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Abstract: Anthropogenically-driven climate warming is a hypothesized driver of animal body 

size reductions. Less understood are effects of other human-caused disturbances on body size, 

such as urbanization. We compiled 140,499 body size records of over 100 North American 

mammals to test how climate and urbanization, and their interactions with species traits, impact 

body size. We tested three hypotheses of body size change across urbanization gradients; urban 

heat island effects, fragmentation, and resource availability. Our results unexpectedly 

demonstrate urbanization is more tightly linked with body size changes than temperature, most 

often leading to larger individuals, thus supporting the resource availability hypothesis. In 

addition, life history traits, such as thermal buffering, activity time, and average body size play 

critical roles in mediating the effects of both climate and urbanization on intraspecific body size 

trends. This work highlights the value of using digitized, natural history data to track how human

disturbance drives morphological change.
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INTRODUCTION

Body size is an easily measured, integrator trait that scales with many other life-history 

characteristics of organisms (Gould 1966; Brown & Maurer 1986; Brown et al. 1993). Because 

of this, understanding drivers of body size has been a central goal of ecology over the last half 

century. Macroscale studies of body size across broad environmental gradients date back 

centuries, to the seminal work of Carl Bergmann (1847), although with much debate about the 

generality of patterns and underlying mechanisms (Ashton et al. 2000; Meiri & Dayan 2003; 

Riemer et al. 2018). Some species - but not all - follow predicted responses to temperature, with 

smaller average body size in warmer climates. In addition to temperature, food availability 

strongly determines species’ body size changes (Alroy 2001; Pineda-Munoz et al. 2016). 

Much less attention has been paid to anthropogenic influences on body size that play out 

at the local or regional scale, which provides a distinct set of challenges and opportunities for 

organisms. While urbanization may increase potential for novel human-caused conflict 

(including traffic) and predation, these novel environments can also lead to decreased predation 

rate (Fischer et al. 2012) and increased food resources. The complexity of urban environments 

provides an opportunity to examine species responses to a variety of major ecological gradients 

in real time, and to test the applicability of longstanding ecogeographic rules within the human-

built environment. For example, Ives et al. (2016) found Australian cities harbor a large number 

of threatened species, which may be due to a high amount of landscape heterogeneity (e.g. plant 

cultivation) in urban areas.  

 Understanding the magnitude and direction of body size variation due to human 

alteration of landscapes is complicated by multiple possible, non-mutually exclusive drivers.   

First, due to human activity and built infrastructure, cities are generally warmer than surrounding
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areas, a phenomenon known as the urban heat island effect (Oke 1982). Animals inhabiting 

warmer urban heat islands are predicted to be smaller in body size based on the general tendency

for species to decrease in size with increasing temperature (Blackburn & Hawkins 2004; Gardner

et al. 201l; Rapacciuolo et al. 2017; Weeks et al. 2019). There has been limited empirical support

for urban heat island effects driving decreases in body size (but see Merckx et al. 2018 for 

insects), especially for endotherms (Pergams & Lacy 2008). However, little attention has been 

paid to which body size metrics are used to make claims about heat island impacts. In a recent, 

large-scale study of body size variation in the North American deer mouse (Peromyscus 

maniculatus), Guralnick et al. (2020) examined both body mass and head-body length and found 

mice were shorter (but not lighter) in more urbanized areas. Those authors postulated a heat 

island effect could be driving body length changes separate from mass changes, but also 

suggested this could represent a selective response to avoid detection (i.e., crypsis). Second, 

heterogeneity in urban areas can contribute to increased food resources and water availability 

compared to rural areas (McKinney 2008), which could further mediate body length or mass 

change in urban areas (i.e., a resource rule, McNab 2010). It is also possible that the 

compounding effect of urbanization on top of climate change may amplify adaptive or plastic 

changes in body size. Finally, Schmidt and Jensen (2003, 2005) suggested that species that 

experience landscape fragmentation driven by urbanization and an increased human footprint 

should either go extinct or adapt through changes in life history traits, namely increasing body 

size for smaller species and decreases for larger species. Each of these hypotheses have clear, 

alternate predictions about the overall effects of urbanization, and can be emplaced in the 

broader context of overall climatic gradients.
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Mammals represent a good test case for examining the potentially multifaceted effects of 

climate and urbanization on body size in the same modeling framework, in order to understand 

the relative importance of different drivers across species with widely varying body sizes and life

history traits. Mammals have evolved to fill a large variety of niches including aquatic, 

terrestrial, and even subterranean habitats, often facilitated by the evolution of key functional, 

morphological, or behavioral traits. These traits are expected to strongly mediate current and 

future responses of organisms to climate change. Few studies have directly examined how these 

factors may influence spatiotemporal trends to recent global change responses of mammals (but 

see Lindstedt & Boyce 1985; McCain & King 2014; Naya et al. 2017). Habitat buffering, a suite 

of behaviors such as nocturnality, or spending portions of the life cycle underground, may be 

critical for coping with unsuitable climatic conditions especially in the short term; body size 

changes may thus be weaker in species with such buffering capability (Johnson 1931; Terrien et 

al. 2011). Finally, mammals are well-sampled in many biodiversity datasets, with body size 

measurements often taken in the field as part of long-standing collection practices. This creates 

an opportunity to analyze records for a vertebrate clade spanning over 100 years, providing 

ample data, albeit with associated challenges of dealing with spatiotemporal collecting biases 

which need to be carefully considered in downstream modeling. 

In this study, we compiled multiple datasets containing 140,499 mass and body length 

records spanning more than 100 mammal species and 80 years to address broad-scale spatial 

trends of mammalian body size (Fig. 1, S1). Our overarching question is whether and how much 

climate and human population density, the latter of which represents a proxy for the human built 

environment, impact mammal body size. We first addressed the relationship between body mass 

and head-body length, as each is commonly used as a body size metric but the former can vary 
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seasonally due to age, reproductive status, or food availability (McNab 1980), potentially 

weakening mass-length allometries at range-wide scales (Guralnick et al. 2020). We then use a 

hierarchical modeling framework to identify the main drivers of body size variation, accounting 

not only for climate and urbanization but also broad differences in habitat and species-specific 

trends. Drawing on Bergmann’s Rule, we predicted that temperature would negatively impact 

both metrics of body size (i.e. increasing temperatures lead to smaller size). We also expected 

that increasing human population density would drive smaller body size due to heat island 

effects, thereby amplifying Bergmann’s-like patterns. Alternatively, and given recent results 

from single species studies (e.g., Guralnick et al. 2020), it may also be that body mass increases 

while body length decreases in urban areas as increased anthropogenic food availability (e.g., 

garbage or human provisioning of food) allows for more weight (Robinette et al. 1973; 

Beckmann & Berger 2003) but need for crypsis or heat island effects drive decreasing length. 

Further, urbanized areas may mimic islands given often fragmented habitats, driving larger 

species to decrease in size and smaller species to increase in size.  

To develop a more integrative framework for understanding body size variation in 

mammals, we extended our work beyond focusing on broad-scale climate and urbanization 

gradients and examined life history traits that are related to species thermal biology, which are 

likely to modify and interact with both these drivers, especially ability to buffer thermal 

environments. Therefore, we predicted weaker responses of body size change from species that 

hibernate or utilize habitat buffering as they are able to avoid extreme climates. We also 

considered traits such as diurnality and expected that nocturnal mammals should increase in size 

more than diurnal species in urban areas since they can more easily avoid humans but still 

benefit from food resources. Lastly, based on the hypothesis of more fragmented, island-like 
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habitats in human built environments, we predicted that larger species may decrease in body size 

and smaller species increase in size in areas of higher human population density. Small size is 

also predicted to be favored as a greater number of microhabitats are available to escape 

unfavorable temperatures and avoid human detection (Cardillo et al. 2005; Huey et al. 2012; 

Scheffers et al. 2014).

METHODS

Data sources & aggregation

We obtained mammal body size data from three repositories: VertNet (Guralnick & Constable 

2010), the National Ecological Observatory Network (NEON 2019; 

https://www.neonscience.org/), and the North American Census of Small Mammals (NACSM; 

Calhoun 1948, 1949, 1950, 1951, 1956; Calhoun & Arata 1957a, 1957b, 1957c, 1957d). 

Standard body mass and total body length measures were extracted from the VertNet corpus 

following the approach of Guralnick et al. (2016). NEON data were obtained using the 

“neonUtilities” R package (Laney & Lunch 2019), but only body mass was used from NEON 

survey events because accurate length measures are difficult to obtain on live, unanesthetized, 

mammals (Guralnick et al. 2020). We found no systematic biases of body mass measures from 

NEON or other sources. NACSM data were obtained via manual digitization from published 

reports, and were extracted for a subset of species that had body size measurements and which 

were also obtained from VertNet and NEON. We aggregated VertNet data with corresponding 

species from NEON and NACSM and harmonized data field names across the three sources.

Any migratory species were removed as they can experience a wide breadth of environmental 

conditions. Measures of head-body length were then derived by subtracting tail length from total 
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length for each individual. As a preliminary step, we filtered the data to those species with a 

minimum of 100 records for body mass or length count. 

 

Data filtering

Additional filtering included removal of records lacking; 1) latitude and longitude; 2) sex, 

including ambiguous sex assignments (e.g. “female?”); 3) date information – we required month,

day, and year for each record. However, for some specimen records with missing locality, we 

first aimed to manually georeference data when possible using the protocols of Chapman and 

Wieczorek (2006), which uses a combination of Google Maps (https://www.google.com/maps) 

and the MaNIS georeferencing calculator (Wieczorek et al. 2001; http://manisnet.org/gci2.html). 

Manual curation based on locality was also necessary in some instances. For example, several 

records of Canis lupus came from zoos or sanctuaries; all zoo records were removed by hand. 

We next created two additional fields from the record dates, “season collected” and “decade”. 

Month of collection was used to bin the records into spring (March-May), summer (June-

August), fall (September-November), and winter (December-February) seasons. In some species,

tail length is not reported due to very small or missing tails, and in those cases we relied on total 

length. We also filtered juveniles from the dataset based on age assignments in the Darwin Core 

field “lifeStage” (for VertNet) or based on body size measurements below a lower threshold for 

each individual species based on literature searches and reputable online databases (see Table 

S1). To remove any additional erroneous data values (e.g., digitization errors), we used a 95% 

dispersion-based threshold using the “OutlierDetection” R package (Tiwari & Kashikar 2019). 

Taxonomy was updated for all records to ensure scientific names were synonymous across data 

sources.
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Relationship between body mass and head-body length 

We ran simple univariate linear regressions where log10 head-body length predicts log10 body 

mass for each species. Correlations were generally weak among species as indicated by the vast 

majority of the fits with r2 <.5 (Table S1). As such, we compiled two body size datasets: body 

mass and head-body length which were used separately as response variables in downstream 

models.

 

Population density and climate

As a proxy for urbanization, we used high-resolution (1 x 1 km) decadal human population 

density data for the conterminous USA (years 1940-2010) from Fang and Jawitz (2018). We 

selected human population density over impervious land cover or Human Footprint Index 

(Venter et al. 2016) as our measure of urbanization because it more directly accounts for 

anthropogenic effects (e.g. food waste) and encompasses the range of mammalian species 

collection dates used in this study. Human population density data were appended to each record 

by first aggregating density data to a resolution of 10 x 10 km and indexing this value by decade 

collected and record locality using an R (R Core Team 2018) script. Human population density 

was log10 transformed for statistical analyses. Historical climate data were obtained from the 

PRISM Climate Group (PRISM Climate Group, 2020) at 4 km resolution for both historical and 

contemporary body size observations. We extracted mean annual temperature (MAT) and mean 

annual precipitation (MAP) from PRISM based on observation year and geocoordinates.

 

Spatial regions 
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To control for habitat differences across our region of interest, we included ecoregional 

membership as a random effect in each model. We used the United States Environmental 

Protection Agency (EPA) Level 1 ecoregions (https://www.epa.gov/eco-research/ecoregions), 

but further divided three ecoregions given the large climate and latitudinal range. We split the 

‘Great Plains’, ‘Northwestern Forested Mountains’, and ‘North American Deserts’ ecoregions at 

42 degrees latitude and renamed the ecoregions: ‘Northern and Southern Great Plains’, ‘Northern

and Southern Cordilleras’, and ‘Northern and Southern Desserts’, respectively (Fig. 1). 

          

Phylogeny and mammal traits 

We obtained a global mammal phylogeny from Upham et al. (2019; 

http://vertlife.org/data/mammals/) and pruned the tree to match the species present in the two 

datasets (body mass, n = 101; head-body length, n = 99). We also compiled life history traits for 

the final species sets that likely influence body size response to environmental change. These 

traits include hibernation ability (binary, Y/N), habitat buffering (e.g. fossorial vs. terrestrial; 

binary, Y/N), daily activity pattern (diurnal, nocturnal, or both), and average body size binned 

into small (<500g; <200mm) and large (>500g; >200mm) categories (Fig. S2, sources provided 

in Table S1). Sensitivity analyses of mean average body size binned into different sizes (e.g. 

ranging 450-550g, 150-250mm) yielded the same model results. 

 

Mixed-modeling framework

To examine drivers of mammalian body size variation, we initially used linear mixed-effects 

models (LMM), using the R package lme4 (Bates et al. 2014). We log10 transformed measures of 

body mass and HB length as mammal body size ranges vary by orders of magnitude (Brown 
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1995). In addition, we log10 transformed human population density and log transformed MAP to 

normalize data. We mean-centered and standardized all continuous predictors to have standard 

deviations of 1, except decade, which we treated as a numeric variable that starts at zero. All 

models were run separately for body mass and head-body length (Table S2). 

 We used a set of global models that included fixed effects of MAT, MAP, sex, season 

collected (spring, summer, fall, and winter), human population density, and the traits listed above

(‘Mammal traits’). Inclusion of traits as fixed effects allowed us to model variation in traits 

associated with size across the mammalian body size spectrum (e.g., Smith et al. 2004). To 

model how these same traits mediate body size variation in specific climate contexts and how 

effects of urbanization change across climate contexts, we also examined the interactions of 

MAT x human population density, MAT x hibernation, MAT x habitat buffering, MAT x 

small/large mammals, population density x diurnal/nocturnal, and population density x 

small/large mammals. We included three random intercepts of ecoregion, decade, and species 

(Table S2). 

 After running each global model, we used backward stepwise selection with the step 

function in the R package lmerTest (Kuznetsova et al. 2017) to find the best-fit model. We 

checked residuals of the final models, minus the random effect of decade (due to matrix 

complexity), and found no evidence of spatial autocorrelation (Fig. S3). Marginal and 

conditional R2s were obtained for the best-fit models using the R package MuMIn (Barton 2012).

 To account for potential effects of evolutionary history in these models, we re-ran the 

best-fit body mass and head-body length models using phylogenetic generalized linear mixed 

models (PGLMMs) using the R package phyr (Li et al. 2020). PGLMM and LMM results were 

largely concordant (Table S3), thus only LMM results are presented in the main text. 
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RESULTS

Aggregation of data across multiple sources, generated a significant dataset to examine spatially-

structured changes in mammal body mass and head-body length in relation to climate, human 

population density, and a key life history traits. The top model of body mass variation included 

the following covariates: Mean Annual Temperature (MAT), Mean Annual Precipitation (MAP),

season, sex, human population density, all traits, and all interactions besides population density x

small/large mammals (Marginal R2 = 0.36, Conditional R2 = 0.98). Significant main effects 

include MAT, MAP, season, sex, human population density, hibernation, and small/large mean 

binned body mass (Table 1a). This model also included strong interactive effects between MAT, 

population density, and traits. The negative interaction between MAT and population density 

implies that while mammal body mass increases with decreasing MAT in general, this trend is 

much stronger in areas with higher densities of humans (β = -0.003, p < 0.001; Table 1a, Fig. 2). 

Traits strongly mediated responses of body mass to climate and urbanization. With 

increasing MAT, species that hibernate decrease in body mass, whereas non-hibernators increase

in body mass (β = -0.021, p < 0.001; Table 1a, Fig. 3A). Buffered and non-buffered species 

decrease in body mass with increasing MAT, but the strength of the decrease is stronger for 

buffered species (β = -0.018, p < 0.001; Table 1a, Fig. 3B). Diurnal species are larger in body 

mass and decrease in mass with increasing population density (β = -0.014, p < 0.001; Table 1a, 

Fig. 3C), compared to nocturnal species or those scored as “both” (Table 1a, Fig. 3C). Both large

and small mammals (binned mean size) decrease in body mass with increasing MAT, but the 

strength of the decrease is stronger for larger species (β = 0.023, p < 0.001; Table 1a, Fig. 3D). 
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When examining head-body length as a body size metric, the best-fit model consisted of 

MAT, MAP, season, population density, all traits, and all interactions except MAT x human 

population density (Marginal R2 = 0.50, Conditional R2 = 0.98). Significant single predictors are 

MAP, season, human population density, hibernation, and small/large mean binned head-body 

length (Table 1b). MAT is not significant in the top spatial models on its own, but is important 

when conditioned by traits. There is a strong main effect of increasing head-body length with 

increasing human population density (β = 0.009, p < 0.001; Table 1b). 

Similar to body mass, we find strong interactive effects between MAT and population 

density with traits. Head-body length is negatively correlated with MAT for species that 

hibernate, but positively correlated with MAT for non-hibernators (β = -0.008, p < 0.001; Table 

1b, Fig. 3E). Species that utilize habitat buffering decrease in head-body length with increasing 

MAT at a faster rate than non-buffered species (β = -0.004, p < 0.001; Table 1b, Fig. 3F). Both 

diurnal (β = -0.007, p < 0.001;) and nocturnal (β = -0.009, p < 0.001; Table 1b, Fig. 3G) species 

decrease in head-body length with increasing population density, whereas species that display 

both tendencies increase in head-body length with increasing population density. The effect of 

the decrease in head-body length with increasing MAT is stronger for larger mammals compared

to smaller species (β = 0.005, p < 0.001; Table 1b, Fig. 3H). Small mammals decrease slightly 

with increasing population density, while large mammals increase in head-body length with 

increasing population density (β = -0.003, p < 0.001; Table 1b, Fig. 3I). 

DISCUSSION

Climate as a driver of animal body size change has been well documented across both space and 

time (Smith et al. 1995; Gardner et al. 2011; Sheridan & Bickford 2011). However, a myriad of 
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anthropogenic global changes (e.g., habitat degradation and fragmentation, pollution, 

overpopulation) can also impact organisms at both local and regional scales, promoting complex 

responses that may be difficult to contextualize with regard to longstanding ecogeographic rules. 

Further, these responses likely vary among species and clades because life history traits mediate 

exposure and thus the intensity of changing conditions. Here, we investigate how climate (a more

constant global change driver over earth history) and urbanization (a novel disturbance) 

influence mammalian body size, and how life history traits mediate those effects. We test these 

ideas by utilizing hundreds of thousands of compiled mammal body size records from natural 

history collections and field censuses, spanning 80 years and over 100 North American species. 

Despite nearly two centuries of work examining the links between climate and body size, 

we found urbanization is more tightly linked with changes in body size compared to temperature.

Finding weak support for interspecific Bergmann’s Rule, Gohli and Voje (2016) suggested that 

other variables, besides temperature and latitude, are more important drivers of mammalian body

mass; however, few studies have tested broad-scale effects of urbanization on body size across 

mammal species. In all cases, the main effect of increased urbanization was larger body size, 

consistent with mammals benefiting from increased food resources, nutritionally poor diets, 

ecological release (i.e., from predators and competitors), or all three (Babinska-Werka 1981; 

Tomassini et al. 2014; Brown et al. 2017; Santini et al. 2019; but see Nielsen et al. 2013). 

Conversely, we found no clear evidence for urban heat island effects on body size. We had 

considered that interactions between climate and urbanization could mean that heat island effects

might only be present in the coldest areas. But here as well, we found the opposite - mammals in 

urbanized, cold areas have larger, not smaller, body masses than their rural counterparts, a result 

that likely speaks to more available food in urban areas. While a few studies have found support 
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for urban heat island effects leading to reductions in body size in ectotherms (Merckx et al. 2018;

Dahirel et al. 2019), there is currently no evidence of mammals following this trend. The overall 

result across all mammals examined is that head-body lengths are greater in urban areas 

regardless of temperature. Our study does not account for intra-urban variation in land use that 

can influence heat island pockets (e.g., Hart & Sailor 2009); as such, fine-scale investigations of 

the relationship between surface characteristics with temperature and body size may more 

precisely demonstrate the role of heat islands in impacting body size. 

Our results suggest that one key outcome of urbanization is provisioning of novel, 

reliable food resources. Yom-Tov (2003) found a similar result for carnivoran body size; 

increased body size was related to increased anthropogenic food sources and not temperature. In 

addition to increased food, cities provide reliable water resources and shelter by use of built 

structures, which might decrease energetic costs and benefit growth rate and body condition 

(Bateman & Fleming 2012). The one exception to this pattern is that body mass was lightest in 

the warmest, most urbanized areas. It is possible that predictable food resources in urban settings

results in low starvation risk (Lima 1986; Cuthill et al. 2000), or that a temperature threshold 

exists above which increased body size becomes less energetically advantageous (regardless of 

available food). This pattern may also emerge if constant food availability permits survival in 

milder winters where fat reserves are less critical, potentially also aiding quicker locomotor 

movements to escape predation or reductions in foraging time (Metcalfe & Ure 1995; Kullberg et

al. 1996; Downes 2001; Macleod et al. 2005). Future studies quantifying food availability 

between spatially distinct regions is warranted as some mammals appear to be adapting to novel 

food resources in urbanized areas (e.g., Harris & Munshi-South 2017).
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We acknowledge that some species may be urbanophobic or unable to exploit resources 

provided in urban areas. Our strict filtering criteria limited our analyses to abundant and well 

collected mammal species, but these species are likely to be urbanophilic or urban-neutral given 

that many collections are near human-populated areas. Thus, our combined results do not 

necessarily apply to all North American mammal species, and it is known that the percentage of 

urbanized area plays a role in determining which species occupy those areas (Ordeñana et al. 

2010). Ultimately, life history strategies as well as morphological traits facilitate the ability to 

occupy urban environments, and filter out species lacking suitable characteristics (Croci et al. 

2008; Jokimäki et al. 2016; Jung & Threlfall 2018). Thus, species inhabiting the most urbanized 

areas are likely those with suites of traits that allow utilization of the novel resources in cities. 

Even so, Parsons et al. (2018) found no difference in species diversity or richness along an 

urban-wild gradient, and suggested mammals likely adapted to developed areas over the last few 

decades. Further studies investigating species occupancy across developed gradients will help 

elucidate adaptive trait responses to human-dominated landscapes. 

 Species traits directly related to thermoregulation and energetics appear to play an 

integral role in mediating the effects of climate and urbanization on body size, but not in the 

directions we predicted from theory. We predicted species that utilize thermal buffering (habitat 

buffering and hibernation) would show weaker responses of body size change with warming 

temperatures as these traits allow for avoidance of unfavorable climatic conditions (Fuller et. al. 

2016). In contrast, we found species that use these behaviors are more sensitive to warming 

temperatures than non-buffered species, and respond to warming temperatures with stronger 

decreases in body size. Thus, for hibernators, exposure to temperatures during the active season 

alone may still represent a sufficiently strong selective pressure. For species with thermal 
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buffering, lack of sufficient microhabitat heterogeneity due to extreme climates, clearcutting of 

forests, or increases in forest fires can result in decreased variation in ambient temperatures 

between exposed and buffered areas and ultimately reduce the effectiveness of that behavior 

(Huey et al. 2012; Suggitt et al. 2018). Another unexpected result relates to our finding of an 

increase in body size for non-hibernating mammals. Further work to better understand 

physiological tolerances for thermal buffering species in relation to patterns of global change are 

necessary. These relationships may be complex and involve multiway interactions between 

landscape change, climate change, and species traits.

Daily activity pattern represents another important trait for adaptation to changing 

environments. Flexibility in activity times appears to be advantageous in more urbanized areas. 

McCain and King (2014) found mammals that can switch between diurnality and nocturnality 

were least likely to respond negatively or respond at all to climate change, and postulated this 

was due to the ability of these species to select climatic conditions that are suitable for activities. 

Relative to mammals that are flexible in their activity times, we found diurnal species decrease in

body size with increasing urbanization. Decreases in body size may represent an adaptation to 

avoid predation, including human detection (i.e. crypsis; Stankowich & Campbell 2016; 

Guralnick et al. 2020). With increasing urbanization, nocturnal mammals also decreased in head-

body length, but increased in mass in relation to species that are active anytime. Decreases in 

head-body length are also suggestive of an adaptive response to avoid detection, while increasing

mass is indicative of nocturnal mammals benefiting from increased food resources in urban 

areas. The same idea may hold for species that are able to selectively avoid human detection by 

being flexible in activity times.
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Finally, our results provide new insight into average body size itself as a trait that can 

modulate responses to changing environments. With warming temperatures, we found larger 

mammals are decreasing at a faster rate than smaller mammals. This result is in contrast to the 

meta-analysis of Ashton et al. (2000), who found no difference between small or large mammals.

However, a reanalysis of that dataset demonstrated no general tendency for small mammals to 

increase or decrease in size, while larger mammals tended to display a Bergmann’s-like response

(Freckleton et al. 2003), consistent with our results. In another meta-analysis of 73 North 

American mammal species, McCain and King (2014) found the largest mammals examined were

27 times more likely to respond to climate change compared to the smallest mammals. These 

previous studies are all limited in that they are meta-analyses (also see Nengovhela et al. 2020), 

vary in statistical approach, and do not leverage the dense intraspecific sampling we achieved 

here. Our work draws strength from the use of a single hierarchical modeling framework for 

separate measures of body mass and head-body length and reveals a robust signal of larger 

mammals being more sensitive to changes in temperature, and conforming to Bergmann’s Rule. 

Lastly, small or large size does not mediate changes in body mass with increasing urbanization; 

however, we did find large mammals increase in head-body length, while small mammals 

decrease slightly. These results do not lend support to the Island Rule, where we would expect 

body size homogenization with increasing urbanization (Schmidt & Jenson 2003). Instead, 

increasing length for larger species may aid movement across fragmented landscapes (Merckx et 

al. 2018). 

In this work, we have focused primarily on the utility of digital biodiversity datasets such 

as natural history collections and ecological monitoring efforts to examine spatial trends in 

mammal body size. However, we recognize that temporal changes may also be inherent given 
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well-known climate and urbanization changes over the timescale of our dataset. We explicitly fit 

a decadal random term to control for this variation, but the constituent datasets themselves are 

also temporally structured, complicating issues with controlling for methodological issues 

(Guralnick et al. 2020). One future possibility is to add a spatially controlled time-series, which 

would provide a strong basis for examining temporal trends across multiple sites. In addition, 

finer-scale regional or community-level ecological studies would provide a more detailed 

understanding of the drivers of temporal changes (Ohlberger 2013).

 Our understanding of how human-mediated pressures impact mammalian body size has 

remained limited for decades, and is often tied to simplistic ecogeographic “rules”, whose 

validity continues to be called into question (Reimer et al. 2018). Our data-intensive work 

showcases the importance of incorporating other human disturbances beyond climate change, 

and also reflects how multiple pressures interact with species traits to influence change in body 

size. Beyond the finding that urbanization had a strong impact on body size, it was surprising 

that species with climate buffering traits were more sensitive to temperature. This has major 

implications for management of native species and suggests that these species may be under 

increasingly intense selection not just for life history parameters such as phenology, but also 

morphological traits like body size. Further collection and digitization of trait data remains 

essential for improved understanding of large-scale spatiotemporal patterns of body size change, 

especially given accelerating climate warming and urbanization (Grimm et al. 2008; Seto et al. 

2012; Christensen et al. 2013).
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Santini, L., González-Suárez, M., Russo, D., Gonzalez-Voyer, A., von Hardenberg, A. & 
Ancillotto, L. (2019). One strategy does not fit all: Determinants of urban adaptation in 
mammals. Ecol. Lett., 22, 365–376. 

Scheffers, B.R., Edward, D.P., Diesmos, A., William, S.E. & Evans, T.A. (2014). Microhabitats 
reduce animal’s exposure to climate extremes. Glob. Change Biol., 20, 495–503.

Schmidt, N.M. & Jensen, P.M. (2003). Changes in mammalian body length over 175 years – 
adaptations to a fragmented landscape? Conserv. Ecol., 72, 6.

25

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

692
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720



Schmidt, N.M. & Jensen, P.M. (2005). Concomitant patterns in avian and mammalian body 
length changes in Denmark. Ecol. Soc., 10, 5.
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TABLES

Table 1. Top (A) body mass and (B) head-body (HB) length model results. Bold effects are 

significant. 

 Term Estimate Std. Error p-value
(A)Body mass

Intercept 3.446 0.156 <0.001
MAT -0.014 0.003 <0.001
MAP -0.001 0.000 0.001
Season:spring 0.025 0.001 <0.001
Season:summer 0.013 0.001 <0.001
Season:winter -0.007 0.001 <0.001
Sex:male 0.002 0.000 <0.001
Population density 0.008 0.001 <0.001
Hibernation:yes -0.359 0.121 0.004
Buffered:yes -0.012 0.111 0.917
Diurnal/nocturnal:diurnal 0.343 0.175 0.053
Diurnal/nocturnal:nocturnal -0.013 0.145 0.931
Small/large body mass:small -1.838 0.123 <0.001
MAT x small/large body mass:small 0.023 0.003 <0.001
MAT x population density -0.003 0.000 <0.001
MAT x hibernation:yes -0.021 0.001 <0.001
MAT x buffered:yes -0.018 0.001 <0.001
Population density x diurnal/nocturnal:diurnal -0.014 0.001 <0.001
Population density x diurnal/nocturnal:nocturnal -0.002 0.001 0.003

(B)HB length
Intercept 2.677 0.052 <0.001
MAT -0.001 0.001 0.115
MAP -0.001 0.000 0.007
Season:spring 0.008 0.000 <0.001
Season:summer 0.002 0.000 <0.001
Season:winter 0.000 0.000 0.433
Population density 0.009 0.001 <0.001
Hibernation:yes -0.141 0.041 0.001
Buffered:yes -0.052 0.037 0.166
Diurnal/nocturnal:diurnal 0.075 0.059 0.205
Diurnal/nocturnal:nocturnal -0.047 0.049 0.340
Small/large HB length:small -0.587 0.041 <0.001
MAT x small/large HB length:small 0.005 0.001 <0.001
Population density x small/large HB length:small -0.003 0.001 <0.001
MAT x hibernation:yes -0.008 0.000 <0.001
MAT x buffered:yes -0.004 0.001 <0.001
Population density x diurnal/nocturnal:diurnal -0.007 0.001 <0.001
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 Population density x diurnal/nocturnal:nocturnal -0.009 0.000 <0.001

FIGURE LEGENDS

Fig. 1. Body mass and HB length record localities. Designated spatial ecoregions are colored and

the key shows the total number of body mass and head-body (HB) length records from each 

ecoregion. 

Fig. 2. Mammalian body mass is influenced by the interaction between human population 

density and mean annual temperature. In colder and more urbanized areas mammal body mass is 

the heaviest, while in the warmest areas that experience the highest levels of urbanization, body 

mass is the lightest. 

Fig. 3. Mammalian body mass is influenced by the interaction between (A) hibernation and mean

annual temperature; (B) habitat buffering and mean annual temperature; (C) activity time 

(diurnal/nocturnal) and human population density; (D) and large/small size and mean annual 

temperature. Mammalian head-body (HB) length is influenced by the interaction between (E) 

hibernation and mean annual temperature; (F) habitat buffering and mean annual temperature; 

(G) activity time (diurnal/nocturnal) and human population density; (H) large/small size and 

mean annual temperature, and (I) large/small size and human population density. 
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FIGURES

Fig. 1. 
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Fig. 2. 
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SUPPLEMENTAL FIGURES

Fig. S1. Heat map of mammal record densities. 
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Fig. S2. Phylogeny of study species trimmed from the tree of Upham et al. (2019; 
http://vertlife.org/data/mammals/) including traits used in this study. Hibernating species include 
those that experience daily torpor or more prolonged hibernation bouts. Mammals that utilize 
habitat buffering include species that are fossorial, volant, and subterranean, while non-buffered 
species in our study are terrestrial and arboreal. Species with a large mean body size are >500g; 
>200mm, while small species are <500g; <200mm. Subset phylogenies of species in separate 
body mass and head-body length data datasets were used in the PGLMM analyses. 
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Fig. S3. Spatial autocorrelation residuals of the final body mass and head-body (HB) length 
models. 
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SUPPLEMENTAL TABLES

Table S1. Body mass, total length, tail length, and head-body (HB) length ranges extracted from 
the literature. R2 values are based on regressions of log10 head-body length and log10 body mass 
for each species.

Species
Mass 

range (g)
Total length 
range (mm)

Tail length 
range (mm)

HB length 
range (mm)

R2 
(mass-length) References

Ammospermophilus leucurus 94-118 188-240 0.03 1,2

Antrozous pallidus 13-30 30-60 0.07 1

Aplodontia rufa 700-1400 290-500 9-40 0.47 1,3,4,5

Callospermophilus lateralis 120-395 225-305 65-120 0.39 1

Canis latrans 7000-33940 1000-1600 200-450 0.36 1,6

Canis lupus 23000-80000 1000-1800 150-600 700-1400 0.13 1,7

Castor canadensis 13000-32000 900-1200 0.46 1

Chaetodipus baileyi 21-45 170-245 60-115 0.25 1,8

Chaetodipus formosus 10.5-26 75-215 80-120 0.21 1,9

Chaetodipus intermedius 8-20 156-190 80-112 0.21 1

Chaetodipus penicillatus 10-27 145-205 65-120 60-100 0.32 1,10

Cratogeomys castanops 180-415 220-315 0.51 1,11,12

Cryptotis parva 2.8-6.5 63-92 40-80 0.13 1

Cynomys ludovicianus 615-1675 330-450 0.04 1,13

Didelphis virginiana 1750-6000 330-915 0.19 1,14

Dipodomys agilis 50-87 232-320 130-200 100-135 0.46 15,16,17

Dipodomys merriami 35-55 150-250 78-155 65-122 0.09 1

Dipodomys ordii 50-95 200-365 90-175 0.25 1,18

Eptesicus fuscus 10-30 100-130 30-55 0.14 1,19

Geomys bursarius 250-470 180-360 45-110 0.29 1,20

Ictidomys tridecemlineatus 90-170 200-310 30-105 0.03 1,21

Lontra canadensis 5000-14000 800-1400 300-600 500-900 0.11 1,22

Lynx rufus 4000-15000 650-1050 500-1000 0.33 1,23

Marmota flaviventris 1450-5220 430-700 0.54 1,24

Marmota monax 1820-6000 400-685 0.21 1,25

Martes americana 200-1600 300-700 250-700 0.38 1,26

Mephitis mephitis 700-6300 400-800 0.50 1

Microtus californicus 25-85 125-220 30-75 0.58 1,27

Microtus longicaudus 20-85 140-250 30-105 75-155 0.66 1,28

Microtus montanus 33-90 125-220 80-150 0.33 29

Microtus ochrogaster 25-70 120-180 85-140 0.49 1,30

Microtus oregoni 11.5-34 120-160 0.33 31

Microtus pennsylvanicus 28-70 120-200 80-150 0.38 1,32

Microtus pinetorum 15-40 78-125 10-40 0.45 1,33

Microtus townsendii 42-95 150-235 40-82 0.61 1,34

Mus musculus 10-35 60-105 50-105 0.73 1

Mustela erminea 25-230 150-400 120-280 0.76 1,35

Mustela frenata 70-500 200-500 155-310 0.73 1

Myodes californicus 13-40 80-120 0.61 1

Myodes gapperi 6-45 95-190 55-140 0.62 1

Myotis californicus 2.5-6 65-100 22-45 0.00 1
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Myotis lucifugus 4-14.5 65-102 22-65 35-70 0.11 1

Myotis velifer 4.7-17 42-67 0.11 1

Myotis volans 5-10.5 80-110 30-55 0.00 1

Myotis yumanensis 4-8 65-100 25-45 0.07 1

Napaeozapus insignis 15-35 200-260 0.39 1,36

Neotoma albigula 120-300 215-400 75-300 0.34 1,37

Neotoma lepida 95-350 200-415 0.38 1,38

Neotoma mexicana 125-250 250-430 90-185 130-210 0.24 1,39

Neotoma micropus 150-360 280-400 90-175 150-240 0.55 1,40

Neovison vison 400-1700 415-700 290-505 0.53 1

Neurotrichus gibbsii 7-15.5 95-135 0.08 1

Ochotona princeps 118-220 140-220 0.01 1,41

Odocoileus virginianus 30000-150000 1400-2100 0.29 1,42

Ondatra zibethicus 500-1800 400-620 180-400 0.35 1,43

Perognathus flavus 5-12 85-150 45-75 0.16 1,44

Perognathus longimembris 5.5-11 95-160 30-100 45-85 0.20 45,46,47

Perognathus parvus 13-30 60-95 0.21 1,48

Peromyscus boylii 17-45 150-230 50-125 0.25 1

Peromyscus crinitus 11-27 145-202 0.41 1,49

Peromyscus eremicus 15-35 60-140 70-110 0.25 1

Peromyscus leucopus 13-40 120-205 0.44 1,50

Peromyscus maniculatus 9-35 90-228 43-130 0.45 1

Peromyscus truei 15-35 140-240 50-117 0.36 1,51

Phenacomys intermedius 18-55 120-160 0.40 1,52

Procyon lotor 1500-10900 560-1000 150-500 300-700 0.63 1,53

Puma concolor 28000-120000 860-1540 0.29 1

Reithrodontomys fulvescens 9.7-20 117-190 50-100 0.18 1,54

Reithrodontomys megalotis 6.5-23 112-175 50-100 0.34 1,55

Scapanus orarius 50-90 130-180 0.08 1,56

Sciurus carolinensis 300-770 380-530 190-305 0.44 1

Sciurus griseus 350-1000 450-630 0.24 1,57

Sciurus niger 530-1000 420-700 0.10 1,58

Sigmodon arizonae 110-230 180-360 125-190 0.36 1,59

Sigmodon hispidus 65-235 210-370 100-210 0.49 1,60

Sorex cinereus 2.2-6 80-135 20-55 30-125 0.27 1,61

Sorex monticolus 4-11.5 90-160 17-70 40-100 0.37 1

Sorex pacificus 4.8-18 105-160 0.65 62

Sorex sonomae 7.5-17 62-92 0.43 1,63

Sorex trowbridgii 3.7-8 85-140 40-90 0.19 64,65

Sorex vagrans 3-8.5 78-130 40-82 0.36 66,67

Sylvilagus audubonii 705-1200 270-450 250-402 0.05 1,68

Sylvilagus floridanus 800-1550 325-480 0.16 1

Tamias amoenus 25-80 175-250 0.48 1,69

Tamias minimus 37-63 175-235 65-120 0.25 1

Tamias ruficaudus 50-75 117-150 0.30 1,70

Tamias striatus 65-127 210-270 123-170 0.31 1

Tamias townsendii 55-125 190-300 50-150 0.17 1,71

Tamias umbrinus 42-80 190-250 100-145 0.28 1
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Tamiasciurus douglasii 135-315 250-355 80-160 0.50 1

Tamiasciurus hudsonicus 165-310 265-390 75-175 0.53 1

Taxidea taxus 3600-12000 500-900 0.40 1,72

Thomomys bottae 70-210 150-300 36-92 0.60 1

Thomomys talpoides 60-160 158-260 105-180 0.55 1,73

Urocitellus elegans 235-435 45-95 170-280 0.10 1

Urocyon cinereoargenteus 2000-9000 800-1125 200-600 0.24 1,74

Vulpes macrotis 1600-3075 250-400 400-600 0.10 1,75

Vulpes vulpes 3000-14000 300-600 455-800 0.21 1,76

Zapus hudsonius 13-30 150-245 90-165 55-110 0.29 1,77

Zapus princeps 18-42 200-260 100-165 0.38 1,78

Zapus trinotatus 14-37 210-265 100-167  0.43 1

Table S2. Full linear mixed-effects models (LMM) that were used to test for variation in (A) 
body mass and (B) head-body length across spatial scales. 
Models
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A: Body Mass

mod1 <- lmer(body_mass ~ MAT + MAP + season + sex + pop_density + hibernation + buffered + 
diurnal_nocturnal + mean_body_mass_binned + MAT:pop_density + MAT:hibernation + MAT:buffered + 
pop_density:diurnal_nocturnal + MAT:mean_body_mass_binned + pop_density:mean_body_mass_binned + 
(1 | ecoregion) + (1 | species) + (1 | decade)

B: Head-body Length

 

mod2 <- lmer(HB_length ~ MAT + MAP + season + sex + pop_density + hibernation + buffered + 
diurnal_nocturnal + mean_HB_length_binned + MAT:pop_density + MAT:hibernation + MAT:buffered + 
pop_density:diurnal_nocturnal + MAT:mean_HB_length_binned + pop_density:mean_HB_length_binned + (1
| ecoregion) + (1 | species) + (1 | decade)

Table S3. Top (A) body mass and (B) head-body (HB) length PGLMM model results. Bold 
effects are significant.

Term Value lower CI upper CI
(A)Body mass

Intercept 6.897 6.273 7.515
MAT -0.033 -0.045 -0.021
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MAP -0.003 -0.005 -0.001
Season:spring 0.058 0.055 0.062
Season:summer 0.029 0.027 0.032
Season:winter -0.015 -0.019 -0.011
Sex:male 0.006 0.003 0.008
Population density 0.018 0.015 0.021
Hibernation:yes -0.922 -1.715 -0.129
Buffered:yes 0.225 -0.378 0.826
Diurnal/nocturnal:diurnal 0.395 -0.251 1.040
Diurnal/nocturnal:nocturnal -0.275 -0.604 0.052
Small/large body mass:small -2.583 -3.112 -2.049
MAT x small/large body mass:small 0.054 0.041 0.066
MAT x population density -0.006 -0.008 -0.005
MAT x hibernation:yes -0.048 -0.052 -0.044
MAT x buffered:yes -0.042 -0.048 -0.036
Population density x diurnal/nocturnal:diurnal -0.033 -0.039 -0.027
Population density x diurnal/nocturnal:nocturnal -0.005 -0.009 -0.002

(B)HB length
Intercept 5.732 5.490 5.973
MAT -0.006 -0.011 -0.002
MAP -0.001 -0.002 0.000
Season:spring 0.018 0.017 0.020
Season:summer 0.005 0.004 0.007
Season:winter -0.001 -0.003 0.001
Population density 0.019 0.016 0.022
Hibernation:yes -0.366 -0.659 -0.074
Buffered:yes 0.029 -0.191 0.249
Diurnal/nocturnal:diurnal 0.108 -0.114 0.330
Diurnal/nocturnal:nocturnal -0.099 -0.207 0.010
Small/large HB length:small -0.786 -1.015 -0.558
MAT x small/large HB length:small 0.014 0.009 0.018
Population density x small/large HB length:small -0.006 -0.009 -0.003
MAT x hibernation:yes -0.018 -0.020 -0.016
MAT x buffered:yes -0.009 -0.012 -0.007
Population density x diurnal/nocturnal:diurnal -0.016 -0.019 -0.013
Population density x diurnal/nocturnal:nocturnal -0.020 -0.021 -0.018
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