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Abstract:  

Cysteine (Cys) is the most reactive amino acid participating in a wide range of biological 

functions. In-silico predictions complement the experiments to meet the need of functional 

characterization. Multiple Cys function prediction algorithm is scarce, in contrast to 

specific function prediction algorithms. Here we present a deep neural network-based 

multiple Cys function prediction, available on web-server (DeepCys) 

(https://deepcys.herokuapp.com/). DeepCys model was trained and tested on two 

independent datasets curated from protein crystal structures. This prediction method 

requires three inputs, namely, PDB identifier (ID), chain ID and residue ID for a given Cys 

and outputs the probabilities of four cysteine functions, namely, disulphide, metal-binding, 

thioether and sulphenylation and predicts the most probable Cys function. The algorithm 

exploits the local and global protein properties, like, sequence and secondary structure 

motifs, buried fractions, microenvironments and protein/enzyme class. DeepCys 

outperformed most of the multiple and specific Cys function algorithms. This method can 

predict maximum number of cysteine functions. Moreover, for the first time, explicitly 

predicts thioether function. This tool was used to elucidate the cysteine functions on 

domains of unknown functions (DUFs) belonging to cytochrome C oxidase subunit-II 

(COX2) like transmembrane domains. Apart from the web-server, a standalone program is 

also available on GitHub (https://github.com/vam-sin/deepcys) 

 

Graphical abstract 

https://deepcys.herokuapp.com/)
https://github.com/vam-sin/deepcys
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Introduction: 

Cysteine is a key amino acid at the catalytic site of many enzymes 1. Unique chemical 

property of cysteine lies in its reactive thiol group, that can act as a nucleophile and may 

contribute towards various biological functions. Cysteine functions are broadly categorized 

into four groups observed in large number of biochemical reactions, i) Structural cysteines, 

disulphide formation, binding to co-factors, i.e, thioether formation, ii) metal-binding 

cysteines, present at enzyme active sites and involved in heavy metal scavenging iii) 

catalytic cysteines and iv) regulatory cysteines, involved in redox mediated various post-

translational modifications 2. Disulphide is the most common post-translational 

modification that facilitates the correct folding in protein structure as mentioned for the 

first time by Anfinsen3. Disulphide bond is formed between two sulphur atoms (each 

mentioned as half-cystine) coming from the same chain of a protein (intra-disulphide) or 

from different chains of a protein (inter-disulphide), leading to native protein structure.  

Many metalloproteins (enzymes) involve cysteine as one of the metal-binding ligands, 

apart from histidine 4 5. Thioester modifications, namely, acylation6 7, palmitoylation8 9 10, 

alkylation, etc., are commonly observed in fatty acid synthesis and degradation pathways. 

Thioether linkages11 are often observed with ligands, especially heme (prosthetic) groups 

12. Apart from the naturally occurring post-translational modifications of cysteine many 

more modifications occur via reactive oxygen species (ROS)13 induced oxidative stress14, 

or reactive nitrogen species (RNS)15. Glutathione is a cysteine-containing small molecule 

that can form disulphide bonds with a cysteine residue from protein. Levels of 

glutathionylation are often modulated by oxidative stress. However, glutathionylation may 

happen under normal conditions facilitating redox signaling and various other cellular 
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activities. Persulphenylation is a modification mainly observed in plants under stress 

conditions 16. Selenylation is mostly used to derivatize and protect the cysteine thiol group 

from oxidation, in vitro 17. This variety of cysteine functions and their possible implication 

on a wide range of biological functions, make the cysteine residue an important target for 

function prediction in a given protein (Figure 1). Amino acid function prediction became 

increasingly important with the advent of the structure genomics consortium18, where a 

large number of protein crystal structures were solved with unknown functions; 3970 such 

structures were reported on September 25, 2020 in PDB database 19. Prediction of functions 

in unknown proteins or in hypothetical proteins were attempted earlier in different species 

20 21. However, experimental determination of amino acid function is laborious, time-

consuming, and expensive, hence, in-silico prediction can complement the experiments.  

Most of the existing cysteine prediction methods can predict one particular type of 

function, termed, here as “specific cysteine function prediction”, such as, disulphide 

prediction 22 23 24 25 26 27 28 29, metal-binding prediction 30 31 32 33 34 35 36 37 38 39 and 

sulphenylation prediction 40 41 42 43  44 45 46 47 48 49.  Besides the specific cysteine function 

prediction methods, four multiple cysteine function prediction methods were known, 

namely, DiANNA50,  COPA51, ASP-C52 and  Cy-preds53. Diamino Acid Neural Network 

Application (DiANNA) employed a Support Vector Machine (SVM) to predict the class 

of the cysteine residue in three categories, a free cysteine, a half-cysteine or a ligand-bound 

cysteine. COPA was based on Cys proximity, average low pKa value and exposure of the 

sulfur atom; the method was capable of predicting reactive cysteines, namely, disulphide 

and metal binding.  ASP-C was capable of predicting reactive cysteines based on active 

site profiling. Cy-preds was capable to predict three different types of cysteine 
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modifications, namely, disulphide, metal-binding and post-translational modifications, 

based on energy components and different profiling approaches.  

Earlier we have annotated four cysteine functions, namely, disulphide, thioether, metal-

binding, and sulphenylation, based on protein structural properties, like, buried fraction, 

quantitative microenvironment descriptor (rHpy), secondary structure, and pKa values 54 

55 56. Only these four modifications were chosen because of their abundance in PDB crystal 

structures.  Inspired by these functional annotations of cysteine, here we propose a deep 

neural network-based model, DeepCys, that exploits six different protein features, and 

predict any one of these four different cysteine modifications. The model was trained on 

high resolution protein crystal structures containing total of 108,334 cysteine residues. 

Along with the original training dataset, i.e., without any sequence filter, two more non-

redundant datasets, with 100% and 30% sequence identity filters, were used in order to 

check for overfitting of the data. Three different models, namely, DeepCys original, 

DeepCys 100% and DeepCys 30%, were developed based on three different training 

datasets and the results showed that performance of DeepCys original was the best among 

all. Performance of the models were evaluated based on three metrics, accuracy, specificity 

and sensitivity. The last parameter, sensitivity represented by number of true positives 

divided by total number of true positives and false negatives, was the most effective for 

evaluating multi-functional dataset. The DeepCys original model was tested upon an 

independent test data set, consisting of 1,26652 number of cysteine residues from medium 

resolution crystal structures. A case study was performed on total 66 cysteine datapoints 

from Domains of Unknown Functions (DUF) proteins belonging to cytochrome C oxidase 

subunit-II like trans-membrane domains. The average sensitivity values for the test and the 
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DUF datasets were 79.25% and 87.22% respectively. Performance of DeepCys model was 

compared with the existing prediction methods; DeepCys results were either comparable 

or better than these methods. Novelty of the current method is, for the first time a method 

can predict one out of four cysteine functions. Moreover, explicit prediction of thioether is 

also done for the first time using DeepCys. 

 

 

Materials and Methods: 

Extraction of experimental information for cysteine functions (modifications): 

Four cysteine functions, namely, disulphide, metal-binding, thioether and sulphenylation, 

were either extracted from PDB entries, using distance criteria, or the information was 

directly extracted from the PDB header file. The information obtained from PDB file 

served as the experimental evidence for each modification that was compared with the 

results obtained from the predictive models. 

Training dataset generation: 

A training dataset was curated from high-resolution protein crystal structures (resolution 

ranges from 1.5Å to 2.0 Å), deposited to PDB database 19, dated 13.07.2020. Total 13,142 

PDB entries were present in the dataset (Table S1). This dataset was termed as training 

dataset original.  

Non-redundant training dataset generation: 

The training dataset original contained all possible protein structures without any 

restriction on sequence identity. In addition to the training original dataset, two non-

redundant datasets, training 100% and training 30%, were generated. after removal of 
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redundancy based on sequence identity using CD-HIT 57.This dataset contained 7188 

unique PDB files and total 60337 cysteine residues (Table S2). 

Similar to training 100% dataset, training 30% dataset with sequence identity of 30% was 

generated to ensure no structural bias. The data size was further reduced (Table 1). A total 

of 3,121 unique proteins and 25,435 cysteine residues were present in this dataset (Table 

S3).  

The reason to choose three different datasets was to identify if the bias present in the 

training original dataset affected the overall performance. To address this question three 

DeepCys models were developed based on the three training datasets, namely, DeepCys 

Original, DeepCys 100% and DeepCys 30%. 

The number of PDB files and corresponding cysteines undergoing different modifications 

were shown for three different training datasets (Table 1). To note, that there are certain 

PDB files containing multiple cysteines with different modifications. Therefore, the total 

number of PDB files reported in Table 1 was higher than the actual number of PDB files 

in the dataset (Table S1). 

Identification of different cysteine modifications: 

Disulphide  

Disulphide modifications were identified in each PDB entry based on the distance criteria. 

The structural disulphide bond length was reported as 2.05 Å and that of reversible 

disuphide was 2.18 Å. Hence, 2.3 Å distance was chosen to define any disulphide bond 

connecting two sulphur atoms from two cysteine residues58. If both the cysteines belong to 

the same chain, the modification was considered as intrachain disulphide, in contrast to 

interchain disulphide where two cysteines belong to two different protein chains. The 
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calculation was implemented by in-house python script exploiting the Biopython libraries, 

namely, PDB and NeighbourSearch.  Each sulphur atom in disulphide modification was 

considered as half-cystine.  

Metal-Binding  

The metal ions identified in the training dataset were the following, Zn2+, Cu2+, Cd2+, 

Fe2+/Fe3+ and Hg2+. The zinc ion was observed maximum number of times in the dataset 

(Table 2). It was noted earlier that the thiolate group of cysteine formed coordinate bonds 

with a wide range of border line to soft cations, such as Zn2+, Cu2+, Fe2+, Fe3+, Cd2+ etc., 

with maximum propensity towards zinc ion 59. Metal populations in three different datasets 

were described in terms of percentage of metal ions present in the dataset. The percentage 

of metal ion was described by the number of specific metal ion divided by the total number 

of metal-binding cysteines. The distance between sulphur atom of a cysteine and the metal 

ion varied according to the type and the oxidation number of the metal ions. The same 

metal ion could maintain different distances with a cysteine sulphur atom, depending upon 

the function of the metalloprotein 60.  The maximum metal ion – S (Cys) distance of 2.6 Å 

(that was, Cd2+ - S distance) was used, here, as search criteria. In-house python script was 

used to implement the calculation exploiting the Biopython libraries, namely, PDB and 

Neighboursearch. 

Sulphenylation 

Sulphenylation modification was directly extracted from the PDB header files where a 

cysteine residue has S-hydroxy modification, mentioned as modified S-hydroxycysteine 

(CSO, as per PDB nomenclature). The CSO residue name was reported as a hetero atom in 

PDB file. However, the current DeepCys model only considered coordinates of ATOMs 
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and not of HETATMs. Hence, each CSO was edited to CYS and hydroxy part of CSO were 

removed, without changing the cysteine local microenvironment. 

Thioether 

Thioether modification was directly extracted from the PDB header files, using following 

column matching criteria – the first column has “LINK”, the second column has “SG”, the 

third column has “CYS”, the sixth column has “C” and the seventh column not having 

“CU”. 

 

 

 

Test dataset generation: 

The test dataset was curated from medium-resolution protein crystal structures, resolutions 

ranging  from 2.0 Å to 2.5 Å, reported in PDB database 19. Total 10,864 PDB files (Table 

S4) with 125,652 cysteine residues were retrieved (Table 3a). The selection criteria for 

different modifications were the same as that of the training dataset. However, the metal 

ion populations varied in test dataset, compared to those in the three training datasets (Table 

4). Test dataset was more populated with three heavy metal ions, namely, Hg2+, Cd2+ and 

Pb2+, in comparison to the training datasets. Pb2+ was completely absent in the training 

datasets and Cd2+ has very low population in the training datasets 

Domains of Unknown Functions (DUF) dataset generated for cytochrome C oxidase 

subunit II like trans-membrane (COX2) domains: 

In the current study we focused on Cytochrome C oxidase (also known as complex IV) 

subunit II like transmembrane domains involved in electron transport chain. Cytochrome 
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c oxidase is a large integral membrane protein containing multiple chains and several metal 

prosthetic sites 61. This enzyme complex accepts four electrons from four cytochrome C 

molecules and transfers those to two oxygen molecules. Subunit II is one of the three 

subunits involved in substrate binding and formation of the functional core of complex IV 

62. This subunit transfers electrons, using its binuclear copper center, from cytochrome c to 

the bimetallic center of subunit I. The binuclear copper center was considered as the 

primary acceptor of electrons in cytochrome c oxidase. However, many of the cytochrome 

C oxidase crystal structures contain other subunits, apart from subunit II. Those subunits 

contain other metal ions such as zinc and also several disulphide modifications. The 

cytochrome C oxidase proteins were searched in Domains of unknown functions (DUFs) 

reported in SUPFAM database 63 The keyword search resulted into one DUF ID: 

DUF3098, only. The corresponding SCOP family name to this DUF ID was Cytochrome 

c oxidase subunit II-like, transmembrane region. The PDB files reported in the SCOP 

database were extracted (Table S5). Total number of cysteine modification and the PDB 

IDs were reported (Table 3b). DUF dataset comprised of Zn2+ and Cu2+ ion only (Table 4). 

The population of Zn2+ ion in DUF dataset, was significant, although it was low compared 

to that of the training datasets. However, the Cu2+ ion population was very high compared 

to the training datasets. 

 

Feature Generation  

To determine a particular modification of a cysteine, deep learning approach was applied 

on a training dataset constructed from PDB database. Each cysteine was uniquely identified 

by the PDB identifier (ID), the chain ID, and the cysteine residue number. Six structural 
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and functional attributes were either computed or extracted from PDB header file (Figure 

2). The features computed were, i) buried fraction, ii) rHpy and iii) the secondary structure 

motif around the cysteine residue. The features extracted were, i) amino acids present 

around cysteine within a variable contact shell, ii) enzyme class of the protein to which the 

cysteine belongs to and iii) the cysteine sequence motif.  

The feature, pKa, has been identified as one of the important parameters for cysteine 

function predictions 54 51. However, pKa computed using PROPKA has a pre-defined value 

of 99.99 for disulphide connectivity. This fixed pKa value for disuphide from PROPKA 

makes the deep learning model circular in nature. As other pKa computations were not 

automated like PROPKA, such as, constant pH MD simulations 64, those cannot be used 

for automated feature generation.  

 

1 and 2. Protein microenvironment (Buried fraction and rHpy) calculation: 

Protein microenvironments, quantified in terms of buried fraction and rHpy, around all the 

108,334 cysteines were computed using a FORTRAN program developed earlier56. This 

calculation required the following inputs: i) three-dimensional structure of the protein, ii) 

CHARMM topology and parameter files65 and iii) Rekker’s fragmental constants of 

individual atom types66. Microenvironment calculations report two outputs, i) Buried 

Fraction and ii) rHpy. The buried fraction is defined as the normalized surface area of the 

cysteine thiol group buried inside the protein. The values of this parameter range from 0.0 

to 1.0. Zero buried fraction indicates that the thiol group is completely exposed to the 

solvent and vice versa (Figure 2). The buried fraction of an amino acid (or its side chain) 
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was computed in this FORTRAN program by calling another FORTRAN program 

GEPOL9367.  

The second parameter, rHpy, termed as microenvironment property descriptor, describes 

the relative hydrophilic contribution of protein and the solvent towards the cysteine thiol 

group within its first contact shell.  According to the mathematical formulation, rHpy value 

adopts an upper limit of 1, when embedded in a pure aqueous solvent. There is no lower 

limit for rHpy value, which depends on the hydrophobicity of the protein interior. In our 

current dataset, the lower limit of rHpy for cysteine thiol group was -0.311. The buried 

fraction and rHpy together constituted protein microenvironment space around the cysteine 

thiol group.  

3. Secondary Structure (SS) Motifs 

The secondary structures for all the 13142 proteins, in the training original dataset, were 

calculated using the DSSP software68  based on Kabsch and Sander algorithm69. The DSSP 

algorithm calculated the secondary structure based on the three-dimensional structure. To 

understand the effect of adjacent secondary structures around a cysteine, secondary 

structure motifs were searched with variable lengths. Variation in the length was introduced 

by a parameter, window size, that described the number of amino acids on either side of 

the central cysteine. Window size varied from 3 to 13. Multiple window sizes were tested 

and the window size of 7 produced the highest performance on test dataset (Figure S1). 

Therefore, SS motif feature was generated with a window size of 7 depicting the secondary 

structures of 15 amino acids (7*2 + 1). 

 

4. Protein/Enzyme Class 
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The enzyme or the protein class to which the protein belongs to, was extracted from the 

PDB HEADER file.  

 

5. Amino acids present around cysteine within a variable contact shell  

Primary sequence of a protein folds into three-dimensional structure, assembling far off 

amino acid sequences within a given protein scaffold. A protein scaffold may contain more 

than one hydration layer, where protein atoms may interact with different layers of water 

molecules, within radii of 4.5 Å and 8 Å70. Analogous to hydration layers, the catalytic 

sites also include primary and secondary interaction shells where specific interactions were 

observed 71, 72. The amino acid signatures within first and second interaction shells were 

also considered as one of the important features by other cysteine prediction methods44 47. 

The quantitative descriptor, rHpy, (feature 2) represents the numerical value obtained from 

the hydrophilic contributions of each amino acid within the first contact shell, roughly 4.5 

Å radius56. In this current feature, we have identified the amino acids present within the 

variable contact shells around a cysteine residue. The notion was to identify the optimal 

amino acid signature around a cysteine residue.  An array of 20 elements (each representing 

20 naturally occurring amino acids) was constructed for each of the four radius values (5 

Å to 8 Å, incremented by 1 Å). Each element depicted the frequency of individual amino 

acids within a certain radius of the cysteine thiol group. In total there were 80 values (an 

array of 20 elements for each of the 4 different radii) in this feature. 

  

6. Cysteine Sequence motifs 
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A set of possible cysteine sequence motifs, namely, i) CC, ii) CXC, iii) CXXC, iv) 

CXXXC, v) CXXXXC, vi) CXXCXXC, vii) CXXCXXCXXC and viii) 

CXXCXXCXXXC were observed earlier, mainly as a part of metal-binding, thioether, and 

disulphide modifications 54. The cysteine motifs were searched from the primary sequence 

of each protein, within a variable window size of 3 to 13, incremented by the step size of 

2. The window size indicated the number of amino acids present on either side of the central 

cysteine residue. In some of the PDB files, few amino acids were not reported in three-

dimensional coordinate (structure) although reported in the primary sequence, mentioned 

in the PDB header file. In those cases, amino acid residue positions of the coordinates were 

followed instead of the amino acid sequence, to maintain the overall consistency in this 

study. For each window size, a binary array of 8 values was constructed, representing each 

of the 8 cysteine motifs. “1” marked the presence of a motif whereas “0” marked the 

absence in that particular stretch of amino acids. This feature has 48 values (an array of 8 

values for the 6 different window sizes).  

 

Metrics used to evaluate the efficiency of DeepCys model: 

Three different metrics, namely, accuracy, sensitivity and specificity, were used to measure 

the performance of the deep learning model on various datasets. Three metrices were 

defined using four parameters of the confusion matrix, namely, True Positive (TP), True 

Negative (TN), False Positive (FP) and False Negative (FN) (equations 1 to 3). A confusion 

matrix tabulates the actual values and the predicted values, allowing one to understand the 

performance of the model. TP represents the number of correctly predicted data points as 

proper positive class. FP represents the number of falsely predicted data points as the 
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positive class. Similarly, TN represents the number of correctly predicted datapoints as the 

proper negative class and FN represents the number of falsely predicted data points as the 

negative class.  

 

Accuracy = (TP + TN) / (TP + FN + FP + FN)    Eq 1 

Sensitivity = (TP) / (TP + FN)      Eq 2 

Specificity = (TN) / (TN + FP)      Eq 3 

 

As the accuracy values were expected to be more skewed towards the majority class, in 

case of class imbalance (that is the case in the present dataset), it is not recommended to 

use the accuracy metrics to assess the model 73. Instead, sensitivity is a better measure when 

focused individually on each class 74. To measure the overall performance of the DeepCys 

model on the entire dataset, a new metrics was deduced based on simple arithmetic mean 

of sensitivity values obtained from individual classes (all the four cysteine modifications), 

termed here as macro-average of sensitivity.  

  

Description of Deep-Learning Model: 

A neural network model was built using Keras, a high-level neural network Application 

Programming Interface (API) running on top of a TensorFlow backend. The model was 

programmed in Python, version 3.8.2. The proposed neural network model has 3 

Convolution layers followed by 8 Dense layers and a singular Dropout layer. Each 

convolutional layer contained filters. These filters were applied on the input data to obtain 

features. Repeated application of these filters on the input generated a feature map. A 



17 
 

feature map incorporated the necessary information detected from the input and leads to 

the required output.  A dense layer was a regular stack of nodes. Each of these nodes 

received input from the nodes of the previous layer. Each dense layer was associated with 

a weight matrix and a bias matrix. These matrix parameters were updated during the 

training process.  The dense layers in the neural network model started with 512 nodes, 

covering all the powers of 2 (2n, n =9 to 2), till the final layer having 4 nodes that 

represented the four cysteine modifications. A singular dropout layer with a probability of 

0.5 was placed before the final dense layer. The dropout layer was different from other 

layers as it did not contain any trainable parameters. The only parameter associated with a 

dropout layer was a probability that determined whether a node would be randomly 

dropped during the training process. Dropout layers helped in reducing overfitting. Along 

with this dropout, regularization was done to prevent overfitting. 

There was a total of three skip connections in the architecture of the neural network model 

(Figure 3). The data as it passed through every layer have been outlined in the architecture. 

The input vector has one hundred and forty-six values derived from the six features; one 

value each for buried fraction, rHpy and enzyme class; eighty values for twenty naturally 

occurring amino acids within four interaction shells with different radii; forty-eight values 

from eight different cysteine sequence motifs in six variable window sizes and fifteen 

values from secondary structure folds.  The Leaky ReLU activation function was employed 

along with Batch Normalization after every convolution layer and dense layer. The final 

dense layer used a Softmax activation function. The softmax activation function resulted 

in four different output values (four cysteine modifications) which added up to 1. The 

weights for all the layers were initialized using the Glorot uniform function. The loss 
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function employed was weighted categorical cross-entropy to tackle the major class 

imbalance in the training dataset. The weights corresponding to each of the classes were 

obtained by modifying the inverse value of their frequency in the dataset (Table S6). The 

optimizer used was Adam 75. A grid search algorithm was employed to figure out the 

optimal parameters for training the neural network. There were three optimal 

hyperparameters according to the grid search algorithm, namely, batch size, epochs and 

learning rate, having values of 256, 50 and 1e-4 respectively. Each epoch defined the 

process of the deep learning model being trained on the entire dataset. In this process of an 

epoch, the dataset was split into parts and the model was consecutively trained on these 

parts, termed as batches. The number of data points present in each batch represented the 

batch size. The learning rate was another essential hyperparameter that defined how 

quickly the weights of the neural network vary after each iteration of the training process.  

Two model checkpoints were employed. The first checkpoint saved the best performing 

model after every epoch of training. The second checkpoint reduced the learning rate of 

the model by a factor of 0.1, if the performance did not improve for 5 consecutive epochs. 

In absence of the second checkpoint, the model failed to converge due to a very high 

learning rate. The failure was due to the attempts of the optimizer making greater changes 

to the weights and overshooting the location of the optima. A reduced learning rate helped 

the model converge to the optima as it steps slowly towards the optima without 

overshooting.  

The feature generation and extraction along with the model training were carried out on a 

laptop, i.e. MSI GF63 Thin Core i5 9th Gen - (8 GB/512 GB SSD/Windows 10 Home/4 

GB Graphics) which was equipped with an NVIDIA GeForce GTX 1650 Max Q GPU.  
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Results & Discussion: 

 

Selection of all-feature criteria: 

As described above, there were total one hundred and forty-six values deduced from the 

six features. Here we attempted to identify the best set of values (and eliminate redundant 

values, if any) to increase the accuracy of the model using two different algorithms, 

namely, Recursive Feature Elimination 76 and the Genetic algorithm 77. The set of values 

suggested by these two algorithms were used to train the DeepCys model on the Training 

Original dataset. These models were tested on test 1 dataset that resulted into a dip in 

macro-average of sensitivity values (77.1% and 76.7% respectively) compared to the all-

feature criteria (79.3%). This observation indicated that the feature selection can decrease 

complexity but might not, necessarily, improve accuracy 78. Hence, we have used all-

feature criteria to develop DeepCys model.   

 

Variation of the features across the cysteine modifications: 

Features 1 and 2. Protein microenvironment (Buried Fraction and rHpy)  

Prior to performing deep neural-network based cysteine function predictions, each feature 

was analysed for the given dataset. The first feature, buried fraction, was used by many of 

the cysteine prediction functions, albeit, in slightly different way, that is solvent 

accessibility 32 44 47. The buried fraction was defined as the normalized surface area of the 
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cysteine thiol group buried inside the protein. Whereas, solvent accessibility was the area 

on the protein surface that is probed accessible using a certain probe radius 79 80. Buried 

fraction showed clear variation in terms of the mean and standard deviation values across 

the four different modifications (Table S7). The mean buried fraction value of the 

disulphide modification indicated its presence in the most hydrophobic region of the 

protein structures.  In contrast, the thioether modification was identified to be maximally 

exposed to the solvent, according to the mean value. The buried fraction values of metal-

binding and sulphenylation modifications were comparable (Figure 4a). These 

observations were in accordance with our previous studies 55, 54. 

The second feature, rHpy, was a measure of hydrophilicity of the microenvironment around 

a cysteine residue. Higher the value of rHpy, greater is the hydrophilicity of the 

surrounding microenvironment. The maximum limit of rHpy is 1, indicating a complete 

aqueous environment. It is expected that the completely buried protein region will be more 

hydrophobic and the completely exposed protein region will be mostly hydrophilic. Based 

on the mean and standard deviation of rHpy, disulphide modifications were embedded in 

hydrophobic microenvironment and thioether in a relatively more hydrophilic 

microenvironment (Table S8). The other two modifications had intermediate values, and 

those were comparable (Figure 4b). 

Feature 3: Secondary Structure (SS) Motifs 

Secondary structure motifs (also known as fold) are often conserved across the protein 

family and play an important role in various protein functions 81 82. Many of the cysteine 

function prediction tools23 32 47 used secondary structure as one of the features. To 
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determine the optimal length of the secondary structure folds around the cysteine of 

interest, a range of window sizes from 3 to 13 was scanned and DeepCys original model 

was tested on each window size. The window size of 7 has produced the best result in the 

DeepCys model; this value of window size indicated secondary structures of 15 

consecutive amino acids with the cysteine of interest at the centre (Figure S1). According 

to DSSP notations, each secondary structure was represented by one-letter code; alpha 

helix, beta bridge, strand, turn and bend and represented by H, B, E, T and S, respectively. 

Thus, there were 108334 arrays (each representing a cysteine residue in the training dataset 

original (Table 1a) and each array contained 15 secondary structure elements represented 

by one letter code. To understand the pattern of the secondary structure folds, the matrix 

of 108334x15 dimension was clustered using CD-HIT with a similarity cut off 70% (choice 

of this cut off was empirical), that is, each cluster has common secondary structure folds 

with 70% similarity. To compare across the clusters, normalized cluster size was computed 

using the number of secondary structure folds present in each cluster divided by the total 

number of instances in each cysteine modification (Tables S9). Broadly, twelve secondary 

structure folds were identified based on clustering (Figure 5).  Preferences of the folds for 

each modification were shown (Table 5).  

 

Feature 4:  Protein/Enzyme class 

 

Twelve major protein families and enzyme classes were noted in the training original 

dataset (Table 6). As we have only tabulated the major families and classes, summations 

of the rows are less than 100%. This analysis exhibited preferences of a specific cysteine 
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modification towards a specific protein/enzyme class. Disulphide modifications 

predominantly belong to the hydrolase enzyme class and in immune systems, whereas other 

modifications were less frequently observed in these two protein/enzyme classes. 

Moreover, in toxin proteins, only modification (out the four mentioned here) observed was 

disulphide (Table 6). The role of disulphide linkages in toxin proteins was well established 

83,84. The metal-binding modifications were predominant in transferase, transcription 

factors and ligase enzyme classes (Table 6). The metal ions were reported to be essential 

in nucleic acid structure stabilization59 and function, such as transcription regulation upon 

DNA/RNA binding 85. Metal prosthetic groups containing iron, zinc and copper ions were 

identified in electron-transport chains61. The coordinate bond formed between cysteine 

thiolate and Fe(III) plays a pivotal role in the functions of various heme containing proteins, 

such as, P450, cytochrome C, haemoglobin etc 86. The photosystems and electron transport 

chain proteins (cytochrome C is one such) contained thioether modifications only (Table 

6). The presence of two thioether linkages in a conserved CXXCH motif87 were well known 

in cytochrome C protein family involving the heme vinyl groups and the cysteine thiols.  

 

Feature 5: Amino acids within variable contact shells around a cysteine residue 

 

The hydrophilicity around cysteine residue (denoted by rHpy) was computed within the 

first contact shell. However, the molecular interactions persist beyond the first contact 

shell71. Hence, contact shells with larger radii (6, 7 and 8Å) were also considered in this 

feature.  The frequencies of the amino acids around cysteine were defined as the number 

of times an amino acid appeared in a particular modification divided by the number of 
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cysteines in that modification. The largest radius of 8Å (describing the second contact shell 

70) was considered for comparison across the four modification (Figure 6). The most 

frequently occurring amino acids within other radii were also reported (Table S10). The 

most frequently occurring amino acid (within 8.0Å) around disulphide modification was 

cysteine. Two cysteine in the proximity, happens to be half-cysteines those are involved in 

formation of disulphide bond. For metal-binding, the most frequently occurring amino 

acids within the second contact shell (8.0Å) were cysteine and glycine. However, within 

the first contact shell (4.5Å) the most populated amino acids were glycine and arginine. 

Occurrence of arginine-glycine rich motifs in mRNA-binding proteins and transferase 

enzymes were well known 88. The highest frequencies of metal-binding cysteines, in the 

current dataset, were observed in transferase and transcription factors (Table 6).  

Three of the modifications, namely, disulphide, thioether and suphenylation, in general, 

have showed higher preferences towards, beta-turn-beta secondary structure motif (Table 

5) and exhibited highest content of either Cys/Ser, Cys/Gly or Ser/Gly preferences (Figure 

6). The turn and linker regions were reported earlier with high preferences towards, Cys, 

Ser or Gly residues 89.  

Feature 6: Cysteine Sequence Motifs 

Cysteine sequence motifs were mostly associated with metal-binding and thioether 

modifications. Several of the cysteine metal-binding prediction tools used the metal 

binding sites in the proteins 36 35 34. Eight sequence motifs reported earlier54 were used to 

generate the sixth feature. The highest window size of 13 was employed to perform the 

motif search. The frequencies of these 8 motifs were calculated for each of the four 

modifications (Table 7). The frequency (in percentage) was defined as the number of times 
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a motif appeared in a modification divided by the number of instances in that particular 

modification. It is not necessary that in all the instances, any of these eight motifs would 

be present. Hence, summation of the motif percentages was observed to be less than 100% 

for all the cysteine modifications. As per our analyses, disulphide modification was 

ubiquitous and has not shown preferences towards a particular motif. Presence of almost 

all the motifs were identified in the metal binding modification. The CXXC motif was also 

prevalent in thioether modification. Most of the observed thioether modifications in 

cytochrome C family proteins were part of CXXCH motif87.  

Evaluation of DeepCys Model performance: 

The DeepCys model was trained on the three variants of the training datasets, namely, 

Training Original, Training 100% and Training 30%. Here we have studied the 

performances of these three models evaluated on the test dataset to understand these two 

opposing effects. As per the hypothesis, the models trained on the non-redundant datasets 

should better perform compared to DeepCys original model. On the other hand, the 

significant reduction of the dataset size may reduce the performance.  

All the three DeepCys models, namely, DeepCys Original, DeepCys 100% and DeepCys 

30% were tested on test dataset. Overall performances of the models, measured in terms of 

the macro-average values (see method section for definition) monotonically decreased 

from DeepCys Original to DeepCys 30% (79.25%, 78.25%, and 74%, respectively) 

indicating that the overall performance was related to the size of the dataset and not to 

overfitting. However, the sensitivity values for individual modifications did not follow the 

same trend of the overall performance (Table 8). Although sensitivity metrics was 

considered, other two metrics were also computed for each modification (Table S11). The 
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sensitivity values for disulphide and thioether monotonically decreased for the three 

models following the trend of the overall performance, whereas, that of sulphenylation 

remained more or less the same. In case of metal-binding modification, sensitivity values 

monotonically increased from DeepCys Original to DeepCys 100%, exactly reverse of the 

overall trend. This observation could be, plausibly, explained based on the types and the 

frequencies of metal ions present in training datasets (Table 2) versus test dataset (Table 

4). These two independent datasets have significant variation in types and frequencies of 

metal ions.  For example, in all the three training datasets, Zn2+ ion propensity was more 

than 72%, whereas, in test dataset that was only 69%. Moreover, the heavy metal ions, like, 

Hg2+ and Cd2+ were almost negligible, in training datasets, in contrast to a significant 

population of those heavy metal ions, in test dataset. The Pb2+ ion was present in test 

dataset, that was non-existent in the training dataset. On the other hand, other three 

modifications, namely, disulphide, thioether or sulphenylations, were trained and tested on 

the same data type.  

 

The DeepCys Original model has produced the highest overall performance in terms of the 

macro-average value of sensitivity. Hence, DeepCys original model was chosen as the 

optimal model on the test dataset. 

 

 

Comparison of the current and the existing cysteine prediction methods on “test 

sample dataset”: 
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The model developed in this work (DeepCys Original) was compared with the published 

literature, for both specific and multiple cysteine function prediction methods. Three 

different types of specific cysteine functions were tested, namely, metal-binding, 

disulphide and sulphenylation. Following prediction methods were tested - Metal Ion 

Binding Site Prediction and Docking Server (MIB) 30 , PSIPRED-METSITE32 and 

MetalDetector v2.031, for metal binding; DISULFIND 22 and Cyscon 23, for disulphide and 

SulCysSite41  and DeepCSO 90, for sulphenylation. No explicit prediction method was 

known, to the best of our knowledge, for thioether, although DiANNA has implicitly 

indicated the predictability of thioether modification 50. For multiple cysteine function 

prediction,  DiANNA 50  and Cy-preds 53 were used.  

As most of the existing models were presented in terms of web servers, it was formidable 

task to compare all the 125,652 datapoints of test dataset, manually on webservers. Hence, 

a random sample of 100 datapoints were selected per modifications from the test dataset 

and used consistently for comparison across the methods, termed as “test sample dataset” 

(Table 9a). As there were no tools available explicitly for thioether prediction, DeepCys 

performance on thioether cannot be compared. The DeepCys Original outperformed other 

specific cysteine function prediction methods for three other modifications on test sample 

dataset.   

For disulphide prediction studies, the prediction tool DISULFIND was based on protein 

sequence only and its performance was lower compared to that of DeepCys. Cyscon, the 

other disulphide prediction server from Zhang’s lab, exploited machine learning approach 

developed on protein structural information. However, it has lower performance compared 

to DeepCys on test sample dataset.  
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For metal binding studies, there were six metal ions present in the training and test datasets, 

and those widely varied in terms of charge, radius and chemical properties. Hence, the 

prediction performance was likely to vary from one metal ion to the other. In the current 

test sample dataset, the cations identified were either Cu2+ or Cd2+. The DeepCys model 

has showed 86% and 76% sensitivity values for these two metal ions.  The reported 

sensitivity values for Cu2 and Cd2+ ions, by MIB were 85.6% and 41.2%, respectively on 

their original dataset and 76% and 36%, respectively on the “test sample dataset”. Hence, 

overall performance of MIB on the test sample dataset was poor compared to that of 

DeepCys. The results obtained from MetalDetectorv2.0, on test sample dataset, was 

comparable to that of DeepCys.  The PSIPRED-METSITE only predict for Cu2+ and not 

for Cd2+. The prediction accuracy by PSIPRED-METSITE for Cu2+ was only 16%.  

In terms of sulphenylation prediction, the sensitivity value reported by SulCysSite (a 

sequence-based method) was only 62.89%. The newly developed, deep learning-based 

approach, DEEPCSO, for sulphenylation prediction yielded 32% of sensitivity value, on 

the test sample dataset. In the original work of DEEPCSO, the sensitivity was reported at 

71.7%, that was comparable to the DeepCys original. Thus, DeepCys outperformed both 

the existing methods, on test sample dataset. 

The multiple cysteine function prediction method, DiaNNA can predict three cysteine 

functions. The DiaNNA original work published in 2005, attempted to predict multiple 

functions, the first attempt of its kind. However, that work have separately predicted 

ligand-binding states and disulphide connectivity, unlike, DeepCys that is a comprehensive 

model to predict any of the four modifications simultaneously. There were two options in 

DiaNNA, i) disulphide connectivity and ii) ternary classification. Under ternary 
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classification, there are three options, ligand-bound versus half-cystine, ligand bound-

versus free cysteine and half-cystine versus free cysteines. The ligand-bound versus half-

cystine option compared the probabilities of ligand-bound state to disulphide connectivity. 

The other option was comparison of probabilities among ligand-bound state and free thiol 

state. The DiANNA original work has reported only 41.8% success in prediction of 

disulphide bonds in proteins, that was based on protein sequence feature only. For test 

sample dataset, performance of DiANNA was comparable with their original work when, 

disulphide connectivity option was considered. The result was very poor when half-cystine 

versus free cysteine option was explored for disulphide modification (Table 9b). DiaNNA 

has defined  four ligand types, namely, Fe2+/Fe3+, Zn2+, Cd2+ ions and carbon atoms. 

Presumably, the last one indicated thioether formation, although, thioether was not 

explicitly mentioned in the original work. Both ligand-bound versus half-cystine and ligand 

bound-versus free cysteine options were explored, the first one performed better than the 

second one. Individual Cu2+ and Cd2+ ion sensitivities reported by DiaNNA were 40% and 

38% respectively, using ligand-bound versus half-cystine option. The results obtained from 

the second option was very poor. Thioether prediction was tested for DiaNNA on test 

sample dataset, yielding 0% sensitivity, indicating that it was unable to capture thioether 

formation. The other multiple cysteine function prediction algorithm, Cy-preds, was able 

to predict three functions, namely, disulphide, metal-binding and post-translational 

modifications. Disulphide prediction performance of Cy-preds on test sample dataset was 

comparable to that of DeepCys, although, the former one was slightly better. For metal-

binding prediction, Cy-preds exhibited better performance than that of DeepCys with 
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respect to the test sample dataset (Table 9). However, the DeepCys was able to predict any 

four cysteine functions, in contrast to Cy-preds, predicting only three. 

 

Elucidation of cysteine function in DUF proteins belonging to cytochrome C oxidase 

subunit II-like transmembrane region: 

In cytochrome C oxidase protein, there were multiple chains containing several cysteines, 

involved in different functions, such as Zn2+ ion - binding in chains F and S (subunits VB) 

, Cu2+ ion - binding in chains B and O (subunit II) and formation of disulphide bonds, in 

chains H and U (subunits VIB1) etc. The subunit II contains binuclear copper center that 

is the primary electron acceptor from reduced cytochrome C. There were six proteins 

selected from DUF ID, belonging to cyctochrome C subunit II like transmembrane region, 

namely, a) Catalytic Core (Subunits I and II) of Cytochrome c oxidase from Rhodobacter 

sphaeroides (PDB:2gsm), b) Bovine heart cytochrome C oxidase modified by dccd 

(PDB:2dys), c) Bovine heart cytochrome C Oxidase in azide-bound state (PDB:1ocz), d) 

Cytochrome c oxidase from Rhodobactor sphaeroides (Wild Type) (PDB:1m56), e) The 

aberrant BA3-Cytochrome-C Oxidase from Thermus Thermophilus (pdb:1ehk) and f) The 

Paracoccus Denitrificans two-subunit Cytochrome C Oxidase Complexed with an 

Antibody Fv Fragment  (PDB: 1ar1). Subunit II (COX2) were common in all these 

proteins. Total 66 cysteine residues were present in these pdb files, out of those 66, 36 were 

metal-binding and remaining 30 were disulphide modifications. DeepCys original model 

prediction was 80% correct for disulphide and 94.4% for metal-binding (Table S12). In 

case of metal-binding cysteine, only two were incorrectly predicted, the binuclear copper 

center, chain B:cys216 and chain B:cys220, from pdb:1ar1. In case cys220, the prediction 
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probabilities of cysteine and thioether were equivalent, 0.41; changes occurred at the third 

decimal place. Analysis of the six features (high BF, 1.0, low rHpy, helix-turn-helix motif, 

oxidoreductase enzyme class, presence of His in the vicinity of cys and cxxc motif) around 

Cys220, indicated equal probabilities of thioether and metal-binding modifications. Thus, it 

revealed that the prediction probabilities by DeepCys were highly dependent on the 

cysteine features. 

  

Web applications, Backend calculations, and Standalone program: 

A user-friendly web application, DeepCys original model, was built using the Django web 

framework. The flowchart of the web application was shown (Figure 7a). The web 

application (https://deepcys.herokuapp.com/) was deployed using Heroku, a container-

based cloud Platform as a Service (PaaS). The structure-based prediction model can be 

accessed by clicking the “Structure Prediction” button on the navigation bar. The web 

application has a “form” that requests three inputs, corresponding to a cysteine, namely, i) 

PDB ID of the protein, ii) Chain and iii) Residue ID of the cysteine (Figure 7b). These 

three parameters were relayed to the deep learning model. Before running the prediction 

model, the six features of the cysteine residue were either computed or extracted from PDB 

file. The deep learning model used the six features to predict the probability of a cysteine 

modification. The prediction outputs four probability values along with the final prediction 

of the cysteine modification (Figure 7c). 

In addition to the web application, a batch prediction model was developed. The purpose 

of the batch prediction model was to make multiple predictions at a time in contrast to 

single predictions on the web application. The batch prediction model requires the input 

https://deepcys.herokuapp.com/
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file containing the above three parameters corresponding to a cysteine residue. The 

installation and usage instruction were available on the GitHub repository. In addition, the 

python codes for feature generation, extraction and model training were also available on 

GitHub repository (https://github.com/vam-sin/deepcys).  

 

 

 

Conclusion:  

Cysteine thiol group is highly reactive. It participates in different biochemical reactions 

leading to multiple modifications. Accurate prediction of these modifications is crucial to 

elucidate the cysteine functions, particularly, in proteins of unknown functions (PUFs) and 

domains of unknown functions (DUFs). In this study we present a deep learning-based 

approach to predict any one of the four most abundant cysteine modifications. Novelty of 

this work was prediction of maximum number of cysteine modifications. Moreover, 

thioether prediction was not attempted earlier. The DeepCys model developed in this work 

requires the protein structure in PDB format, the residue number and the chain identifier. 

Six features were either extracted or computed from PDB file those were used by deep 

learning approach. The final output was the probability values for four cysteine 

modifications, namely, disulphide, metal-binding, thioether and sulphenylation. The 

modification with highest probability was reported as the predicted modification. The 

current prediction was benchmarked across the existing cysteine prediction tools. The 

DeepCys performance was better than most of the existing methods, for the given dataset. 

The tool is available both as a webserver and as a standalone program. 

https://github.com/vam-sin/deepcys
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Availability:  

DeepCys standalone program is available on GitHub (https://github.com/vam-

sin/deepcys).  
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Figure 1: Different post-translational modifications of cysteine residues. Modifications, 

generally, occurring under stress are shown in the left panel and those often occur under 

normal conditions are shown in the right panel. The modifications studied in this work are 

shown within boxes with a light blue background. 

 

Figure 2: Features used for training the model. Cartoons representation of a protein with 

multiple cysteine thiol (-SH) groups at the center, and the features on the periphery. Feature 

names enclosed within blue ovals. 

 

Figure 3: Workflow & Architecture of the Deep Learning Model for Structure-Based 

Prediction 

Figure 4: Variation in the four cysteine modifications for a) buried fraction and b) rHpy 

values  

Figure 5: Different secondary structure folds identified from clustering analysis, a) Helix 

Beta, b) Beta Turn Helix, c) Turn Beta, d) Turn, e) Beta Helix Turn Helix, f) Turn Helix, 

g) Helix Turn Helix, h) Helix Turn i) Beta Helix i) Beta Turn Beta, k) Beta-Helix-Beta, l) 

Helix Turn Beta.  

 

Figure 6: Variation in the four cysteine modifications for the most frequently observed 

amino acids within the contact shell of 8Å radius around cysteine 

 

Figure 7: Web application for structure-based prediction a) flow chart b) input “form” c) 

output results 
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Tables: 

 

Table 1: Four different modifications present in a) training dataset original b) training 

100% dataset and c) training 30% dataset 

 

a) 

Modification Total number of PDB structures 

analyzed 

Total Number of cysteines 

analyzed 

Disulphide 9179 85,452# 

Thioether 979 3244 

Metal-binding 3061 18959 

Sulphenylation 373 679 

 

b) 

Modification No. of PDB files No. of Cysteines 

Disulphide 5015 48138# 

Thioether 513 1926 

Metal-binding 1520 9808 

Sulphenylation 218 465 
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c) 

Modification No. of PDB files No. of Cysteines 

Disulphide 2017 18292# 

Thioether 208 926 

Metal-binding 786 5910 

Sulphenylation 146 307 

# Number of half-cystines, two half-cystines constitute one cystine (containing disulphide 

bond). 

 

Table 2: Variation of metal ion populations (described in terms of percentage, with 

respect to the total number of metal-binding cysteines) in different training datasets 

 

Name of the metal ion Training original  Training 100% Training 30% 

Zn2+ 74.8 72.2 76.9 

Hg2+ 10.3 13.1 12.3 

Cu+/Cu2+ 4.7 5.4 5.1 

Fe2+/Fe3+ 8.4 7.9 5.6 

Cd2+ 1.7 1.7 1.6 

 

Table 3: Cysteine modifications present in a) test-1 dataset and b) DUF dataset  

a)  
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Modification Total number of PDB structures 

analyzed 

Total Number of cysteines 

analyzed 

Disulphide 8865 111584 

Thioether 421 1721 

Metal-Binding 1617 11729 

Sulphenylation 239 618 

 

b)  

Modification No. of PDB files No. of Cysteines 

Disulphide 5 30 

Metal-binding 6 36 

 

Table 4: Variation of metal ion populations (described in terms of percentage, with respect 

to the total number of metal-binding cysteines) in test-1 and DUF dataset  

 

Name of the metal ion Test 1 dataset DUF dataset 

Zn2+ 69.0 44.0 

Hg2+ 13.5 - 

Cu+/Cu2+ 4.7 56.0 

Fe2+/Fe3+ 5.2 - 

Cd2+ 7.7 - 
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Pb2+ 0.01 - 

 

Table 5: Percentage of different Secondary Structure Motifs in four different modifications; 

Helix, Turn and Beta represented by H, T, and B. The Secondary Structure Motif with the 

highest percentage for each modification mentioned in bold.  

 

Modification/ss 

motif 

H-T-H H-T H-T-

B 

H-B T-H T-

B 

T B-H-B B-H-T-H B-T-B B-H B-T-H 

 

Disulphide 14.7 6.0 28.9 - 4.2 - 4.0 0.9 3.8 28.6 11.1 4.6 

Metal-Binding - - 9.3 12.8 10.4 - - 5.8 - 34.8 - 13.9 

Sulphenylation 19.2 30.8       23.1 26.9   

Thioether 38.2 - - - 44.1 8.8 - - - - - 8.8 

 

Table 6: Occurrence of different cysteine modifications observed in different 

protein/enzyme classes, 1. Hydrolase, 2. Immune system, 3. Hydrolase inhibitor, 4. 

Oxidoreductase, 5. Toxin, 6. Transferase, 7. Transcription, 8. Ligase, 9. Lyase, 10. Sugar 

binding, 11. Electron transport, 12. photosynthesis . Values reported in percentage of 

(number of times a modification is present in a protein/enzyme class) / total number of 

modifications). The enzyme class with the highest percentage for each modification is 

mentioned in bold. The other high percentage values per modification (along each row) are 

shown in italics. 
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Modification 1 2 3 4 5 6 7 8 9 10 11 12 

Disulphide 31.8 13.6 8.5 4.9 3.0 0.1 0.1 0.1 0.1 2.2 0.5 0.0 

Metal-Binding 10.1 0.2 0.0 20.2 0.1 15.1 10.1 4.2 1.9 0.1 1.9 0.0 

Sulphenylation 17.4 1.2 0.0 21.6 0.0 14.8 0.4 0.4 7.4 4.1 0.9 2.4 

Thioether 6.1 1.2 5.7 28.4 0.0 14.9 0.4 0.4 7.4 4.1 18.7 7.2 

 

Table 7: Percentage (%) of eight different motifs, 1. CC, 2. CXC, 3. CXXC, 4. CXXXC, 

5. CXXXXC, 6. CXXCXXC, 7. CXXCXXXXXC, 8. CXXCXXCXXXC, in four cysteine 

modifications 

Modification 1 2 3 4 5 6 7 8 

Disulphide 7.0 7.3 4.2 9.2 9.4 0.2 0.1 0.0 

 

Thioether 1.1 1.5 54.4 1.4 2.9 0.0 1.3 0.0 

Metal-Binding 9.7 14.0 49.4 15.1 17.0 3.6 2.0 0.3 

Sulphenylation 6.8% 4.9 7.4 5.4 8.1 0.0 0.0 0.0 

 

Table 8: Performance of DeepCys Original, DeepCys 100% and DeepCys 30% on Test 

Dataset. The performance was measured in terms of sensitivity. The model with the highest 

sensitivity for each modification has been mentioned in bold.  
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Modification DeepCys Original DeepCys 100% DeepCys 30% 

Disulphide 87% 76% 71% 

Thioether 75% 74% 62% 

Metal-Binding 72% 78% 80% 

Sulphenylation 83% 85% 83% 

 

Table 9: Comparative analysis of DeepCys Original model with cysteine function 

prediction methods. The performance was measured in terms of sensitivity on the sample 

test 1 Dataset with a) specific cysteine function prediction algorithm and b) general 

cysteine function prediction algorithms. The model with the highest sensitivity for each 

modification has been mentioned in bold. 

a) 

Function Deep- 

Cys 

DISULFIN

D 

Cyscon Metal 

Detector 

V2.0 

MIB PSIPRE

D-

METSIT

E 

SulCysSit

e 

DeepCSO 

Disulphide 96% 34% 80% - - - - - 

Metal-

Binding 

81% - - 81% 56% 16% - - 
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Sulphenyla

tion 

71% - - - - - 28% 32% 

Thioether 67% - - - - - - - 

b)  

Modification DeepCys  DiANNA Cy-preds 

Disulphide 96% 40% (5%) # 98% 

Thioether 67% 0% - 

Metal-Binding 81% 39% (3%) $ 95% 

Sulphenylation 71% - - 

#within parenthesis, the half-cysteine versus free-cysteine option was used and outside 

parenthesis, disulphide connectivity was used. 

$within parenthesis, the ligand bound versus free cysteine option was used and outside 

parenthesis ligand bound versus half-cysteine was used. 

Figures: 

 

Figure 1 
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