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Abstract

In this paper, we study the stability of the zero equilibrium and
the occurrence of flip bifurcation on the following system of difference
equations:

xn+1 = a1
yn

b1 + yn
+ c1

xne
k1−d1xn

1 + ek1−d1xn
,

yn+1 = a2
zn

b2 + zn
+ c2

yne
k2−d2yn

1 + ek2−d2yn
,
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zn+1 = a3
xn

b3 + xn
+ c3

zne
k3−d3zn

1 + ek3−d3zn

where ai, bi, ci, di, ki, for i = 1, 2, 3, are real constants and the initial
values x0, y0 and z0 are real numbers. We study the stability of this
system in the special case when one of the eigenvalues is equal to -1
and the remaining eigenvalues have absolute value less than 1, using
center manifold theory.

Keywords: Difference equations, stability, flip bifurcation, center manifold,
dynamical systems, discrete dynamics.

1 Introduction

Difference equations and dynamical systems appear in a plethora of sciences
and applied fields, as for example, in biological, economic and social sci-
ences, celestial mechanics, fluid dynamics, nonlinear oscillations and more.
In recent years, an attractive and far-reaching theory over systems of dif-
ference equations has emerged, as a result of the efforts of mathematicians
and scientists from many disciplines.

Studying cyclic systems of difference equations, which are natural gen-
eralizations of symmetric ones (see, e.g., [1, 2]), seems to have been initi-
ated by Iričanin and Stević in [3]. Natural generalizations of cyclic systems
are the, so called, close–to–cyclic systems of difference equations (see, e.g.,
[4, 5, 6, 7, 8]). Close–to–cyclic systems are also natural generalizations of
close–to–symmetric ones, which have attracted some considerable attention
recently (see, e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34]).

An interesting dynamical behavior is featured in difference equations
systems whose the characteristic polynomial of their linearization has zeros
belonging on the unit circle (e.g. [4, 5, 20, 35, 36, 37, 38]), a case for
which Carr [39] and Kuznetsov [40] gave some classical results. A basic
biological model of this category can be found in Berg and Stević [10] and in
Stević [38], where the method of the last paper can be modified and applied
to some other equations and systems, as for example, was conducted in
[24, 29, 30, 31, 32, 33, 34, 41, 42, 43, 44]. In addition, Stević in [37] studied
the asymptotic behavior of the solutions of a non-linear difference equation of
a biological model with unity as a characteristic zero, in the very interesting
case when the sum of the coefficients is equal to one. Moreover, some results
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and methods for investigating the existence of specific types of solutions are
derived, for example, in [45, 46, 47, 48, 49].

Numerous applications in biology have the difference equations and the
systems of difference equations with exponential terms, so a large number
of papers dealing with related equations and systems have been published
(see, for example, [12, 20, 36, 37, 50, 51, 52, 53]). Tilman and Wedin in
[54] discuss an ecological model of grassland ecosystem incorporating plant
inhibition by litter, given as:

Bt+1 = cN
ea−bLt

1 + ea−bLt
, Lt+1 =

L2
t

Lt + d
+ ckN

ea−bLt

1 + ea−bLt

where B is the living biomass, L the litter mass, N the total soil nitrogen, t
the time in years and constants a, b, c, d > 0 and 0 < k < 1. In this model,
litter decay is determined by d and litter production is k times the living
biomass. Motivated be this model, Papaschinopoulos et al in [16] studied
the boundedness and the persistence of the positive solutions, the existence,
the attractivity and the global asymptotic stability of the unique positive
equilibrium, as well as the existance of periodic solutions of the equation:

xn+1 = a
x2n

b+ xn
+ c

ek−dxn

1 + ek−dxn

where a ∈ (0, 1), a, b, c, d, k are positive constants and x0 is a positive real
number. Moreover, in [20] the authors study the stability of zero equilibrium
of the system:

xn+1 = a1
yn

b1 + yn
+ c1

xne
k1−d1xn

1 + ek1−d1xn
, yn+1 = a2

xn
b2 + xn

+ c2
yne

k2−d2yn

1 + ek2−d2yn

where a1, a2, b1, b2, c1, c2, d1, d2, k1, k2, are real constants and the initial
values x0 and y0 are real numbers.

Now, motivated by the above discrete time model, along with the recent
studies of close–to–cyclic systems of difference equations and the potentials
of difference equations systems with exponential terms, we study in this
paper the stability of the non hyperbolic zero equilibrium and the conditions
under which bifurcation and periodic-cycles occur, of the three dimensional
system:

xn+1 = a1
yn

b1 + yn
+ c1

xne
k1−d1xn

1 + ek1−d1xn
,

yn+1 = a2
zn

b2 + zn
+ c2

yne
k2−d2yn

1 + ek2−d2yn
,

zn+1 = a3
xn

b3 + xn
+ c3

zne
k3−d3zn

1 + ek3−d3zn

(1.1)
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where ai, bi, ci, di, ki, for i = 1, 2, 3, are real constants and the initial values
x0, y0 and z0 are real numbers. The zero equilibrium corresponds to the
physical situation where quantities x, y, z vanish.

The analysis is conducted using center manifold reduction theorem, a
method that is especially used in the case where the zero equilibrium is non
hyperbolic. According to center manifold theory, we consider the system:

xn+1 = F (xn), n = 0, 1, ... (1.2)

where F : IRk → IRk is a continuous function. Let F (x∗) = x∗ be a fixed
point of F . Without loss of generality, we suppose that x∗ = 0k, where
0k is the k-dimensional zero point. Let J0 be the coefficient matrix of the
linearized equation of (1.2) at the zero fixed point. If J0 has q eigenvalues
with modulus one and m eigenvalues with modulus less than one, with
q +m = k, then system (1.2) can be transformed in the form:

H(u, u1) = (Au+ f(u, u1), Bu+ g(u, u1)) (1.3)

where H : IRq+m → IRq+m, u ∈ IRq, u1 ∈ IRm, A is an q × q matrix with
eigenvalues lying on the unit circle, B is an m×m matrix with eigenvalues
lying inside the unit circle, f : IRk → IRq, g : IRk → IRm are C2 functions
with f , g and their first order derivatives are zero at the origin, and

J =

[
A 0
0 B

]
is the Jacobian matrix of system (1.3). Then, according to Theorem 6 in
[39] there is a center manifold h : IRq → IRm for H, with h(0q) = 0m,
Dh(0q) = 0m×q, where 0m×q the m × q zero matrix, and u1 = h(u). The
map h can be determined by the equation:

h(Au+ f(u, h(u))) = Bh(u) + g(u, h(u)) (1.4)

and the asymptotic behavior of the zero solution of (1.2) corresponds to the
asymptotic behavior of the zero solution of:

un+1 = Aun + f(un, h(un)) (1.5)

as is proved in Theorem 8 in [39].
The corresponding investigation of the stability of zero equilibrium of

system (1.1) is conducted in the special case when one eigenvalue of the
characteristic equation of the linearized system is equal to -1 and the abso-
lute value of the other eigenvalues is less than 1. In a discrete dynamical
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system the existence of an eigenvalue with value equal to -1 corresponds to
the existence of flip bifurcation under certain conditions. In Kuznetsov [40]
it is entirely analyzed the normal form of flip bifurcation. Moreover, in [35]
it is studied the existence of flip bifurcation in a two dimensional discrete
system using normal form analysis.

According to bifurcation theory, the one dimensional dynamical system
depending on one parameter β:

η → −(1 + β)η + ση3 (1.6)

where σ = ±1, undergoes flip bifurcation.
For σ = 1, the zero fixed point is linearly stable for small |β| in a neigh-

borhood of the origin with β < 0 and linearly unstable for β > 0. At β = 0
the equilibrium is non hyperbolic but is, nevertheless, non-linearly stable.
Furthermore, for β > 0 there is a stable period-two cycle, which disappears
as β approaches zero from above, and thus, a supercritical flip bifurcation
occurs.

For σ = −1, the zero fixed point is linearly stable for small |β| with β < 0
and linearly unstable for β > 0, but at β = 0 the equilibrium is unstable.
Moreover, an unstable period-two cycle reveals for β < 0, which disappears
at β = 0 and a subcritical flip bifurcation takes place.

In addition, on Theorem 4.3 in [40] are given the nondegeneracy condi-
tions under which an one dimensional system can be transformed into the
form of (1.6).

At last, in our study we apply center manifold theory to reduce the
three dimensional system (1.1) to a corresponding one dimensional difference
equation and afterwards we apply normal form analysis to investigate flip
bifurcation on one parameter.

2 Stability of zero equilibrium of System (1.1)

In what follows, we prove the stability of the zero equilibrium of the system
(1.1), using center manifold theory.

Proposition 2.1 Let p1 be a real negative constant, p2, p3 be real positive
constants such that

0 < p3 <
1

3
(−1 +

√
10), (2.1)

max

{
0,

1

2
(−1− p3) +

1

2

√
−3p23 − 2p3 + 3

}
< p2 <

1

4
(−1−2p3)+

1

4

√
−12p23 − 4p3 + 17,

(2.2)
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max

{
−1− p2 − p3,

−1− p2p3
p2 + p3

}
< p1 <

−3
2 − p2 − p3 − p2p3

1 + p2 + p3
(2.3)

then, the equation

λ2 − (1 + p1 + p2 + p3)λ+ 1 + p1 + p2 + p3 + p1p2 + p1p3 + p2p3 = 0 (2.4)

has two real roots λ2, λ3 such that |λ2| < 1 and |λ3| < 1.

Proof. Firstly, we prove that

max

{
0,

1

2
(−1− p3) +

1

2

√
−3p23 − 2p3 + 3

}
<

1

4
(−1−2p3)+

1

4

√
−12p23 − 4p3 + 17

(2.5)
and

max

{
−1− p2 − p3,

−1− p2p3
p2 + p3

}
<
−3

2 − p2 − p3 − p2p3
1 + p2 + p3

. (2.6)

Relation (2.1) implies that −3p23 − 2p3 + 3 > 0. Moreover since,

1

3
(−1 +

√
10) <

1

6
(−1 + 2

√
13),

from (2.1) we have that −12p23 − 4p3 + 17 > 0.
Using (2.1) and since

1

3
(−1 +

√
10) <

1

4
(−1 +

√
17),

we can easily prove that 0 < 1
4(−1− 2p3) + 1

4

√
−12p23 − 4p3 + 17. Further-

more, since (2.1) holds, the inequality

1

2
(−1− p3) +

1

2

√
−3p23 − 2p3 + 3 <

1

4
(−1− 2p3) +

1

4

√
−12p23 − 4p3 + 17

it true. Therefore, (2.5) are satisfied.
We prove now (2.6). We have that for p2, p3 positive numbers, inequality

−1− p2 − p3 <
−3

2 − p2 − p3 − p2p3
1 + p2 + p3

is equivalent to

p22 + (1 + p3)p2 + p23 + p3 −
1

2
> 0
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which is true since (2.2) holds. Moreover, inequality

−1− p2p3
p2 + p3

<
−3

2 − p2 − p3 − p2p3
1 + p2 + p3

is equivalent to

p22 + (
1

2
+ p3)p2 + p23 +

1

2
p3 − 1 < 0

which holds since relation (2.2) is satisfied. Hence, (2.6) are true.
Followingly, we prove that equation (2.4) has two real roots with absolute

value less than 1. Firstly, we prove that ∆ > 0, where

∆ = (1 + p1 + p2 + p3)
2 − 4(1 + p1 + p2 + p3 + p1p2 + p1p3 + p2p3)

the discriminant of (2.4). It holds that ∆ > 0 when 3 + 2p1 + 2p2 + 2p3 +
2p1p2 + 2p1p3 + 2p2p3 < 0 or equivalently

p1 <
−3

2 − p2 − p3 − p2p3
1 + p2 + p3

(2.7)

for p2, p3 positive numbers, which is true since (2.3) is satisfied. Further,
the roots of (2.4) have absolute value less than 1, if and only if

|1 + p1 + p2 + p3| < 2 + p1 + p2 + p3 + p1p2 + p1p3 + p2p3 < 2. (2.8)

Inequality (2.8) is equivalent with the following three inequalities:

1 + p1 + p2 + p3 < 2 + p1 + p2 + p3 + p1p2 + p1p3 + p2p3

or
−1− p2p3
p2 + p3

< p1

which is true from (2.3),

−2− p1 − p2 − p3 − p1p2 − p1p3 − p2p3 < 1 + p1 + p2 + p3

or
0 < 2(1 + p1 + p2 + p3) + (1 + p1p2 + p1p3 + p2p3)

which holds when

max

{
−1− p2 − p3,

−1− p2p3
p2 + p3

}
< p1

7



which is true from (2.3), and lastly,

2 + p1 + p2 + p3 + p1p2 + p1p3 + p2p3 < 2

or

p1 <
−p2 − p3 − p2p3

1 + p2 + p3

which is true from (2.3). Therefore, the equation (2.4) has two real roots
with absolute value less than 1.

Proposition 2.2 Consider system (1.1) where a1, b1, b2, c2, b3, c3 are real
positive constants, c1, a2, a3 are real negative constants and k1, k2, k3, d1,
d2, d3 are real constants. Let

p1 = c1
ek1

1 + ek1
, p2 = c2

ek2

1 + ek2
, p3 = c3

ek3

1 + ek3
(2.9)

satisfy (2.1), (2.2), (2.3) and

b3 = − a1a2a3
(1 + p1)(1 + p2)(1 + p3)b1b2

. (2.10)

If in addition b1, d1 ∈ (−ε, ε), where ε is a sufficiently small positive number,
then, the zero equilibrium of (1.1) is asymptotically stable.

Proof. At first, we can easily verify that the zero point (xn, yn, zn) =
(0, 0, 0) is a fixed point of system (1.1). System (1.1) can be written as
follows:  xn+1

yn+1

zn+1

 = J0

 xn
yn
zn

+

 f1(xn, yn, zn)
f2(xn, yn, zn)
f3(xn, yn, zn)

 , (2.11)

where

J0 =


c1ek1

1+ek1
a1
b1

0

0 c2ek2

1+ek2
a2
b2

a3
b3

0 c3ek3

1+ek3


is the Jacobian matrix calculated at the zero equilibrium and

f1(x, y, z) =
a1
b1
y

(
b1

b1 + y
− 1

)
+ c1x

(
ek1−d1x

1 + ek1−d1x
− ek1

1 + ek1

)
,

f2(x, y, z) =
a2
b2
z

(
b2

b2 + z
− 1

)
+ c2y

(
ek2−d2y

1 + ek2−d2y
− ek2

1 + ek2

)
,
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f3(x, y, z) =
a3
b3
x

(
b3

b3 + x
− 1

)
+ c3z

(
ek3−d3z

1 + ek3−d3z
− ek3

1 + ek3

)
.

The characteristic equation of J0 is

λ3− (p1 + p2 + p3)λ
2 + (p1p2 + p1p3 + p2p3)λ− p1p2p3−

a1a2a3
b1b2b3

= 0. (2.12)

If (2.10) holds, equation (2.12) has a solution λ1 = −1. Then, we can write
(2.12) as

(λ+ 1)(λ2− (1 + p1 + p2 + p3)λ+ 1 + p1 + p2 + p3 + p1p2 + p1p3 + p2p3) = 0.

Hence, from Proposition 2.1, the other two eigenvalues λ2, λ3 of J0 satisfy
|λ2| < 1 and |λ3| < 1. We assume that λ3 > λ2.
We let now  xn

yn
zn

 = T

 un
vn
wn

 ,
where T is the matrix that diagonalises J0 defined by

T =

 1 1 1
r1 r2 r3
s1 s2 s3

 (2.13)

where

r1 = − b1
a1

(p1 + 1) , r2 = − b1
a1

(p1 − λ2) , r3 = − b1
a1

(p1 − λ3) ,
s1 = b1b2

a1a2
(p1 + 1) (p2 + 1) , s2 = b1b2

a1a2
(p1 − λ2) (p2 − λ2) ,

s3 = b1b2
a1a2

(p1 − λ3) (p2 − λ3) .
(2.14)

Thus,

T−1 =
1

R

 r2s3 − r3s2 s2 − s3 r3 − r2
r3s1 − r1s3 s3 − s1 r1 − r3
r1s2 − r2s1 s1 − s2 r2 − r1

 =

 t11 t12 t13
t21 t22 t23
t31 t32 t33


where

t11 =
(p1 − λ2)(p1 − λ3)
(1 + λ2)(1 + λ3)

, t12 =
a1(p1 + p2 − λ2 − λ3)
b1(1 + λ2)(1 + λ3)

, t13 =
a1a2

b1b2(1 + λ2)(1 + λ3)
,

t21 =
(1 + p1)(p1 − λ3)
(1 + λ2)(λ2 − λ3)

, t22 =
a1(p1 + p2 − λ3 + 1)

b1(1 + λ2)(λ2 − λ3)
, t23 =

a1a2
b1b2(1 + λ2)(λ2 − λ3)

,
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t31 =
(1 + p1)(p1 − λ2)
(1 + λ3)(λ3 − λ2)

, t32 =
a1(1 + p1 + p2 − λ2)
b1(λ3 − λ2)(1 + λ3)

, t33 =
a1a2

b1b2(λ3 − λ2)(1 + λ3)

(2.15)

and

R = −r2s1+r3s1+r1s2−r3s2−r1s3+r2s3 =
b21b2(1 + λ2)(λ3 − λ2)(1 + λ3)

a21a2
6= 0

the determinant of T . Then, (2.11) can be written as un+1

vn+1

wn+1

 =

 −1 0 0
0 λ2 0
0 0 λ3


 un
vn
wn

+

 f̄1(un, vn, wn)
f̄2(un, vn, wn)
f̄3(un, vn, wn)

 , (2.16)

where f̄1, f̄2 and f̄3 derive from the product

T−1

 f1(xn(un, vn, wn), yn(un, vn, wn), zn(un, vn, wn))
f2(xn(un, vn, wn), yn(un, vn, wn), zn(un, vn, wn))
f3(xn(un, vn, wn), yn(un, vn, wn), zn(un, vn, wn))


and are equal to

f̄i(u, v, w) = ti1

(
a1
b1

(r1u+ r2v + r3w)
(

b1
b1+r1u+r2v+r3w

− 1
)

+

c1 (u+ v + w)
(

ek1−d1(u+v+w)

1+ek1−d1(u+v+w) − ek1

1+ek1

))
+

ti2

(
a2
b2

(s1u+ s2v + s3w)
(

b2
b2+s1u+s2v+s3w

− 1
)

+

c2 (r1u+ r2v + r3w)
(

ek2−d2(r1u+r2v+r3w)

1+ek2−d2(r1u+r2v+r3w) − ek2

1+ek2

))
+

ti3

(
a3
b3

(u+ v + w)
(

b3
b3+u+v+w

− 1
)

+

c3 (s1u+ s2v + s3w)
(

ek3−d3(s1u+s2v+s3w)

1+εk3−d3(s1u+s2v+s3w) − ek3

1+ek3

))
for i = 1, 2, 3 .

For A = −1, B =

[
λ2 0
0 λ3

]
, u1 = (v, w) and the C2 functions

f(u, u1) = f̄1(u, u1), g(u, u1) =

[
f̄2(u, u1)
f̄3(u, u1)

]
,
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with f(0, 02) = 0, g(0, 02) = (0, 0)T and Df(0, 02) = 03, Dg(0, 02) = 02×3,
where 0i is the i-dimensional zero vector and 0i×j is the i × j zero matrix,
there exists a center manifold h : IR → IR2 with h(0) = 0, h′(0) = (0, 0)T

and u1 = h(u). We let

h(u) =

[
ψ1(u) +O(u4)
ψ2(u) +O(u4)

]
,

where ψ1(u) = C1u
2+C2u

3, ψ2(u) = D1u
2+D2u

3 and ψ(u) = (ψ1(u), ψ2(u)).
The use of ψ(u) as an approximation of h(u) is justified by Theorem 7 in
[39] . Consequently, according to Theorem 8 in [39] the asymptotic behavior
of small solutions of system (1.1) corresponds to the asymptotic behavior of
the zero equilibrium of the equation:

un+1 = −un + f̄1(un, ψ(un)) = G(un) (2.17)

where

f̄1(un, ψ(un)) = t11

(
a1
b1

(r1un + r2ψ1(un) + r3ψ2(un))
(

b1
b1+r1un+r2ψ1(un)+r3ψ2(un)

− 1
)

+

c1 (un + ψ1(un) + ψ2(un))
(

ek1−d1(un+ψ1(un)+ψ2(un))

1+ek1−d1(un+ψ1(un)+ψ2(un)) − ek1

1+ek1

))
+

t12

(
a2
b2

(s1un + s2ψ1(un) + s3ψ2(un))
(

b2
b2+s1un+s2ψ1(un)+s3ψ2(un)

− 1
)

+

c2 (r1un + r2ψ1(un) + r3ψ2(un))
(

ek2−d2(r1un+r2ψ1(un)+r3ψ2(un))

1+ek2−d2(r1un+r2ψ1(un)+r3ψ2(un)) − ek2

1+ek2

))
+

t13

(
a3
b3

(un + ψ1(un) + ψ2(un))
(

b3
b3+un+ψ1(un)+ψ2(un)

− 1
)

+

c3 (s1un + s2ψ1(un) + s3ψ2(un))
(

ek3−d3(s1un+s2ψ1(un)+s3ψ2(un))

1+εk3−d3(s1un+s2ψ1(un)+s3ψ2(un)) − ek3

1+ek3

))
.

To determine the center manifold h(u), we conclude from (1.4) that the
map h must satisfy the equation:

h(−u+ f̄1(u, h(u))) =

[
λ2 0
0 λ3

]
h(u) +

[
f̄2(u, h(u))
f̄3(u, h(u))

]
. (2.18)
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Keeping the terms up to u3, from (2.18), we obtain:

C1 =
1

1− λ2

(
−t21a1r21

b21
− t21d1p1(c1 − p1)

c1
− t22a2s

2
1

b22
− t22r

2
1d2p2(c2 − p2)

c2

− t23a3
b23
− t23s

2
1d3p3(c3 − p3)

c3

)
,

(2.19)

D1 =
1

1− λ3

(
−t31a1r21

b21
− t31d1p1(c1 − p1)

c1
− t32a2s

2
1

b22
− t32r

2
1d2p2(c2 − p2)

c2

− t33a3
b23
− t33s

2
1d3p3(c3 − p3)

c3

)
.

(2.20)
Thus, from (2.17),(2.19) and (2.20) we conclude that G′(0) = −1 and

G′′′(0) = t11

(
6
a1r1
b21

(
−2M1 +

r21
b1

)
+

3(c1 − p1)p1d1
c1

(
−d1(2p1 − c1)

c1
− 4M2

))
+

t12

(
6
a2s1
b22

(
−2M3 +

s21
b2

)
+

3(c2 − p2)p2d2r1
c2

(
−d2(2p2 − c2)r

2
1

c2
− 4M1

))
+

t13

(
6
a3
b23

(
−2M2 +

1

b3

)
+

3(c3 − p3)p3d3s1
c3

(
−d3(2p3 − c3)s

2
1

c3
− 4M3

))
(2.21)

where

M1 = C1r2 +D1r3, M2 = C1 +D1, M3 = C1s2 +D1s3. (2.22)

Then, from (2.10), (2.14), (2.15), (2.21) and (2.22) we can write G′′′(0)
as follows:

G′′′(0) = Φ1b
2
1 + Φ2b1 + Φ3 (2.23)

and Φ1, Φ2, Φ3 are continuous functions of a1, a2, a3, b2, c1, c2, c3, d1, d2,
d3, k1, k2 and k3.

Moreover, we can write Φ3 as follows:

Φ3 = φ1d
2
1 + φ2d1 + φ3 (2.24)
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where

φ1 = 3p1(c1−p1)(p1−λ2)(p1−λ3)
c1(1+λ2)(1+λ3)

(
1− 2p1

c1
+

4p1(1+p1)(c1−p1)(1+p1λ2−λ22+p1λ3−λ2λ3−λ
2
3)

c1(−1+λ22)(−1+λ
2
3)

)
,

φ2 = 12p1(c1−p1)(1+p1)2(p1−λ2)(p1−λ3)
(1+λ2)(1+λ3)

(
(p1−λ2)(p1−λ3)(λ2+λ3)
a1c1(−1+λ22)(−1+λ

2
3)

+

(1+p1)(1+p1λ2−λ22+p1λ3−λ2λ3−λ
2
3)

a1c1(−1+λ22)(−1+λ
2
3)

)
,

φ3 = (λ2−p1)(λ3−p1)
(1+λ2)(1+λ3)

(
−6(1+p1)3

a21
+ 12(1+p1)4(λ2−p1)(λ3−p1)(λ2+λ3)

a21(λ
2
2−1)(λ

2
3−1)

)
.

Consequently, fixing a1, a2, a3, b2, c1, c2, c3, d2, d3, k1, k2, k3 satisfying
(2.1), (2.2), (2.3), (2.10) and by using (2.23), (2.24), G′′′(0) can be written
as a continuous function of b1 and d1 as follows:

G′′′(0) = K(b1, d1) = Φ1b
2
1 + Φ2b1 + φ1d

2
1 + φ2d1 + φ3. (2.25)

Now, we will prove that φ3 > 0. From (2.1), (2.2), (2.3) we have that
|λ2| < 1 and |λ3| < 1, where λ2, λ3 are the roots of equation (2.4). Thus,
(1 + λ2)(1 + λ3) > 0 and (λ22 − 1)(λ23 − 1) > 0. Furthermore, from (2.3) we
can easily prove that p1 < −1, so, (λ2 − p1)(λ3 − p1) > 0 and (1 + p1)

3 < 0,
where p1 is given in (2.9). Moreover, as λ2 and λ3 are the solutions of (2.4),
we have that λ2 + λ3 = 1 + p1 + p2 + p3 > 0 because p1 > −1 − p2 − p3
from (2.3), where p2, p3 are given in (2.9). So, we proved that φ3 > 0 under
relations (2.1), (2.2), (2.3).

In conclusion, we have that K(0, 0) = φ3 > 0. Since K is a continuous
function, there exists a sufficiently small positive ε such that for |b1| < ε,
|d1| < ε we have K(b1, d1) > 0. This implies that for b1, d1 ∈ (−ε, ε) we
have G′′′(0) > 0. Hence, SG(0) < 0, where

SG(0) = −G′′′(0)− 3

2
(G′′(0))2

the Schwarzian derivative of G at u = 0.
Thus, we proved that G′(0) = −1 and SG(0) < 0. This implies that

the zero equilibrium of scalar equation (2.17) is asymptotically stable (see
Theorem 1.6, [55]). Consequently, the zero equilibrium of system (1.1) is
asymptotically stable.

3 Flip Bifurcation of System (1.1)

In this section we discuss the sufficient conditions for the existence of flip
bifurcation of system (1.1) occurring at zero equilibrium for the bifurcation

13



parameter a1, using the center manifold reduction theorem and the normal
form bifurcation analysis. At first, we define:

A1 = 2

(
d1p1(p1−c1)t11

c1
− a0r21t11

b21
+

d2p2r21(p2−c2)t12
c2

−
a2s21t12
b22
− b21b

2
2(1+p1)

2(1+p2)2(1+p3)2t13
a20a

2
2a3

− d3p3s21(c3−p3)t13
c3

)
,

(3.1)

A2 = 3

(
d1p1(c1−p1)(c1(d1−4M5)−2d1p1)t11

c21
+

2a0r1(r21−2b1M4)t11
b31

+

d2p2r1(c2−p2)(c2d2r21−2d2p2r
2
1−4M4c2)t12

c22
+

2a2s1(s21−2M6b2)t12
b32

−
2b21b

2
2(1+p1)

2(1+p2)2(1+p3)2(2a0a2a3M5+b1b2(1+p1)(1+p2)(1+p3))t13
a30a

3
2a

2
3

+

d3p3s1(c3−p3)(c3d3s21−2d3p3s
2
1−4M6c3)t13

c23

) (3.2)

where p1, p2, p3 are given in (2.9),

M4 = C2r2 +D2r3, M5 = C2 +D2, M6 = C2s2 +D2s3, (3.3)

C1 = − r1t21
b1(1+λ2)

, D1 = − r1t31
b1(1+λ3)

,

C2 = 1
1−λ2

((
d1p1(p1−c1)

c1
− a0r21

b21

)
t21 −

(
d2p2r21(c2−p2)

c2
+

a2s21
b22

)
t22−(

b21b
2
2(1+p1)

2(1+p2)2(1+p3)2

a20a
2
2a3

+
d3p3s21(c3−p3)

c3

)
t23

)
,

D2 = 1
1−λ3

((
d1p1(p1−c1)

c1
− a0r21

b21

)
t31 −

(
d2p2r21(c2−p2)

c2
+

a2s21
b22

)
t32−(

b21b
2
2(1+p1)

2(1+p2)2(1+p3)2

a20a
2
2a3

+
d3p3s21(c3−p3)

c3

)
t33

)
,

(3.4)

r1 = − b1
a0

(p1 + 1) , r2 = − b1
a0

(p1 − λ2) , r3 = − b1
a0

(p1 − λ3) ,
s1 = b1b2

a0a2
(p1 + 1) (p2 + 1) , s2 = b1b2

a0a2
(p1 − λ2) (p2 − λ2) ,

s3 = b1b2
a0a2

(p1 − λ3) (p2 − λ3) ,
(3.5)

t11 = (p1−λ2)(p1−λ3)
(1+λ2)(1+λ3)

, t12 = a0(p1+p2−λ2−λ3)
b1(1+λ2)(1+λ3)

, t13 = a0a2
b1b2(1+λ2)(1+λ3)

,

t21 = (1+p1)(p1−λ3)
(1+λ2)(λ2−λ3) , t22 = a0(p1+p2−λ3+1)

b1(1+λ2)(λ2−λ3) , t23 = a0a2
b1b2(1+λ2)(λ2−λ3) ,

t31 = (1+p1)(p1−λ2)
(1+λ3)(λ3−λ2) , t32 = a0(1+p1+p2−λ2)

b1(λ3−λ2)(1+λ3) , t33 = a0a2
b1b2(λ3−λ2)(1+λ3) .

(3.6)

Proposition 3.1 Under conditions of Propositions 2.1 and 2.2, if

1

2
A2

1 +
1

3
A2 6= 0 (3.7)
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and a1 = a0 + ε0, where ε0 is a small parameter, the system (1.1) undergoes
a supercritical flip bifurcation near zero fixed point, which is stable for ε0 ≥ 0
and unstable for ε0 < 0. Moreover, a stable period-two cycle exists for small
|ε0| with ε0 < 0 and disappears as ε0 approaches zero.

Proof. Consider the system (1.1), where a1 = a0 + ε0 is the bifurcation
parameter. The system (1.1) can be written as: xn+1

yn+1

zn+1

 = J0

 xn
yn
zn

+

 f1(xn, yn, zn, ε0)
f2(xn, yn, zn, ε0)
f3(xn, yn, zn, ε0)

 , (3.8)

where

J0 =


c1ek1

1+ek1
a0
b1

0

0 c2ek2

1+ek2
a2
b2

a3
b3

0 c3ek3

1+ek3


is the Jacobian matrix of the system at (x, y, z, ε0) = (0, 0, 0, 0) and

f1(x, y, z, ε0) =
a0
b1
y

(
b1

b1 + y
− 1

)
+ε0

y

b1 + y
+c1x

(
ek1−d1x

1 + ek1−d1x
− ek1

1 + ek1

)
,

f2(x, y, z, ε0) =
a2
b2
z

(
b2

b2 + z
− 1

)
+ c2y

(
ek2−d2y

1 + ek2−d2y
− ek2

1 + ek2

)
,

f3(x, y, z, ε0) =
a3
b3
x

(
b3

b3 + x
− 1

)
+ c3z

(
ek3−d3z

1 + ek3−d3z
− ek3

1 + ek3

)
.

When (2.10) holds, for a1 = a0, the characteristic equation (2.12) of J0
has a root λ1 = −1. Moreover, if λ2, λ3 are the other two roots of (2.12) with
|λ2| 6= 1 and |λ3| 6= 1, then a flip bifurcation occurs for the non-hyperbolic
zero equilibrium point. In Proposition 2.1 we proved that when (2.1), (2.2),
(2.3) hold, then |λ2| < 1, |λ3| < 1.

We diagonalize the matrix J0, applying the coordinate transformation
(x, y, z)′ = T (u, v, z)′, where T is given in (2.13) and ri, si, i = 1, 2, 3 in
(3.5). Thus, the system (3.8) is written as: un+1

vn+1

wn+1

 =

 −1 0 0
0 λ2 0
0 0 λ3


 un
vn
wn

+

 f̄1(un, vn, wn, ε0)
f̄2(un, vn, wn, ε0)
f̄3(un, vn, wn, ε0)

 , (3.9)
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where

f̄1(u, v, w, ε0) = t11

(
a0
b1

(r1u+ r2v + r3w)
(

b1
b1+r1u+r2v+r3w

− 1
)

+

ε0
r1u+r2v+r3w

b1+r1u+r2v+r3w
+ c1 (u+ v + w)

(
ek1−d1(u+v+w)

1+ek1−d1(u+v+w) − ek1

1+ek1

))
+

t12

(
a2
b2

(s1u+ s2v + s3w)
(

b2
b2+s1u+s2v+s3w

− 1
)

+

c2 (r1u+ r2v + r3w)
(

ek2−d2(r1u+r2v+r3w)

1+ek2−d2(r1u+r2v+r3w) − ek2

1+ek2

))
+

t13

(
a3
b3

(u+ v + w)
(

b3
b3+u+v+w

− 1
)

+

c3 (s1u+ s2v + s3w)
(

ek3−d3(s1u+s2v+s3w)

1+εk3−d3(s1u+s2v+s3w) − ek3

1+ek3

))

and

f̄i(u, v, w, ε0) = ti1

(
a0
b1

(r1u+ r2v + r3w)
(

b1
b1+r1u+r2v+r3w

− 1
)

+

c1 (u+ v + w)
(

ek1−d1(u+v+w)

1+ek1−d1(u+v+w) − ek1

1+ek1

))
+

ti2

(
a2
b2

(s1u+ s2v + s3w)
(

b2
b2+s1u+s2v+s3w

− 1
)

+

c2 (r1u+ r2v + r3w)
(

ek2−d2(r1u+r2v+r3w)

1+ek2−d2(r1u+r2v+r3w) − ek2

1+ek2

))
+

ti3

(
a3
b3

(u+ v + w)
(

b3
b3+u+v+w

− 1
)

+

c3 (s1u+ s2v + s3w)
(

ek3−d3(s1u+s2v+s3w)

1+εk3−d3(s1u+s2v+s3w) − ek3

1+ek3

))

for i = 2, 3 .
To apply the center manifold theorem depending on parameter ε0 we

increase the number of equations by writing the system (3.9) in the form:
un+1

ε0n+1

vn+1

wn+1

 =


−1 0 0 0
0 1 0 0
0 0 λ2 0
0 0 0 λ3



−un
ε0n
λ2vn
λ3wn

+


f̄1(un, vn, wn, ε0)

0
f̄2(un, vn, wn, ε0)
f̄3(un, vn, wn, ε0)

 .
(3.10)
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As |λ2,3| 6= 1 and f̄i, i = 1, 2, 3 are C2 functions with f̄i(0, 0, 0, 0) = 0 and
Df̄i(0, 0, 0, 0) = 04, where 04 the 4-dimensional zero vector, there is a center
manifold Mc with the form:

Mc =

{
(u, ε0, v, w) : (v, w)T = h(u, ε0), |u| < δ1, |ε0| < δ2, h(0, 0) = (0, 0)T , Dh(0, 0) = 02×2,
for sufficiently small δ1 and δ2

}
where

h(u, ε0) =

[
ψ1(u, ε0) +O(ε20) +O(u4),
ψ2(u, ε0) +O(ε20) +O(u4)

]
,

and
ψ1(u, ε0) = C1ε0u+ C2u

2 + C3ε0u
2 + C4u

3

ψ2(u, ε0) = D1ε0u+D2u
2 +D3ε0u

2 +D4u
3

for small ε0. We can determine h(u, ε0) applying (1.4):

h(−u+ f̄1(u, h(u, ε0), ε0), ε0) =

[
λ2 0
0 λ3

]
h(u, ε0) +

[
f̄2(u, h(u, ε0), ε0)
f̄3(u, h(u, ε0), ε0)

]
.

(3.11)
Keeping the terms up to the third order and comparing the coefficients

of ε0u, u2, ε0u
2, u3, from (3.11), we obtain the constants Ci and Di, i =

1, 2, 3, 4.
According to Theorem 5.1 in [55] the dynamics restricted to Mc are given

locally by the smooth map G : IR2 → IR

G(un, ε0) = −un + f̄1(un, h(u, ε0), ε0). (3.12)

The map G can be written in a neighborhood of (un, ε0) = (0, 0) as F :
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IR2 → IR with

F (u, ε0) = −u+ r1t11
b1

ε0u+

(
d1p1(p1−c1)t11

c1
− a0r21t11

b21
+

d2p2r21(p2−c2)t12
c2

−
a2s21t12
b22
− b21b

2
2(1+p1)

2(1+p2)2(1+p3)2t13
a20a

2
2a3

− d3p3s21(c3−p3)t13
c3

)
u2+

2

(
M2d1p1(p1−c1)t11

c1
− r21t11

2b21
+ M4t11

2b1
− M1a0r1t11

b21
+ M1d2p2r1(p2−c2)t12

c2
− M3a2s1t12

b22
−

M2b21b
2
2(1+p1)

2(1+p2)2(1+p3)2t13
a20a

2
2a3

− M3d3p3s1(c3−p3)t13
c3

)
ε0u

2+

1
2

(
d1p1(c1−p1)(c1(d1−4M5)−2d1p1)t11

c21
+

2a0r1(r21−2b1M4)t11
b31

+

d2p2r1(c2−p2)(c2d2r21−2d2p2r
2
1−4M4c2)t12

c22
+

2a2s1(s21−2M6b2)t12
b32

−
2b21b

2
2(1+p1)

2(1+p2)2(1+p3)2(2a0a2a3M5+b1b2(1+p1)(1+p2)(1+p3))t13
a30a

3
2a

2
3

+

d3p3s1(c3−p3)(c3d3s21−2d3p3s
2
1−4M6c3)t13

c23

)
u3 +O(ε20) +O(u4)

(3.13)
where M1, M2, M3 are given in (2.22), M4, M5, M6 in (3.7), C1, C2, D1,
D2 in (3.4) and ri, si, tij , i, j = 1, 2, 3 in (3.5) and (3.6) respectively.

We can easily verify that F (0, 0) = 0, Fu(0, 0) = −1,

Fuε0(0, 0) = r1t11
b1

= − (1+p1)(p1−λ2)(p1−λ3)
a0(1+λ2)(1+λ3)

6= 0,

Fuu(0, 0) = A1, Fuuu(0, 0) = A2

where A1 and A2 are given in (3.1) and (3.2) respectively. Thus, as (3.7)
holds, the non-degeneracy conditions (B.1) and (B.2) of Theorem 4.3 in [40]:

(B.1) 1
2(Fuu(0, 0))2 + 1

3Fuuu(0, 0) 6= 0

(B.2) Fuε0(0, 0) 6= 0

are satisfied. Consequently, the dynamic behavior of system (1.1) is equiva-
lent to the dynamic behavior of the one dimensional dymanical system (1.6),
where

β =
(1 + p1)(p1 − λ2)(p1 − λ3)

a0(1 + λ2)(1 + λ3)
ε0

with σ = ±1, the sign of 1
2(Fuu(0, 0))2 + 1

3Fuuu(0, 0).

Finally, under the conditions of Propositions 2.1 and 2.2, we have that
(1 +p1)(p1−λ2)(p1−λ3)/(a0(1 +λ2)(1 +λ3)) < 0, so the zero fixed point is
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stable for small ε0 > 0 and unstable for ε0 < 0. In Proposition 2.2 we proved
that the zero fixed point is stable for ε0 = 0. Consequently, a supercritical
flip bifurcation occurs, as the stable period-two cycle, that exists for small
ε0 < 0, disappears as ε0 approaches zero.
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