. , 8, 45-60.
106.
Simpson, G.G. (1953). The Major Features of Evolution.
107.
Sinedino, L.D.P., Honda, P.M., Souza, L.R.L., Lock, A.L., Boland, M.P.,
Staples, C.R. et al. (2017). Effects of supplementation with
docosahexaenoic acid on reproduction of dairy cows. Reproduction ,
153, 707-723.
108.
Sinensky, M. (1974). Homeoviscous adaptation–a homeostatic process
that regulates the viscosity of membrane lipids in Escherichia coli.Proceedings of the National Academy of Sciences of the United
States of America , 71, 522-525.
109.
Stanton, R.L., Morrissey, C.A. & Clark, R.G. (2016). Tree Swallow
(Tachycineta bicolor) foraging responses to agricultural land use and
abundance of insect prey. Can. J. Zool. , 94, 637-642.
110.
Stern, D.L. & Frankel, N. (2013). The structure and evolution of
cis-regulatory regions: the shavenbaby story. Philosophical
Transactions of the Royal Society B: Biological Sciences , 368,
20130028.
111.
Sui, N., Li, M., Li, K., Song, J. & Wang, B.S. (2010). Increase in
unsaturated fatty acids in membrane lipids of Suaeda salsa L. enhances
protection of photosystem II under high salinity.Photosynthetica , 48, 623-629.
112.
Sunshine, H. & Iruela-Arispe, M.L. (2017). Membrane lipids and cell
signaling. Curr Opin Lipidol , 28, 408-413.
113.
Taipale, S., Strandberg, U., Peltomaa, E., Galloway, A.W.E., Ojala, A.
& Brett, M.T. (2013). Fatty acid composition as biomarkers of
freshwater microalgae: analysis of 37 strains of microalgae in 22 genera
and in seven classes. Aquat. Microb. Ecol. , 71, 165-178.
114.
Tocher, D.R., Betancor, M.B., Sprague, M., Olsen, R.E. & Napier, J.A.
(2019). Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA:
Bridging the Gap between Supply and Demand. Nutrients , 11.
115.
Tucci, S., Vohr, S.H., McCoy, R.C., Vernot, B., Robinson, M.R.,
Barbieri, C. et al. (2018). Evolutionary history and adaptation
of a human pygmy population of Flores Island, Indonesia. Science ,
361, 511-516.
116.
Twining, C.W., Brenna, J.T., Hairston, N.G., Jr. & Flecker, A.S.
(2016). Highly unsaturated fatty acids in nature: what we know and what
we need to learn. Oikos , 125, 749-760.
117.
Twining, C.W., Brenna, J.T., Lawrence, P., Shipley, J.R., Tollefson,
T.N. & Winkler, D.W. (2016). Omega-3 long-chain polyunsaturated fatty
acids support aerial insectivore performance more than food quantity.Proc. Natl. Acad. Sci. U. S. A. , 113, 10920-10925.
118.
Twining, C.W., Brenna, J.T., Lawrence, P., Winkler, D.W., Flecker, A.S.
& Hairston, N.G., Jr. (2019). Aquatic and terrestrial resources are not
nutritionally reciprocal for consumers. Funct. Ecol. , 33,
2042-2052.
119.
Twining, C.W., Lawrence, P., Winkler, D.W., Flecker, A.S. & Brenna,
J.T. (2018). Conversion efficiency of α-linolenic acid to omega-3 highly
unsaturated fatty acids in aerial insectivore chicks. J. Exp.
Biol. , 221.
120.
Twining, C.W., Shipley, J.R. & Winkler, D.W. (2018). Aquatic insects
rich in omega-3 fatty acids drive breeding success in a widespread bird.Ecol. Lett. , 21, 1812-1820.
121.
Wagner, A. (2012). Metabolic networks and their evolution. Adv.
Exp. Med. Biol. , 751, 29-52.
122.
Wang, S., Wang, M., Zhang, H., Yan, X., Guo, H., You, C. et al.(2020). Long‐chain polyunsaturated fatty acid metabolism in carnivorous
marine teleosts: Insight into the profile of endogenous biosynthesis in
golden pompano Trachinotus ovatus. Aquac. Res. , 51, 623-635.
123.
Watson, H., Videvall, E., Andersson, M.N. & Isaksson, C. (2017).
Transcriptome analysis of a wild bird reveals physiological responses to
the urban environment. Sci Rep , 7, 44180.
124.
Watson, R.A., Wagner, G.P., Pavlicev, M., Weinreich, D.M. & Mills, R.
(2014). The evolution of phenotypic correlations and ”developmental
memory”. Evolution , 68, 1124-1138.
125.
Watts, J.L. & Browse, J. (2002). Genetic dissection of polyunsaturated
fatty acid synthesis in Caenorhabditis elegans. Proc. Natl. Acad.
Sci. U. S. A. , 99, 5854-5859.
126.
Wright, K.M. & Rausher, M.D. (2010). The evolution of control and
distribution of adaptive mutations in a metabolic pathway.Genetics , 184, 483-502.
127.
Xia, J.H., Lin, G., He, X., Yunping, B., Liu, P., Liu, F. et al.(2014). Mapping quantitative trait loci for omega-3 fatty acids in Asian
seabass. Marine biotechnology , 16, 1-9.
128.
Ye, K., Gao, F., Wang, D., Bar-Yosef, O. & Keinan, A. (2017). Dietary
adaptation of FADS genes in Europe varied across time and geography.Nat Ecol Evol , 1, 167.
129.
Zhang, J. (2003). Evolution by gene duplication: an update. Trends
Ecol. Evol. , 18, 292-298.
130.
Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H. et al.(2016). Genetic architecture of fatty acid composition in the
longissimusdorsi muscle revealed by genome-wide association studies on
diverse pig populations. Genetics Selection Evolution , 48, 5.