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1  Preface and Show 

The topic of FFDEs is frequently used as models to describe uncertain complex dynamic processes and uncertain 

physical phenomenon in various branches of engineering sciences and applied mathematical sciences [1-5]. To 

understand comprehensively the mechanism of uncertain physical phenomena defined by fuzzy fractional 

calculus; we must have to determine their analysis and theories in the fuzzy setting. Anyhow, seeking the 

solutions of FFDEs has now become a blistering subject in modern uncertain science research due to its large 

application fields. Recently, several approaches have been made for defining and solving FFDEs by a diverse 

group of scientists depending on Riemann-Liouville, Caputo-Liouville, or conformable issues [6-10]. The most 

common weakness among those qualifiers is collected in singularity, nonlocality, or limit entity. Now, no one 

dismisses that, the ultimate normal definition ought to hail from the real-world miracles that have been 

formulated from uncertain fractional dynamic patterns. To transact of these reversals, a novel version of FFDEs 

instituted on fuzzy ABC fractional derivative is used to build and formulate new concretes fuzzy mathematical 

concepts. This new fuzzy fractional ABC derivative seems to be liberating of singularity, nonlocality, or limit 

entity; because the kernel function depends on the wilderness exponential decay which makes FFDEs more 

pragmatic in formulating various uncertain physical models [11-21]. 

In this manuscript, a new kind of FFDEs derivable from ABC fractional calculus theory is constructed based 

on a new extended type of FSGD. After that, the RKHSM is developed for the first time in the fuzzy ABC setting to 

finding numerical solutions for such fuzzy differential issues. To justify more, those analyses appointed the 

discussions on the following underlying FFIVP: 
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{
𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 𝒰.
 (1) 

In this scope, we will symbolize the following underlying icons: 𝒯 ≔ [0,1], 𝑡 ∈ 𝒯, 𝒰 ∈ ℱ(ℝ), 𝛼 ∈ (0,1], ℱ(ℝ) 

the set of fuzzy numbers on ℝ, and 𝒟𝛼𝓍(𝑡)0
𝐴𝐵𝐶  the fuzzy ABC fractional derivative of 𝓍 in 𝑡 over 𝒯. Whilst, 

{
𝓍: 𝒯 → ℱ(ℝ),
𝒻: 𝒯 × ℱ(ℝ) → ℱ(ℝ).

 (2) 

A quick overview of the reproducing kernel results can be viewed from [22-24] and an overview of its 

application fields can be collected from [25-41]. This modern numerical method is based on its structure on 

pointwise evaluation, successive approximations, and the Green functions approach. The RKHSM major territory 

topic is in numerical simulation of multidimensional problems engender in applied mathematics and engineering 

researches. Anyhow, properties, characteristics, results on the RKHSM can be viewed and collected with huge 

acquaintances from [22-41]. 

In contract of the preface and show, the enduring sections are synopsized sequentially as follows: the 

principal results: fuzzy calculus and ABC fractional calculus; fuzzy ABC fractional derivative: rules and 

formulation; fuzzy ABC FFDEs: structures and tools; requirement tools of the RKHSM: appropriate spaces and 

independency; representation of fuzzy ABC solutions: fuzzy ABC analytical and numerical solutions; convergence 

and error frameworks: ensuring and exists of fuzzy ABC solutions; algorithms and packages: construct fuzzy ABC 

solutions and Mathematica software; fuzzy applications on ABC FFIVPs: fuzzy ABC resistance-inductance circuit 

and fuzzy ABC FFIVP with fuzzy forcing term; results, analysis, and talks: tables and figures; ultimately, highlight 

and future research. 

2  Principal Results 

The contents of this segment are portioned into two slices; the first one is about the fuzzy calculus in its 

traditional form, whilst the results of the crisp ABC fractional approach are the tenor of the last one. The 

theoretical results about the fuzzy calculus in its integral form can be viewed from [42-46], whilst, the ABC tactic 

in its crisp theory is examined upon with its certain properties heavily and strongly in the latest times as viewed 

from [11-21]. 

Principally, a fuzzy set 𝒰 in ℝ can be distinguished by its membership task as 𝒰: Χ ⊂ ℝ → ℐ: [0,1]. 

Fundamental analytic properties of fuzzy sets such as convexity, upper semicontinuous, normal, and boundedness 

support can be collected in detail from [42]. The 𝓇-cut impersonation play an important and fundamental role in 

the fuzzy analysis approach, anyhow, ∀𝓇 ∈ ℐ − {0}, set [𝒰]𝓇 = {𝑠 ∈ ℝ|𝒰(𝑠) ≥ 𝓇} and [𝒰]0 = {𝑠 ∈ ℝ|𝒰(𝑠) > 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

So, 𝒰 ∈ ℱ(ℝ) iff [𝒰]1 ≠ 𝜙 and [𝒰]𝓇  is convex compact in ℝ [43]. Certainly, if 𝒰 ∈ ℱ(ℝ), then [𝒰]𝓇 =

[𝒰1(𝓇),𝒰2(𝓇)] providing 𝒰1(𝓇) = min{𝑠|𝑠 ∈ [𝒰]
𝓇} and 𝒰2(𝓇) = max{𝑠|𝑠 ∈ [𝒰]

𝓇}. Hither, [𝒰]𝓇  denotes the 𝓇-

cut impersonation of 𝒰 and  𝒰1𝓇 and 𝒰2𝓇 composes to 𝒰1(𝓇) and 𝒰2(𝓇), with one another. The space of all crisp 

differentiable functions on 𝒯 is symbolized by 𝒟ℝ(𝒯). 

Definition 1 [43] A fuzzy number 𝒰 is a fuzzy subset in ℝ with normal, convex, and upper semicontinuous with 

bounded support. 

Theorem 1 [43] Suppose that 𝒰1,2: ℐ → ℝ satisfy the following underlying requirements: 

i. 𝒰1 nondecreasing bounded and 𝒰2 nonincreasing bounded, 

ii. lim𝓇→ℎ−𝒰(1,2)𝓇 = 𝒰(1,2)ℎ and lim𝛼→0+𝒰(1,2)𝓇 = 𝒰(1,2)0, 

iii. 𝒰11 ≤ 𝒰21. 

Then, 𝒰:ℝ → ℐ constructed as 𝒰(𝑠) = sup{𝓇|𝒫1(𝓇) ≤ 𝑠 ≤ 𝒫2(𝓇)} belong to ℱ(ℝ) with impersonation [𝒰1𝓇 , 𝒰2𝓇]. 

Indeed, if 𝒰1,2: ℐ → ℝ belong to ℱ(ℝ) with impersonation [𝒰1𝓇 , 𝒰1𝓇], then 𝒰1,2 are satisfies the aforesaid 

conditions. 

Definition 2 [42] A mappnig 𝓍:𝒯 → ℱ(ℝ) is continuous at 𝑡∗ ∈ 𝒯, if ∀𝛾 > 0 and ∀𝑡 ∈ 𝒯, ∃𝛿 > 0 such that 

𝒟𝒽(𝓍(𝑡), 𝓍(𝑡
∗)) < 𝛾 whenever |𝑡 − 𝑡∗| < 𝛿, where 𝒟𝒽 is the Hausdorff space on ℱ(ℝ) and can viewed as 

{
 𝒟𝒽: ℱ(ℝ) × ℱ(ℝ) → ℝ+,

 𝒟𝒽(𝒰,𝒱) = sup𝓇∈ℐmax{|𝒰1𝓇 − 𝒱1𝓇|, |𝒰2𝓇 −𝒱2𝓇|}.
 (3) 
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Indeed, 𝓍 is continuous on 𝒯 if it is continuous ∀𝑡 ∈ 𝒯. 

Let 𝒰,𝒱 ∈ ℱ(ℝ), if ∃𝒲 ∈ ℱ(ℝ) satisfies 𝒰 = 𝒱 +𝒲, then 𝒲 invite as ℋ-difference of (𝒰, 𝒱) and denoted by 

𝒰⊖𝒱. Hither, ⊖ attitudes constantly for ℋ-difference. Indeed, 𝒰⊖𝒱 ≠ 𝒰 + (−1)𝒱 = 𝒰 − 𝒱 and if 𝒰⊖𝒱 

exists, then [𝒰⊖ 𝒱]𝓇 = [𝒰1𝓇 − 𝒱1𝓇 , 𝒰2𝓇 − 𝒱2𝓇]. 

Definition 3 [44] A mapping 𝓍:𝒯 → ℱ(ℝ) is FSGD at 𝑡 ∈ 𝒯, if ∃𝒟𝑡𝓍(𝑡) ∈ ℱ(ℝ) such that one of the following 

underlying requirements is achieved: 

i. ∀𝛾 > 0 small enough; the ℋ-differences 𝓍(𝑡 + 𝛾)⊖ 𝓍(𝑡) and 𝓍(𝑡)⊖ 𝓍(𝑡 − 𝛾) exist together 

𝒟𝑡𝓍(𝑡) = lim
𝛾→0+

𝓍(𝑡 + 𝛾)⊖ 𝓍(𝑡)

𝛾
 

               = lim
𝛾→0+

𝓍(𝑡)⊖ 𝓍(𝑡 − 𝛾)

𝛾
. 

(4) 

ii. ∀𝛾 > 0 small enough; the ℋ-differences 𝓍(𝑡)⊖ 𝓍(𝑡 + 𝛾) and 𝓍(𝑡 − 𝛾) ⊖ 𝓍(𝑡) exist together 

𝒟𝑡𝓍(𝑡) = lim
𝛾→0+

𝓍(𝑡)⊖ 𝓍(𝑡 + 𝛾)

−𝛾
 

               = lim
𝛾→0+

𝓍(𝑡 − 𝛾)⊖ 𝓍(𝑡)

−𝛾
. 

(5) 

In Definition 3; lim𝛾→0+(∙) is considered in (ℱ(ℝ),𝒟𝒽) and at 𝛿(𝒯) we assume unidirectional derivatives. 

Indeed, 𝓍 is differentiable on 𝒯 as long as 𝓍 is differentiable ∀𝑡 ∈ 𝒯. 

Definition 4 [44] For a map 𝓍:𝒯 → ℱ(ℝ), the following underlying is achieved: 

i. 𝓍 is called (1)-fuzzy differentiable on 𝒯 if 𝓍 is differentiable in status (i) of Definition 3 and its related 

derivative symbolized as 𝒟𝑡
1𝓍(𝑡). 

ii. 𝓍 is called (2)-fuzzy differentiable on 𝒯 if 𝓍 is differentiable in status (ii) of Definition 3 and its related 

derivative symbolized as 𝒟𝑡
2𝓍(𝑡). 

Theorem 2 [44] For a map 𝓍: 𝒯 → ℱ(ℝ) the following underlying is achieved: 

i. If 𝓍 is (1)-fuzzy differentiable on 𝒯, then 𝓍1𝓇 , 𝓍2𝓇 ∈ 𝒟
ℝ(𝒯) together 

[𝒟𝑡
1𝓍(𝑡)]𝓇 = [𝓍1𝓇

′ (𝑡), 𝓍2𝓇
′ (𝑡)]. (6) 

ii. If 𝓍 is (2)-fuzzy differentiable on 𝒯, then 𝓍1𝓇 , 𝓍2𝓇 ∈ 𝒟
ℝ(𝒯) together 

[𝒟𝑡
2𝓍(𝑡)]𝓇 = [𝓍2𝓇

′ (𝑡), 𝓍1𝓇
′ (𝑡)]. (7) 

The space of Sobolev of first order on 𝒯 of a map 𝓍:𝒯 → ℝ is defined insomuch as 𝒮(𝒯) = {𝓍 ∈ 𝐿2(𝒯):𝓍, 𝓍′ ∈

𝐿2(𝒯)}. The function of Gösta-Leffler in one parameter can be expanded as ℒ𝛼(𝑡) = ∑
1

Γ(𝑛𝛼+1)
𝑡𝑛∞

𝑛=0 , 𝛼 > 0, 𝑡 ∈ ℝ. 

Definition 5 [11] Let 𝓍: 𝒯 → ℝ, 𝓍 ∈ 𝒮(𝒯), and 𝛼 ∈ (0,1]. Then the crisp ABC fractional derivative of order 𝛼 of 𝓍 at 

the base node t = 0 is defined as 

𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍(𝑡) =

𝒩(𝛼)

1 − 𝛼
∫ 𝓍′(𝑠)ℒ𝛼 (−

𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)

𝑡

0

𝑑𝑠. (8) 

As long as 𝒩(𝛼) is the normalizing ABC function and is erected as 𝒩(0) = 𝒩(1) = 1. Hither, 𝒩(𝛼) is fixed 

accordingly to 𝒩(𝛼) = 1 − 𝛼 +
𝛼

Γ(𝛼)
. More theoretical results on normalizing the ABC function can be viewed in 

[21]. 

3  Fuzzy ABC Fractional Derivative 

To describe the fundamental steps in the fuzzy ABC approach; we firstly should present the body mathematical 

structure of the fuzzy ABC fractional derivative. After that, based on FSGD equivalent statements for fuzzy ABC 

fractional derivative are utilized. 

The FSGD allows us not to lose the possible fuzzy ABC solutions when solving FFDEs in ABC emotion. In the 

remains of this analysis, we will refer to the following characters: 𝒞ℱ(ℝ)(𝒯) the space of all fuzzy continuous 

functions on 𝒯, ℒℱ(ℝ)(𝒯) the space of all fuzzy integrable functions on 𝒯, and 𝒟𝛼
ℝ(𝒯) the space of all crisp ABC 𝛼-

differentiable functions on 𝒯. 
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Definition 6 Let 𝓍:𝒯 → ℱ(ℝ), 𝓍, 𝓍′ ∈ 𝒞ℱ(ℝ)(𝒯) ∩ ℒℱ(ℝ)(𝒯), and 𝛼 ∈ (0,1]. Then the fuzzy ABC fractional 

derivative of  𝓍 at the base node t = 0, symbolize by 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍(𝑡), is defined as 

𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍(𝑡) =

𝒩(𝛼)

1 − 𝛼
∫ 𝒟𝑠𝓍(𝑠)ℒ𝛼 (−

𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)𝑑𝑠

𝑡

0

. (9) 

Definition 7 For a map 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍:𝒯 → ℱ(ℝ); we say that 𝓍 is 𝛼(1)-fuzzy ABC fractional differentiable when 𝓍 is 

(1)-fuzzy differentiable in view of Eq. (4) and 𝓍 is 𝛼(2)-fuzzy ABC fractional differentiable when 𝓍 is (2)-fuzzy 

differentiable in view of Eq. (5). 

Theorem 3 Let 𝓍:𝒯 → ℱ(ℝ), 𝓍, 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍 ∈ 𝒞ℱ(ℝ)(𝒯) ∩ ℒℱ(ℝ)(𝒯), and 𝛼 ∈ (0,1]. Then the following underlying is 

achieved: 

i. If 𝓍 is (1)-fuzzy differentiable on 𝒯, then we have 𝛼(1)-fuzzy ABC fractional derivative jointly with 𝓍1𝓇 , 𝓍2𝓇 ∈

𝒟𝛼
ℝ(𝒯) and 

[ 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡)]

𝓇
= [ 𝒟𝑡

𝛼
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡), 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡)]. (10) 

ii. If 𝓍 is (2)-fuzzy differentiable on 𝒯, then we have 𝛼(2)-fuzzy ABC fractional derivative jointly with 𝓍1𝓇 , 𝓍2𝓇 ∈

𝒟𝛼
ℝ(𝒯) and 

[ 𝒟𝑡
𝛼(2)

0
𝐴𝐵𝐶 𝓍(𝑡)]

𝓇
= [ 𝒟𝑡

𝛼
0

𝐴𝐵𝐶 𝓍2𝓇(𝑡), 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍1𝓇(𝑡)]. (11) 

Proof. Remind that, [𝒟𝑡
1𝓍(𝑡)]𝓇 = [𝓍1𝓇

′ (𝑡), 𝓍2𝓇
′ (𝑡)] and [𝒟𝑡

2𝓍(𝑡)]𝓇 = [𝓍2𝓇
′ (𝑡), 𝓍1𝓇

′ (𝑡)]. Thus, besides of 

ℒ𝛼(−𝑡),
𝒩(𝛼)

1−𝛼
≥ 0 in the zone of ∀𝑡 ∈ 𝒲, ∀𝓇 ∈ ℐ, and ∀𝛼 ∈ (0,1], we view status (i) as 

[ 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡)]

𝓇
= [

𝒩(𝛼)

1 − 𝛼
∫ 𝒟𝑠

1𝓍(𝑠)ℒ𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)

𝑡

0

𝑑𝑠]

𝓇

 

                          = [
𝒩(𝛼)

1 − 𝛼
∫ 𝓍1𝓇

′ (𝑠)ℒ𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)𝑑𝑠

𝑡

0

,
𝒩(𝛼)

1 − 𝛼
∫ 𝓍2𝓇

′ (𝑠)ℒ𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)𝑑𝑠

𝑡

0

] 

                          = [ 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍1𝓇(𝑡), 𝒟𝑡

𝛼
0

𝐴𝐵𝐶 𝓍2𝓇(𝑡)]. 

(12) 

Likewise, we view status (ii) as 

[ 𝒟𝑡
𝛼(2)

0
𝐴𝐵𝐶 𝓍(𝑡)]

𝓇
= [

𝒩(𝛼)

1 − 𝛼
∫ 𝒟𝑠

2𝓍(𝑠)ℒ𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)𝑑𝑠

𝑡

0

]

𝓇

 

                          = [
𝒩(𝛼)

1 − 𝛼
∫ 𝓍2𝓇

′ (𝑠)ℒ𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)𝑑𝑠

𝑡

0

,
𝒩(𝛼)

1 − 𝛼
∫ 𝓍1𝓇

′ (𝑠)ℒ𝛼 (−
𝛼

1 − 𝛼
(𝑡 − 𝑠)𝛼)𝑑𝑠

𝑡

0

] 

                          = [ 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡), 𝒟𝑡

𝛼
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡)].■ 

(13) 

4  Fuzzy ABC FDEs 

The formulation of FFDEs by employed fuzzy characterization theorem and FSGD is a very important task in 

utilizing the numerical analysis methods in the fuzzy emotion. Next, characterization based and theoretical results 

that are related to 𝛼(1)- and 𝛼(2)-fuzzy ABC fractional solutions are derivable and inferred. 

Let us foremost focusing on the functional fuzzy structure of ABC FFIVP of the form 

{
𝒟𝑡
 𝛼

0
𝐴𝐵𝐶 𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 𝒰.
 (14) 

Fundamentally the 𝓇-cut impersonation of ( 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍(𝑡), 𝓍(𝑡),𝒰, 𝒻(𝑡, 𝓍(𝑡))) should be acquired, whilst the 

most important one is [𝒻(𝑡, 𝓍(𝑡))]
𝓇
= [𝒻1𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)), 𝒻2𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡))]. In effect, to deal with ABC 

FFIVP in a realistic approach, one can find the underlying coupled crisp systems of ABC FDE performed by 𝛼(1)- 

or 𝛼(2)-fuzzy ABC fractional derivative, with one another, as follows: 

• System of 𝛼(1)-crisp ABC FDE: 

{
𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 𝒰.
 (15) 

• System of 𝛼(2)-crisp ABC FDE: 
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{
𝒟𝑡
𝛼(2)

0
𝐴𝐵𝐶 𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 𝒰.
 (16) 

Definition 8 Let 𝓍:𝒯 → ℱ(ℝ), 𝓍, 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍 ∈ 𝒞ℱ(ℝ)(𝒯) ∩ ℒℱ(ℝ)(𝒯), and 𝛼 ∈ (0,1] and 𝓍 be such that 𝒟𝛼(1)𝓍(𝑡) or 

𝒟𝛼(2)𝓍(𝑡) exists. Then the following underlying is achieved: 

i. If 𝓍(𝑡) and 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡) satisfy Eq. (15), then 𝓍(𝑡) is said a 𝛼(1)-fuzzy ABC solution of Eq. (14). 

ii. If 𝓍(𝑡) and 𝒟𝑡
𝛼(2)

0
𝐴𝐵𝐶 𝓍(𝑡) satisfy Eq. (16), then 𝓍(𝑡) is said a 𝛼(2)-fuzzy ABC solution of Eq. (14). 

The subsequent result is about the characterization theorem of ABC FFIVP of Eq. (14). Hither, we can apply 

this theorem to find or construct numerical or analytical fuzzy ABC solutions in general.  

Theorem 4 Let 𝓍,𝓎:𝒯 → ℱ(ℝ), 𝓍,𝓎, 𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍, 𝒟𝑡

𝛼
0

𝐴𝐵𝐶 𝓎 ∈ 𝒞ℱ(ℝ)(𝒯) ∩ ℒℱ(ℝ)(𝒯), 𝒻 ∈ 𝒞ℱ(ℝ)(𝒯 × ℱ(ℝ)), and 𝛼 ∈

(0,1]. Assume that 

i. [𝒻(𝑡, 𝓍(𝑡))]
𝓇
= [𝒻1𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)), 𝒻2𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡))], 

ii. 𝒻(1,2)𝓇  are equicontinuous and uniformly bounded on any bounded set, 

iii. ∃𝒦 > 0 with 

|𝒻(1,2)𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)) − 𝒻(1,2)𝓇(𝑡, 𝓎1𝓇(𝑡), 𝓎2𝓇(𝑡))|

≤ 𝒦max{|𝓍1𝓇(𝑡) − 𝓎1𝓇(𝑡)|, |𝓍2𝓇(𝑡) − 𝓎2𝓇(𝑡)|}. 
(17) 

Then, the following underlying is achieved: 

i. For 𝛼(1)-fuzzy ABC fractional derivative; the ABC FFIVP of Eq. (14) and the system of 𝛼(1)-crisp ABC FDE of 

Eq. (15) are equivalent. 

ii. For 𝛼(2)-fuzzy ABC fractional derivative; the ABC FDE of Eq. (14) and the system of 𝛼(2)-crisp ABC FDE of 

Eq. (16) are equivalent. 

Proof. Herein, we will view status (i) (similar analysis can be exercised for status (ii)). Assume that 𝓍 is 𝛼(1)-

fuzzy ABC fractional derivative. Condition (ii) on 𝒻(1,2)𝓇  reveals the continuity of 𝒻. The Lipchitzian of Condition 

(iii) confirms 𝒻 is Lipchitzian in (ℱ(ℝ),𝒟𝒽) as 

𝒟𝒽 (𝒻(𝑡, 𝓍(𝑡)), 𝒻(𝑡, 𝓎(𝑡))) = sup
𝓇∈ℐ

max{|𝒻1𝓇(𝑡, 𝓍(𝑡)) − 𝒻1𝓇(𝑡, 𝓎(𝑡))|, |𝒻2𝓇(𝑡, 𝓍(𝑡)) − 𝒻2𝓇(𝑡, 𝓎(𝑡))|} 

                        = sup
𝓇∈ℐ

max{|𝒻1𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)) − 𝒻1𝓇(𝑡, 𝓎1𝓇(𝑡),𝓎2𝓇(𝑡))|, |𝒻2𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡))

− 𝒻2𝓇(𝑡, 𝓎1𝓇(𝑡), 𝓎2𝓇(𝑡))|} 

                        ≤ 𝒦 sup
𝓇∈ℐ

max{|𝓍1𝓇(𝑡) − 𝓎1𝓇(𝑡)|, |𝓍2𝓇(𝑡) − 𝓎2𝓇(𝑡)|} 

                        = 𝒦𝒟𝒽(𝓍(𝑡), 𝓎(𝑡)). 

(18) 

As 𝒻 ∈ 𝒞ℱ(ℝ)(𝒯 × ℱ(ℝ)), Lipchitzian and boundedness, harvest that ABC FFIVP of Eq. (14) has a unique fuzzy 

ABC solution on 𝒯. By 𝛼(1)-fuzzy ABC fractional derivative; 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡) ∈ 𝒟
ℝ(𝒯). So, [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)] is a fuzzy 

𝓇-cut solution of ABC FFIVP of Eq. (14). Conversely, if one has a fuzzy solution [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)] for ABC FFIVP of 

Eq. (14). The Lipschitzian in Eq. (17) gives the uniqueness and existence of fuzzy ABC solution 𝓍̃(𝑡). But 𝓍̃ is 𝛼(1)-

fuzzy ABC fractional derivative, then 𝓍̃(1,2)𝓇(𝑡) with [𝓍̃]𝓇 = [𝓍̃1𝓇(𝑡), 𝓍̃2𝓇(𝑡)] is a solution for the system of crisp 

ABC FDE of Eq. (15). But the solution of the system of crisp ABC FDE of Eq. (15) is unique, we gained [𝓍̃(𝑡)]𝓇 =

[𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)] = [𝓍(𝑡)]
𝓇 . As long as, ABC FFIVP of Eq. (14) and the system of crisp ABC FDE of Eq. (15) are 

equivalent. ■ 

5  Requirement Tools of the RKHSM 

With the growth of technique and science, many phenomena cannot be well utilized by the fuzzy differential 

problems. For example, various uncertain physical processes own memory and hereditary ownerships and cannot 

be well-drawn unless if one used FFDEs. Anyhow, when we have faced these challenges; we must build up a new 

excellent numerical tool. Hither, the RKHSM is presented as a novel solver for ABC FFIVPs. 

Firstly, we set the following subordinate important determinants: [𝓍(𝑡)]𝓇 = ( 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)), [𝓎(𝑡)]𝓇 =

(𝓎1𝓇(𝑡),𝓎2𝓇(𝑡)), and |𝒞|ℝ(𝒯) to symbolizes the set of absolutely continuous functions on 𝒯. A continuous 
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mapping ℙ:𝒯 × 𝒯 → ℝ is a reproducing kernel of 𝕂 ≠ ∅ if the following underlying requirements are satisfied, 

wheresoever ℍ is a Hilbert space of functions defined on 𝒯: 

i. ∀𝑡 ∈ 𝒯:ℙ(∙, 𝑡) ∈ ℍ, 

ii. ∀𝜓 ∈ ℍ and ∀𝑡 ∈ 𝒯: 〈𝜓(⋅), ℙ(∙, 𝑡)〉ℍ = 𝜓(𝑡). 

Definition 9 [6] The space 𝕎(𝒯) is harmonious as 

{
 
 

 
 
𝕎(𝒯) = {[𝓍(𝑡)]𝓇

𝑇 : 𝓍(1,2)𝓇 ∈ |𝒞|
ℝ(𝒯), 𝓍(1,2)𝓇

′′ ∈ 𝐿2(𝒯), and 𝓍(1,2)𝓇(0) = 0},

〈[𝓍(𝑡)]𝓇 , [𝓎(𝑡)]𝓇〉𝕎 =∑(𝓍𝑖𝓇(0)𝓎𝑖𝓇(0) + 𝓍𝑖𝓇
′ (0)𝓎𝑖𝓇

′ (0) + ∫𝓍𝑖𝓇
′′ (𝑡)𝓎𝑖𝓇

′′ (𝑡)𝑑𝑡
 

𝒯

)

2

𝑖=1

,

‖[𝓍(𝑡)]𝓇‖𝒲 = √〈[𝓍(𝑡)]𝓇 , [𝓍(𝑡)]𝓇〉𝕎.

 (19) 

Definition 10 [6] The space 𝕍(𝒯) is harmonious as 

{
 
 

 
 
𝕍(𝒯) = {[𝓍(𝑡)]𝓇: 𝓍(1,2)𝓇 ∈ |𝒞|

ℝ(𝒯), 𝓍(1,2)𝓇
′ ∈ 𝐿2(𝒯)},

〈[𝓍(𝑡)]𝓇 , [𝓎(𝑡)]𝓇〉𝕍 =∑(∫𝓍𝑖𝓇(𝑡)𝓎𝑖𝓇(𝑡)𝑑𝑡
 

𝒯

+∫𝓍𝑖𝓇
′ (𝑡)𝓎𝑖𝓇

′ (𝑡)𝑑𝑡
 

𝒯

)

2

𝑖=1

‖[𝓍(𝑡)]𝓇‖𝕍 = √〈[𝓍(𝑡)]𝓇 , [𝓍(𝑡)]𝓇〉𝕍.

, (20) 

Theorem 5 [6] The space 𝕎(𝒯) is a complete reproducing kernel with 𝔾̅𝑡(𝑠) = (𝔾𝑡(𝑠),𝔾𝑡(𝑠)) and    

𝔾𝑡(𝑠) =
1

6
{
𝑠(−𝑠2 + 6𝑡 + 3𝑡𝑠), 𝑠 ≤ 𝑡,

𝑡(−𝑡2 + 6𝑠 + 3𝑡𝑠), 𝑠 > 𝑡.
 (21) 

Theorem 6 [6] The space 𝕍(𝒯) is a complete reproducing kernel with 𝔽̅𝑡(𝑠) = (𝔽𝑡(𝑠), 𝔽𝑡(𝑠)) and 

𝔽𝑡(𝑠) =
1

2
sinh−1(1)(cosh(𝑡 + 𝑠 − 1) + cosh(|𝑡 − 𝑠| − 1)). (22) 

When the RKHSM is used, we must partition the interval 𝒯 into uniform pieces of 𝑡𝑖. This will be gained the 

set {𝑡𝑖}𝑖=1
∞  which be dense in 𝒯. Thither, we seek to cover the 𝒯 set as well as the approximation procedure ought 

to finish up in limited phases. 

Theorem 7 In 𝕎(𝒯), the set {𝔾̅𝑡𝑖(𝑠)}𝑖=1
∞

 is linearly independent. 

Proof. If {𝜌𝑖}𝑖=1
𝑝

 is picked as ∑ 𝜌𝑖𝔾̅𝑡𝑖(𝑠)
𝑝
𝑖=1 = 0 and taking 𝓀𝑘(𝑠) ∈ 𝕎(𝒯) such that 𝓀𝑘(𝑠𝑙) = 𝛿𝑙,𝑘 at 𝑙 = 1,2,⋯ , 𝑝, 

then 

0 = ⟨𝓀𝑘(𝑠),∑𝜎𝑖𝔾̅𝑡𝑖(𝑠)

𝑝

𝑖=1

⟩

𝕎

    = ∑𝜌𝑖⟨𝓀𝑘(𝑠), 𝔾̅𝑡𝑖(𝑠)⟩𝕎

𝑝

𝑖=1

    = ∑𝜌𝑖𝓀𝑘(𝑠𝑖)

𝑝

𝑖=1
    = 𝜌𝑖 ,

 (23) 

where 𝑘 = 1,2,⋯ , 𝑝. This validation that {𝔾̅𝑡𝑖(𝑠)}𝑖=1
𝑝

 is linearly independent ∀𝑝 ≥ 1. ■ 

6  Representation of Fuzzy ABC Solutions 

The fuzzy ABC fractional problem formalism, homogenized fuzzy initial condition, orthogonal function system, 

completeness, exemplification of fuzzy ABC analytic and numerical solutions in the adequate Hilpert spaces 𝕎(𝒯) 

and 𝕍(𝒯) are the main significations of the following subordinate part. 

In the following execution, we just theorize the 𝛼(1)-fuzzy ABC solution exclusively (similar execution can be 

utilized for the 𝛼(1)-fuzzy ABC solution). Before continuance more, we must homogenize the fuzzy initial 

condition in Eq. (14) to be in 𝕎(𝒯) as the surrogate 𝓍(𝑡):→ 𝓍(𝑡)⊖𝒰. Eventually, we will still use 𝓍(𝑡) as 
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{
𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 0.
 (24) 

Now, locate the operator ℚ:𝕎(𝒯) → 𝕍(𝒯) such that ℚ𝓍(𝑡) = 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡). So, Eq. (15) can be turned into 

the following subordinate tantamount form: 

{
ℚ𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 0.
 (25) 

Hither, we will designate [ℚ𝓍(𝑡)]𝓇 = [ 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍(𝑡)]

𝓇
 which intends that ℚ1𝓍1𝓇(𝑡) = 𝒟𝑡

𝛼(1)
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡) and 

ℚ2𝓍2𝓇(𝑡) = 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡). Next, we will assign a system of orthogonal functions using the following 

subordinate junctures: put 𝔗𝑖𝑗(𝑡) = 𝔽𝑡𝑖(𝑡)𝕖𝑗 and 𝓊𝑖𝑗(𝑡) = ℚ
∗𝔗𝑖𝑗(𝑡) at 𝑖 = 1,2,3,… and 𝑗 = 1,2, where 𝕖1 = (1,0)

𝑇 

and 𝕖2 = (0,1)
𝑇. Hither, ℚ∗ = diag(ℚ1

∗ , ℚ2
∗) and {𝑡𝑖}𝑖=1

∞  is dense on 𝒯. Notice here that, the system of orthonormal 

functions {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

 of 𝕎(𝒯) can be formulated as follows: 

𝓊̅𝑖𝑗(𝑡) =∑∑𝓏𝑙𝑘
𝑖𝑗

𝑗

𝑘=1

𝑖

𝑙=1

𝓊𝑙𝑘(𝑡), 𝑖 = 1,2,3,… , 𝑗 = 1,2, (26) 

where 𝓏𝑙𝑘
𝑖𝑗

 are orthogonalization coefficients of {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

. 

Theorem 8 The orthonormal system {𝓊𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

 is complete with 𝓊𝑖𝑗(𝑡) = ℚ𝑠𝔾𝑡(𝑠)|𝑠=𝑡𝑖. 

Proof. If ⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊𝑖𝑗(𝑡)⟩𝕎

= 0 at 𝑖 = 1,2, . .., 𝑗 = 1,2, then 

⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊𝑖𝑗(𝑡)⟩𝕎

= ⟨[𝓍(𝑡)]𝓇
𝑇 , ℚ∗𝔗𝑖𝑗(𝑡)⟩𝕎

 

                                    = ⟨ℚ[𝓍(𝑡)]𝓇
𝑇 , 𝔗𝑖𝑗(𝑡)⟩𝕍

 

                                    = ℚ(𝑡𝑖) = 0. 

(27) 

But, [𝓍(𝑡)]𝓇
𝑇 = ∑ 𝓍𝑗𝓇(𝑡)𝕖𝑗

2
𝑗=1 = ∑ ⟨[𝓍(⋅)]𝓇

𝑇 , 𝔾𝑡(⋅)𝕖𝑗⟩𝕎
𝕖𝑗

2
𝑗=1  and ℚ[𝓍(𝑡)]𝓇

𝑇 = ∑ ⟨ℚ[𝓍(𝑡)]𝓇
𝑇 , 𝔗𝑖𝑗(𝑡)⟩𝕎

𝕖𝑗
2
𝑗=1 = 0. By the 

density of {𝑡𝑖}𝑖=1
∞  on 𝒯, we gained ℚ[𝓍(𝑡)]𝓇

𝑇 = 0. Through the existence of ℚ−1, produces that [𝓍(𝑡)]𝓇
𝑇 = 0. 

Posteriorly, {𝓊𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

 is a complete on 𝕎(𝒯). Again, visibly one has 

𝓊𝑖𝑗(𝑡) = ℚ
∗𝔗𝑖𝑗(𝑡) = ⟨ℚ

∗𝔗𝑖𝑗(𝑠),𝔾𝑡(𝑠)⟩𝕎
 

                                    = ⟨𝔗𝑖𝑗(𝑠),ℚ𝑠𝔾𝑡(𝑠)⟩𝕍
 

                                    = ℚ𝑠𝔾𝑡(𝑠)|𝑠=𝑡𝑖 . ■ 

(28) 

The readers should know that [𝒻(𝑡, 𝓍(𝑡))]
𝓇
= (𝒻1𝓇(𝑡, [𝓍(𝑡)]𝓇

𝑇 ), 𝒻2𝓇(𝑡, [𝓍(𝑡)]𝓇
𝑇 )) beside of [𝒻(𝑡, 𝓍(𝑡))]

𝓇
=

[𝒻1𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)), 𝒻2𝓇(𝑡, 𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡))]  and we will establish and employ this in the next analysis. 

Theorem 9 Let 𝓏𝑙𝑘
𝑖𝑗

 are orthogonalization coefficients for {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

. Then the analytic solution of Eq. (24) 

fulfill well 

[𝓍(𝑡)]𝓇
𝑇 =∑∑∑∑𝓏𝑙𝑘

𝑖𝑗
𝒻𝑘𝓇(𝑡𝑙 , [𝓍(𝑡𝑙)]𝓇

𝑇 )𝓊̅𝑖𝑗(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

2

𝑗=1

∞

𝑖=1

. (29) 

Proof. Because ⟨[𝓍(𝑡)]𝓇
𝑇 , 𝔖𝑖𝑗(𝑡)⟩𝕎

= 𝓍𝑗𝓇(𝑡𝑖) and ∑ ∑ ⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎

𝓊̅𝑖𝑗(𝑡)
2
𝑗=1

∞
𝑖=1  is the Fourier series of 

{𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

. Then the mentioned series is convergent in the feeling of ‖⋅‖𝕎. From here, 

[𝓍(𝑡)]𝓇
𝑇 =∑∑⟨[𝓍(𝑡)]𝓇

𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎
𝓊̅𝑖𝑗(𝑡)

2

𝑗=1

∞

𝑖=1

 

               = ∑∑⟨[𝓍(𝑡)]𝓇
𝑇 ,∑∑𝓏𝑙𝑘

𝑖𝑗
𝓊𝑙𝑘(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

⟩

𝕎

𝓊̅𝑖𝑗(𝑡)

2

𝑗=1

∞

𝑖=1

 

(30) 
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               = ∑∑∑∑𝓏𝑙𝑘
𝑖𝑗⟨[𝓍(𝑡)]𝓇

𝑇 , ℚ∗𝔗𝑙𝑘(𝑡)⟩𝕎𝓊̅𝑖𝑗(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

2

𝑗=1

∞

𝑖=1

 

               = ∑∑∑∑𝓏𝑙𝑘
𝑖𝑗⟨ℚ[𝓍(𝑡)]𝓇

𝑇 , 𝔗𝑙𝑘(𝑡)⟩𝕍𝓊̅𝑖𝑗(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

2

𝑗=1

∞

𝑖=1

 

               = ∑∑∑∑𝓏𝑙𝑘
𝑖𝑗⟨𝒻𝑘𝓇(𝑡, [𝓍(𝑡)]𝓇

𝑇 ), 𝔗𝑙𝑘(𝑡)⟩𝕍𝓊̅𝑖𝑗(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

2

𝑗=1

∞

𝑖=1

 

               = ∑∑∑∑𝓏𝑙𝑘
𝑖𝑗
𝒻𝑘𝓇(𝑡𝑙 , [𝓍(𝑡𝑙)]𝓇

𝑇 )𝓊̅𝑖𝑗(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

2

𝑗=1

∞

𝑖=1

. 

So, [𝓍(𝑡)]𝓇
𝑇  in Eq. (29) symbolize the analytic solution of Eq. (25). ■ 

Remark 1 For the numerical calculations on the software package used, we should amputate the expression in Eq. 

(29) to engendering the 𝑛-term crisp ABC numerical solution of [𝓍(𝑡)]𝓇
𝑇  as 

[𝓍𝑛(𝑡)]𝓇
𝑇 =∑∑∑∑𝓏𝑙𝑘

𝑖𝑗
𝒻𝑘𝓇(𝑡𝑙 , [𝓍(𝑡𝑙)]𝓇

𝑇 )𝓊̅𝑖𝑗(𝑡)

𝑗

𝑘=1

𝑖

𝑙=1

2

𝑗=1

𝑛

𝑖=1

. (31) 

7 Convergence and Error Frameworks 

To control the fuzzy ABC numerical solution obtained from the RKHSM and to know its behavior and limits; we 

ought to study its convergence and error frameworks. These concepts will discuss and derive in detail in the 

following part. Next, 𝒞ℝ(𝒯 × ℝ × ℝ) denotes the set of all continuous crisp functions on  𝒯 × ℝ ×ℝ. 

Hither, we assume the following subordinate: ‖[𝓍𝑛−1]𝓇
𝑇‖𝕎 is bounded as 𝑛 → ∞, {𝑡𝑖}𝑖=1

∞  is dense on 𝒯, and 

solution of Eq. (24) unique and exists in 𝕎(𝒯). Now, we will show the convergence of [𝓍(𝑡)]𝓇
𝑇  in 𝒯 over 𝕎(𝒯). 

Theorem 10 Let [𝒻(𝑡, [𝓍(𝑡)]𝓇
𝑇 )]𝓇 ∈ 𝒞

ℝ(𝒯 × ℝ ×ℝ). If ‖[𝓍𝑛−1]𝓇
𝑇 − [𝓍]𝓇

𝑇‖𝕎 → 0 and 𝑡𝑛 → 𝑠 as 𝑛 → ∞, then as 𝑛 →

∞, one can get 

[𝒻(𝑡𝑛, [𝓍
𝑛−1(𝑡𝑛)]𝓇

𝑇 )]𝓇 → [𝒻(𝑠, [𝓍𝑛−1(𝑠)]𝓇
𝑇 )]𝓇 . (32) 

Proof. Firstly, we have to start by proving that [𝓍𝑛−1(𝑡𝑛)]𝓇
𝑇 → [𝓍(𝑠)]𝓇

𝑇 . Since, 

|[𝓍𝑛−1(𝑡𝑛)]𝓇
𝑇 − [𝓍(𝑠)]𝓇

𝑇 | = |[𝓍𝑛−1(𝑡𝑛)]𝓇
𝑇 − [𝓍𝑛−1(𝑠)]𝓇

𝑇 + [𝓍𝑛−1(𝑠)]𝓇
𝑇 − [𝓍(𝑠)]𝓇

𝑇 | 

                                               ≤ |[𝓍𝑛−1(𝑡𝑛)]𝓇
𝑇 − [𝓍𝑛−1(𝑠)]𝓇

𝑇 | + |[𝓍𝑛−1(𝑠)]𝓇
𝑇 − [𝓊(𝑠)]𝓇

𝑇 | 

                                               ≤ |([𝓍𝑛−1(𝜏)]𝓇
𝑇 )′||𝑡𝑛 − 𝑠| + |[𝓍

𝑛−1(𝑠)]𝓇
𝑇 − [𝓍(𝑠)]𝓇

𝑇 |, 

(33) 

where 𝜏 ∈ (min{𝑡𝑛, 𝑠} ,max{𝑡𝑛, 𝑠}). So, |[𝓍𝑛−1(𝑡𝑛)]𝓇
𝑇 − [𝓍(s)]𝓇

𝑇 | → 0 as 𝑛 → ∞. By the fact that [𝒻(𝑡, [𝓍(𝑡)]𝓇
𝑇 )]𝓇 ∈

𝒞ℝ(𝒯 × ℝ× ℝ) one has the demanded requirements. ■ 

Next, we stand for 𝔸(𝑛,𝑗)𝓇 = ∑ ∑ 𝓏𝑙𝑘
𝑖𝑗
𝒻𝑘𝓇(𝑡𝑙, [𝓍(𝑡𝑙)]𝓇

𝑇 )𝑗
𝑘=1

𝑛
𝑙=1 . De facto, this authorizes one to put [𝓍𝑛(𝑡)]𝓇

𝑇  as 

[𝓍𝑛(𝑡)]𝓇
𝑇 =∑∑𝔸(𝑖,𝑗)𝓇

2

𝑗=1

𝑛

𝑖=1

𝓊̅𝑖𝑗(𝑡). (34) 

Theorem 11  In the monotonous recipe of Eqs. (34), one has [𝓍𝑛(𝑡)]𝓇
𝑇 → [𝓍(𝑡)]𝓇

𝑇  as 𝑛 → ∞. 

Proof. From Eq. (34), we infer that [𝓍𝑛+1(𝑡)]𝓇
𝑇 = [𝓍𝑛(𝑡)]𝓇

𝑇 + ∑ 𝔸(𝑛+1,𝑗)𝓇
2
𝑗=1 𝓊̅(𝑛+1)𝑗(𝑡). By the orthogonality of 

{𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

 one win this 

‖[𝓍𝑛+1]𝓇
𝑇‖𝕎

2 = ‖[𝓍𝑛]𝓇
𝑇‖𝕎

2 +∑𝔸(𝑛+1,𝑗)𝓇
2

2

𝑗=1

 

                         = ‖[𝓍𝑛−1]𝓇
𝑇‖𝕎

2 +∑𝔸(𝑛,𝑗)𝓇
2

2

𝑗=1

+∑𝔸(𝑛+1,𝑗)𝓇
2

2

𝑗=1

 

                         = ⋯ 

(35) 
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                         = ‖[𝓍0]𝓇
𝑇‖𝕎

2 +∑∑𝔸(𝑖,𝑗)𝓇
2

2

𝑗=1

𝑛+1

𝑖=1

. 

Thereafter, ‖[𝓍𝑛+1]𝓇
𝑇‖𝕎 ≥ ‖[𝓍𝑛]𝓇

𝑇‖𝕎 and ∃𝕔 ∈ ℝ with ∑ ∑ 𝔸(𝑖,𝑗)𝓇
22

𝑗=1
∞
𝑖=1 = 𝕔, which reap that {∑ 𝔸(𝑖,𝑗)𝓇

22
𝑗=1 }

𝑖=1

∞
∈ 𝑙2. 

Over and above, 

[𝓍𝑚(𝑡)]𝓇
𝑇 − [𝓍𝑚−1(𝑡)]𝓇

𝑇 ⊥ [𝓍𝑚−1(𝑡)]𝓇
𝑇 − [𝓍𝑚−2(𝑡)]𝓇

𝑇 ⊥ ⋯ ⊥ [𝓍𝑛+1(𝑡)]𝓇
𝑇 − [𝓍𝑛(𝑡)]𝓇

𝑇 , (36) 

it pull off for 𝑚 > 𝑛 that 

‖[𝓍𝑚]𝓇
𝑇 − [𝓍𝑛]𝓇

𝑇‖𝕎
2 = ‖[𝓍𝑚]𝓇

𝑇 − [𝓍𝑚−1]𝓇
𝑇 + [𝓍𝑚−1]𝓇

𝑇 −⋯+ [𝓍𝑛+1]𝓇
𝑇 − [𝓍𝑛]𝓇

𝑇‖𝕎
2  

                                      = ‖[𝓍𝑚]𝓇
𝑇 − [𝓍𝑚−1]𝓇

𝑇‖𝕎
2 + ‖[𝓍𝑚−1]𝓇

𝑇 − [𝓍𝑚−2]𝓇
𝑇‖𝕎

2 +. . . +‖[𝓍𝑛+1]𝓇
𝑇 − [𝓍𝑛]𝓇

𝑇‖𝕎
2 . 

(37) 

While, ‖[𝓍𝑚]𝓇
𝑇 − [𝓍𝑚−1]𝓇

𝑇‖𝕎
2 = ∑ 𝔸(𝑚,𝑗)𝓇

22
𝑗=1 . So, as 𝑛,𝑚 → ∞, we get ‖[𝓍𝑚]𝓇

𝑇 − [𝓍𝑛]𝓇
𝑇‖𝕎

2 = ∑ ∑ 𝔸(𝑖,𝑗)𝓇
22

𝑗=1
𝑚
𝑙=𝑛+1 →

0. As  the completeness, ∃[𝓍𝑛(𝑡)]𝓇
𝑇 ∈ 𝕎(𝒯) with [𝓍𝑛(𝑡)]𝓇

𝑇 → [𝓍(𝑡)]𝓇
𝑇  as 𝑛 → ∞ in the feeling of ‖∙‖𝕎. ■ 

Theorem 12  In the monotonous recipe of Eqs. (34), one has [𝓍(𝑡)]𝓇
𝑇 = ∑ ∑ 𝔸(𝑖,𝑗)𝓇

2
𝑗=1

∞
𝑖=1 𝓊̅𝑖𝑗(𝑡) as 𝑛 → ∞. 

Proof. By taking lim
𝑛→∞

(∙) on two sides of Eq. (34), one has [𝓍(𝑡)]𝓇
𝑇 = ∑ ∑ 𝔸(𝑖,𝑗)𝓇𝓊̅𝑖𝑗(𝑡)

2
𝑗=1

∞
𝑖=1 . While ℚ[𝓍(𝑡)]𝓇

𝑇 =

∑ ∑ 𝔸(𝑖,𝑗)𝓇
2
𝑗=1

∞
𝑖=1 ℚ𝓊̅𝑖𝑗(𝑡), then 

ℚ𝑘[𝓍(𝑡𝑙)]𝓇
𝑇 =∑∑𝔸(𝑖,𝑗)𝓇⟨ℚ𝓊̅𝑖𝑗(𝑡),𝔗𝑙𝑘(𝑡)⟩𝕎

2

𝑗=1

∞

𝑖=1

 

                      = ∑∑𝔸(𝑖,𝑗)𝓇⟨𝓊̅𝑖𝑗(𝑡),ℚ
∗𝔗𝑙𝑘(𝑡)⟩𝕎

2

𝑗=1

∞

𝑖=1

 

                      = ∑∑𝔸(𝑖,𝑗)𝓇⟨𝓊̅𝑖𝑗(𝑡),𝓊𝑙𝑘(𝑡)⟩𝕎

2

𝑗=1

∞

𝑖=1

. 

(38) 

 

∑ ∑ 𝓏𝑙′𝑘′
𝑙𝑘 ℚ𝑘′[𝓊(𝑡)]𝓇

𝑇 (𝑡𝑙′)

𝑘

𝑘′=1

𝑙

𝑙′=1

=∑∑𝔸(𝑖,𝑗)𝓇 ⟨𝓊̅𝑖𝑗(𝑡),∑ ∑ 𝓏𝑙′𝑘′
𝑙𝑘 𝓊𝑙′𝑘′(𝑡)

𝑘

𝑘′=1

𝑙

𝑙′=1

⟩

𝕎

2

𝑗=1

∞

𝑖=1

 

                                                        = ∑∑𝔸(𝑖,𝑗)𝓇⟨𝓊̅𝑖𝑗(𝑡), 𝓊̅𝑙′𝑘′(𝑡)⟩𝕎

2

𝑗=1

∞

𝑖=1

 

                                                        = 𝔸(𝑙,𝑘)𝓇 . 

(39) 

Vindicatory, if 𝑙 = 1, then ℚ𝑗[𝓍(𝑡1)]𝓇
𝑇 = 𝒻𝑗𝓇(𝑡1, [𝓍

0(𝑡1)]𝓇
𝑇 ). So as to, ℚ[𝓍(𝑡1)]𝓇

𝑇 = [𝒻(𝑡1, 𝓍
0(𝑡1))]𝓇. If 𝑙 = 2, then 

ℚ𝑗[𝓍(𝑡2)]𝓇
𝑇 = 𝒻𝑗𝓇(𝑡2, [𝓍

1(𝑡2)]𝓇
𝑇 ). So as to, ℚ[𝓍(𝑡2)]𝓇

𝑇 = [𝒻(𝑡2, 𝓍
1(𝑡2))]𝓇. In like trajectory, the shape form is 

ℚ[𝓍(𝑡𝑛)]𝓇
𝑇 = [𝒻(𝑡𝑛, 𝓍

𝑛−1(𝑡𝑛))]𝓇. Through the density, ∀𝑠 ∈ 𝒯; ∃ {𝑡𝑛𝑞}𝑞=1

∞
 such that 𝑡𝑛𝑞 → 𝑠 as 𝑞 → ∞ or 

ℚ[𝓍 (𝑡𝑛𝑞)]𝓇

𝑇
= [𝒻 (𝑡𝑛𝑞 , 𝓊

𝑛𝑞−1 (𝑡𝑛𝑞))]
𝓇

. Let 𝑗 → ∞, by Theorem 9, one has ℚ[𝓍(𝑠)]𝓇
𝑇 = [𝒻(𝑠, 𝓍(𝑠))]

𝓇
. Likewise, 

since 𝓊̅𝑖𝑗(𝑡) ∈ 𝕎(𝒯), then [𝓍(𝑡)]𝓇
𝑇   fulfill Eq. (25). Ultimately, the unique solution of Eq. (25) harness the desired 

score. 

Next, we will debate the attitude of errors for large 𝑛. In the extreme, we will denote ℜ𝑛 = ‖[𝓍]𝓇
𝑇 − [𝓍𝑛]𝓇

𝑇‖𝕎 

on 𝒯 provided that [𝓍(𝑡)]𝓇
𝑇  and [𝓍𝑛(𝑡)]𝓇

𝑇  are taken away from Eqs. (29) and (31), with one another. 

Theorem 13 The sequence {ℜ𝑛}𝑛=1
∞  is monotone decreasing in 𝕎(𝒯) with ℜ𝑛 → 0 as 𝑛 → ∞. 

Proof. It's visible that 

ℜ𝑛
2 = ‖ ∑ ∑⟨[𝓍(𝑡)]𝓇

𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎
𝓊̅𝑖𝑗(𝑡)

2

𝑗=1

∞

𝑖=𝑛+1

‖

𝕎

2

 (40) 
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      = ∑ ∑⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎

2
2

𝑗=1

∞

𝑖=𝑛+1

 

      ≤ ∑∑⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎

2
2

𝑗=1

∞

𝑖=𝑛

 

      = ‖∑∑⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎

𝓊̅𝑖𝑗(𝑡)

2

𝑗=1

∞

𝑖=𝑛

‖

𝕎

2

 

      = ℜ𝑛−1
2 . 

Thus, {ℜ𝑛}𝑛=1
∞  is monotone decreasing in the feeling of ‖∙‖𝕎. From Theorem 8 and convergent fact on 

∑ ∑ ⟨[𝓍(𝑡)]𝓇
𝑇 , 𝓊̅𝑖𝑗(𝑡)⟩𝕎

𝓊̅𝑖𝑗(𝑡)
2
𝑗=1

∞
𝑖=1  one harvest that ℜ𝑛

2 → 0 as 𝑛 → ∞. ■ 

8  Algorithms and Packages 

Computational algorithms are given to laying the groundwork for the solution methods. Anyhow, to perform the 

numerical operations using the RKHSM the following three underlying algorithms must be applied and controlled. 

The first one is to check and find the validity of fuzzy ABC analytical solutions, the second one is to gain the 

orthonormal functions systems {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

, whiles the last one is to how one can apply the RKHSM steps. 

The inputs for the three algorithms are as pursues, with one another: [𝓍𝑛]𝓇
𝑇 , [𝓍]𝓇

𝑇 , 𝓊𝑙𝑘(𝑡), 𝓊̅𝑖𝑗(𝑡), types of 

fuzzy ABC fractional derivative, truth interval ℐ, truth values 𝓇, order 𝛼 of ABC fractional derivative, 𝑛 collocation 

points, and the domain 𝒯. 

Algorithm 1 Finding and ensuring the validity of the 𝛼(1)- or a 𝛼(2)-fuzzy ABC solutions of Eq. (25): 

Phase I. If 𝓍(𝑡) is 𝛼(1)-fuzzy ABC fractional differentiable on 𝒯, then applying the underlying steps:  

i. Solve 𝛼(1)-crisp ABC FDE system to the references [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)], 

ii. Assure [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)] and [ 𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍1𝓇(𝑡), 𝒟𝑡

𝛼(1)
0

𝐴𝐵𝐶 𝓍2𝓇(𝑡)] are righteous sets, 

iii. Forecast 𝛼(1)-fuzzy ABC solution of 𝓍(𝑡) as [𝓍(𝑡)]𝓇 = [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)]. 

Phase II. If 𝓍(𝑡) is 𝛼(2)-fuzzy ABC fractional differentiable on 𝒯, then applying the underlying steps: 

i. Solve the 𝛼(2)-crisp ABC FDE system to the references [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)], 

ii. Assure [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)] and [ 𝒟𝑡
𝛼(2)

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡), 𝒟𝑡

𝛼(2)
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡)] are righteous sets, 

iii. Forecast a 𝛼(2)-fuzzy ABC solution of 𝓍(𝑡) as [𝓍(𝑡)]𝓇 = [𝓍1𝓇(𝑡), 𝓍2𝓇(𝑡)]. 
 

 

Algorithm 2 Applying the Gram-Schmidt process to finding 𝓏𝑙𝑘
𝑖𝑗

 and {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

: 

Phase 1: At 𝑙 = 1,2,…, 𝑘 = 1,2,… , 𝑙, 𝑖 = 1,2,3,…, and 𝑗 = 1,2 applying the underlying: 

   𝓏𝑙𝑘
𝑖𝑗
=

{
 
 
 
 

 
 
 
 

1

‖𝓊11‖𝕎
, 𝑙 = 𝑘 = 1,

1

√‖𝓊𝑙𝑘‖𝕎
2 −∑ 〈𝓊𝑙𝑘(𝑡), 𝓊̅𝑖𝑗(𝑡)〉𝕎

2𝑙−1
𝑝=1

, 𝑙 = 𝑘 ≠ 1,

−
∑ 〈𝓊𝑙𝑘(𝑡), 𝓊̅𝑖𝑗(𝑡)〉𝕎𝓏𝑝𝑘

𝑖𝑗𝑙−1
𝑝=𝑘

√‖𝓊𝑙𝑘‖𝕎
2 −∑ 〈𝓊𝑙𝑘(𝑡), 𝓊̅𝑖𝑗(𝑡)〉𝕎

2𝑙−1
𝑝=1

, 𝑙 > 𝑘,

 (41) 

Output: The orthogonalization coefficients 𝓏𝑙𝑘
𝑖𝑗

. 

Phase 2: At 𝑖 = 1,2,3, . .. and 𝑗 = 1,2 put 
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𝓊̅𝑖𝑗(𝑡) =∑∑𝓏𝑙𝑘
𝑖𝑗

𝑗

𝑘=1

𝑖

𝑙=1

𝓊𝑙𝑘(𝑡), (42) 

Output: systems of orthonormal functions {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

. 
 

 

Algorithm 3 Finding 𝛼(1)-fuzzy ABC RKHSM numerical solution for Eq. (25): 

Phase I: Fixed 𝑡, 𝑠 in 𝒯 and do the underlying steps: 

i. Put 𝑡𝑖 =
1

𝑛
𝑖 at 𝑖 = 0,1,… , 𝑛, 

ii. Put 𝓇𝜂 =
𝜂

𝑚
 at 𝜂 = 0,1,… ,𝑚, 

iii. Put 𝓊𝑖𝑗(𝑡) = ℚ𝑠𝔾𝑡(𝑠)|𝑠=𝑡𝑖 at 𝑖 = 1,2,… , 𝑛 and 𝑗 = 1,2, 

Output: The orthogonal function system {𝓊̅𝑖𝑗(𝑡)}(𝑖,𝑗)=(1,1)
(∞,2)

. 

Phase II: At 𝑙 = 1,2,… and 𝑘 = 1,2,… , 𝑙 do Algorithm 2; 

Output: The orthogonalization coefficients 𝓏𝑙𝑘
𝑖𝑗

. 

Phase III: Set 𝓊̅𝑖𝑗(𝑡) = ∑ ∑ 𝓏𝑙𝑘
𝑖𝑗𝑗

𝑘=1
𝑖
𝑙=1 𝓊𝑙𝑘(𝑡) at 𝑖 = 1,2,… , 𝑛 and 𝑗 = 1,2; 

Output: The orthonormal function system 𝓊̅𝑖𝑗(𝑡). 

Phase IV: Put [𝓍0(𝑡1)]𝓇
𝑇 = 0 and at 𝑖 = 1,2,… , 𝑛 do the underlying steps: 

i. Put [𝓍𝑖(𝑡𝑖)]𝓇
𝑇
= [𝓍𝑖−1(𝑡𝑖)]𝓇

𝑇
, 

ii. Put 𝔸(𝑖,𝑗)𝓇 = ∑ ∑ 𝜔𝑙𝑘
𝑖𝑗
𝒻𝑘𝓇(𝑡𝑙 , [𝓍(𝑡𝑙)]𝓇

𝑇 )𝑗
𝑘=1

𝑖
𝑙=1 , 

iii. Put [𝓍𝑖(𝑡)]
𝓇

𝑇
= ∑ ∑ 𝔸(𝑖,𝑗)𝓇

2
𝑗=1

𝑖
𝑘=1 𝓊̅𝑖𝑗(𝑡); 

Output: The 𝑛-term numerical reckoning [𝓍𝑛(𝑡)]𝓇
𝑇  of [𝓍(𝑡)]𝓇

𝑇 . 
 

Software packages are the foundation stone in the fields of numerical analysis; it is a task where the reader 

chooses the type of programming that he masters and wants to use and available to him. Anyhow, all numerical 

results and graphical exemplifications in this analysis are made and done with Mathematics 9 software package. 

9  Fuzzy Applications on ABC FFIVPs 

To navigate more in the utilized fuzzy analyses, we must add some applications to show the strength of the 

presented study and the strength of the presented numerical method. Anyhow, two ABC FFIVPs are discussed and 

utilized for the first time in this section by displaying some tables, figures, and analyzes. 

To discuss our utilized outcomes in the shape of realistic fuzzy models; duo applications are debated here. 

The first one focuses on the fuzzy resistance-inductance circuit, whilst, the last focuses on fuzzy forcing term 

effects. 

Application 1 Look firstly for the underlying fuzzy ABC resistance-inductance circuit: 

{
𝒟𝑡
𝛼

0
𝐴𝐵𝐶 𝓍(𝑡) = 𝒻(𝑡, 𝓍(𝑡)),

𝓍(0) = 𝒰,
 (43) 

indeed 𝓍:𝒯 → ℱ(ℝ) and 𝒻:𝒯 × ℱ(ℝ) → ℱ(ℝ) with 

𝒻(𝑡, 𝓍(𝑡)) = −𝑅𝐿−1𝓍(𝑡) + 𝐸(𝑡), (44) 
 

𝒰(𝑠) = {
25𝑠 − 24, 𝑠 ∈ [0.96,1],
−100𝑠 + 101, 𝑠 ∈ [1,1.01]

0, 𝑠 ∈ ℝ − [0.96,1.01],
, (45) 

where 𝛼 ∈ (0,1], 𝑡 ∈ 𝒯, 𝑅 = 1 Ohm, 𝐿 = 1 Henry, and 𝐸(𝑡) = sin(𝑡). 

The underlying subsequent coupled crisp systems of ABC FDE in term of 𝓇-cut impersonation that are linked 

to 𝛼(1)- and 𝛼(1)-fuzzy ABC FFIVP of Eqs. (43), (44), and (45) can be appearing with one another as 

Status 1. The system of 𝛼(1)-crisp ABC FDE corresponding to 𝛼(1)-fuzzy ABC fractional derivative is 
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{
 
 

 
 𝒟𝑡

𝛼(1)
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡) = −𝓍2𝓇(𝑡) + sin(𝑡),

𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡) = −𝓍1𝓇(𝑡) + sin(𝑡),

𝓍1𝓇(0) = 0.96 + 0.04𝓇,

𝓍2𝓇(0) = 1.01 − 0.01𝓇.

 (46) 

The analytic fuzzy solutions of Eqs. (46) when 𝛼 = 1 is 

{
𝓍1𝓇(𝑡) = 0.5(sin(𝑡) − cos(𝑡)) + 0.5𝑒

−𝑡 + (0.96 + 0.04𝑟)cosh(𝑡) − (1.01 − 0.01𝑟)sinh(𝑡),

𝓍2𝓇(𝑡) = 0.5(sin(𝑡) − cos(𝑡)) + 0.5𝑒
−𝑡 + (1.01 − 0.01𝑟)cosh(𝑡) − (0.96 + 0.04𝑟)sinh(𝑡).

 (47) 

In the fuzzy tactic and in terms of 𝒰 one can collect and represent the expression in Eq. (47) as 

𝓍(𝑡) = 0.5(sin(𝑡) − cos(𝑡)) + 0.5𝑒−𝑡 +𝒰⨀cosh(𝑡) − 𝒰⨀ sinh(𝑡). (48) 

Status 2. The system of 𝛼(2)-crisp ABC FDE corresponding to 𝛼(2)-fuzzy ABC fractional derivative is 

{
 
 

 
 𝒟𝑡

𝛼(1)
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡) = −𝓍1𝓇(𝑡) + sin(𝑡),

𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡) = −𝓍2𝓇(𝑡) + sin(𝑡),

𝓍1𝓇(0) = 0.96 + 0.04𝓇,

𝓍2𝓇(0) = 1.01 − 0.01𝓇.

 (49) 

The analytic fuzzy solutions of Eqs. (49) when 𝛼 = 1 is 

{
𝓍1𝓇(𝑡) = 0.5(sin(𝑡) − cos(𝑡)) + 0.5𝑒

−𝑡 + (0.96 + 0.04𝓇)𝑒−𝑡,

𝓍2𝓇(𝑡) = 0.5(sin(𝑡) − cos(𝑡)) + 0.5𝑒
−𝑡 + (1.01 − 0.01𝓇)𝑒−𝑡.

 (50) 

In the fuzzy tactic and terms of 𝒰 one can collect and represent the expression in Eq. (50) as 

𝓍(𝑡) = 0.5(sin(𝑡) − cos(𝑡)) + 0.5𝑒−𝑡 +𝒰⨀𝑒−𝑡. (51) 

Application 2 Now, look for the underlying fuzzy ABC FFIVP with fuzzy forcing term: 

{
𝒟𝑡
𝛼𝓍(𝑡)0

𝐴𝐵𝐶 = 𝒻(𝑡, 𝓍(𝑡)),

𝑥(0) = 𝒰,
 (52) 

indeed 𝓍:𝒯 → ℱ(ℝ) and 𝒻:𝒯 × ℱ(ℝ) → ℱ(ℝ) with 

𝒻(𝑡, 𝓍(𝑡)) = 2𝑡𝓍(𝑡) + 𝑡𝒰, (53) 
 

𝒫(𝑠) = max(0,1 − |𝑠|), (54) 

where 𝛼 ∈ (0,1], 𝑡 ∈ 𝒯, and 𝑠 ∈ ℝ. 

The underlying subsequent coupled crisp systems of ABC FDE in term of 𝓇-cut impersonation that are linked 

to 𝛼(1)- and 𝛼(1)-fuzzy ABC FFIVP of Eqs. (52), (53), and (54) can be appearing with one another as 

Status 1. The system of 𝛼(1)-crisp ABC FDE corresponding to 𝛼(1)-fuzzy ABC fractional derivative is 

{
 
 

 
 𝒟𝑡

𝛼(1)
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡) = 2𝑡𝓍1𝓇(𝑡) + 𝑡(𝓇 − 1),

𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡) = 2𝑡𝓍2𝓇(𝑡) + 𝑡(1 − 𝓇),

𝓍1𝓇(0) = 𝓇 − 1,

𝓍2𝓇(0) = 1 − 𝓇.

 (55) 

The analytic fuzzy solutions of Eqs. (55) when 𝛼 = 1 is 

{
𝓍1𝓇(𝑡) = 0.5(𝓇 − 1)(3𝑒

𝑡2 − 1),

𝓍2𝓇(𝑡) = 0.5(1 − 𝓇)(3𝑒
𝑡2 − 1).

 (56) 

In the fuzzy tactic and terms of 𝒰 one can collect and represent the expression in Eq. (56) as 

𝓍(𝑡) = 0.5⨀𝒰⨀(3𝑒𝑡
2
− 1). (57) 

Status 2. The system of 𝛼(2)-crisp ABC FDE corresponding to 𝛼(2)-fuzzy ABC fractional derivative is 

{
 
 

 
 𝒟𝑡

𝛼(1)
0

𝐴𝐵𝐶 𝓍1𝓇(𝑡) = 2𝑡𝓍2𝓇(𝑡) + 𝑡(1 − 𝓇),

𝒟𝑡
𝛼(1)

0
𝐴𝐵𝐶 𝓍2𝓇(𝑡) = 2𝑡𝓍1𝓇(𝑡) + 𝑡(𝓇 − 1),

𝓍1𝓇(0) = 𝓇 − 1,

𝓍2𝓇(0) = 1 − 𝓇.

 (58) 

The analytic fuzzy solutions of Eqs. (58) when 𝛼 = 1 is 
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{
𝓍1𝓇(𝑡) = 0.5(𝓇 − 1)(3𝑒

−𝑡2 − 1),

𝓍2𝓇(𝑡) = 0.5(1 − 𝓇)(3𝑒
−𝑡2 − 1).

 (59) 

In the fuzzy tactic and terms of 𝒰 one can collect and represent the expression in Eq. (59) as 

𝓍(𝑡) = 0.5⨀𝒰⨀(3𝑒−𝑡
2
− 1). (60) 

10  Results, Analysis, and Talks 

In the previous two fuzzy applications, the readers should memorandum that the non-attendance of fuzzy ABC 

analytic solutions for various 𝛼 ∈ (0,1] does not affect the obtained numerical results; because we have plotted 

the fuzzy ABC numerical solutions at different values of 𝛼 which have been guaranteed from the prior 

convergence theorems. 

Anyhow, by catching the following underlying inputs: 𝑡𝑖 =
𝑖

𝑛
 at 𝑖 = 0,1,… , 𝑛 = 21 on 𝒯 and 𝓇𝜂 =

𝜂

𝑚
 at 𝜂 =

0,1,3,𝑚 = 4 on ℐ in [𝓍𝑛(𝑡𝑖)]𝓇𝜂
𝑇  with using of Algorithms 1, 2, and 3 in all computations effects over 𝛼 ∈ (0,1] and 

𝑡 ∈ 𝒯; a set of numerical data are listed in the following attached tables side by side with attached figures. 

In the running tables; several numerical effectiveness has been gained and exhibited for both presented 

applications. Anyhow, Tables 1 and 2 related to Application 1 and utilized the absolute errors for approximating 

the fuzzy ABC solutions in phases of 𝛼(1)- and 𝛼(2)-fuzzy ABC fractional derivative, with one another. Whilst, 

Tables 3 and 4 related to Application 2 and utilized the absolute errors for approximating the fuzzy ABC solutions 

in phases of 𝛼(1)- and 𝛼(2)-fuzzy ABC fractional derivative, with one another. 

Table 1. Numerical outcomes in form of absolute errors in Applications 1 in phase of 𝛼(1)-fuzzy ABC fractional 
derivative using RKHSM. 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍1𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 6.5316019 × 10−6 6.4963275 × 10−6 6.4610530 × 10−6 6.4257787 × 10−6 6.3905043 × 10−6 
0.4 4.7281578 × 10−6 4.6720920 × 10−6 4.6160263 × 10−6 4.5599606 × 10−6 4.5038949 × 10−6 
0.6 3.3436333 × 10−6 3.2633070 × 10−6 3.1829808 × 10−6 3.1026546 × 10−6 3.0223283 × 10−6 
0.8 2.3053850 × 10−6 2.1958916 × 10−6 2.0863983 × 10−6 1.9769050 × 10−6 1.8674116 × 10−6 
1.0 1.5600204 × 10−6 1.4147544 × 10−6 1.2694885 × 10−6 1.1242225 × 10−6 9.7895651 × 10−7 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍2𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 6.0984787 × 10−6 6.1714850 × 10−6 6.2444915 × 10−6 6.3174979 × 10−6 6.3905043 × 10−6 
0.4 4.1654746 × 10−6 4.2500797 × 10−6 4.3346850 × 10−6 4.4192898 × 10−6 4.5038949 × 10−6 
0.6 2.6152480 × 10−6 2.7170181 × 10−6 2.8187882 × 10−6 2.9205583 × 10−6 3.0223283 × 10−6 
0.8 1.3655063 × 10−6 1.4909826 × 10−6 1.6164590 × 10−6 1.7419353 × 10−6 1.8674116 × 10−6 
1.0 3.5070339 × 10−7 5.0776668 × 10−7 6.6482996 × 10−7 8.2189324 × 10−7 9.7895651 × 10−7 

 

Table 2. Numerical outcomes in form of absolute errors in Applications 1 in phase of 𝛼(2)-fuzzy ABC fractional 
derivative using RKHSM. 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍1𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 6.1892670 × 10−6 6.2395763 × 10−6 6.2898856 × 10−6 6.3401950 × 10−6 6.3905042 × 10−6 
0.4 4.3516851 × 10−6 4.3897375 × 10−6 4.4277900 × 10−6 4.4658424 × 10−6 4.5038948 × 10−6 
0.6 2.9079611 × 10−6 2.9365529 × 10−6 2.9651447 × 10−6 2.9937365 × 10−6 3.0223283 × 10−6 
0.8 1.7821690 × 10−6 1.8034797 × 10−6 1.8247903 × 10−6 1.8461010 × 10−6 1.8674116 × 10−6 
1.0 9.1603756 × 10−7 9.3176729 × 10−7 9.4749704 × 10−7 9.6322677 × 10−7 9.7895651 × 10−7 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍2𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 6.4408136 × 10−6 6.4282360 × 10−6 6.4156589 × 10−6 6.4030816 × 10−6 6.3905043 × 10−6 
0.4 4.5419473 × 10−6 4.5324342 × 10−6 4.5229210 × 10−6 4.5134080 × 10−6 4.5038948 × 10−6 
0.6 3.0509201 × 10−6 3.0437722 × 10−6 3.0366242 × 10−6 3.0294763 × 10−6 3.0223283 × 10−6 
0.8 1.8887223 × 10−6 1.8833946 × 10−6 1.8780670 × 10−6 1.8727393 × 10−6 1.8674116 × 10−6 
1.0 9.9468626 × 10−7 9.9075382 × 10−7 9.8682139 × 10−7 9.8288895 × 10−7 9.7895651 × 10−7 

 



14 
 

Table 3. Numerical outcomes in form of absolute errors in Applications 2 in phase of 𝛼(1)-fuzzy ABC fractional 
derivative using RKHSM. 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍1𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 3.0463929 × 10−6 2.2847946 × 10−6 1.5231964 × 10−6 7.6159820 × 10−7 0 

0.4 8.9454505 × 10−6 6.7090879 × 10−6 4.4727253 × 10−6 2.2363626 × 10−6 0 

0.6 2.3237533 × 10−5 1.7428150 × 10−5 1.1618767 × 10−5 5.8093833 × 10−6 0 

0.8 5.9996031 × 10−5 4.4997023 × 10−5 2.9998016 × 10−5 1.4999008 × 10−5 0 

1.0 1.5758910 × 10−5 1.1819183 × 10−5 7.8794551 × 10−5 3.9397276 × 10−5 0 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍2𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 3.0463929 × 10−6 2.2847946 × 10−6 1.5231964 × 10−6 7.6159820 × 10−7 0 

0.4 8.9454505 × 10−6 6.7090879 × 10−6 4.4727253 × 10−6 2.2363626 × 10−6 0 

0.6 2.3237533 × 10−5 1.7428150 × 10−5 1.1618767 × 10−5 5.8093833 × 10−6 0 

0.8 5.9996031 × 10−5 4.4997023 × 10−5 2.9998016 × 10−5 1.4999008 × 10−5 0 

1.0 1.5758910 × 10−5 1.1819183 × 10−5 7.8794551 × 10−5 3.9397276 × 10−5 0 
 

Table 4. Numerical outcomes in form of absolute errors in Applications 2 in phase of 𝛼(2)-fuzzy ABC fractional 
derivative using RKHSM. 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍1𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 2.3624048 × 10−6 1.7718036 × 10−6 1.1812024 × 10−6 5.9060119 × 10−7 0 

0.4 2.9107354 × 10−6 2.1830515 × 10−6 1.4553677 × 10−6 7.2768384 × 10−7 0 

0.6 1.0383274 × 10−6 7.7874556 × 10−7 5.1916371 × 10−7 2.5958186 × 10−7 0 

0.8 2.0213038 × 10−6 1.5159778 × 10−6 1.0106520 × 10−6 5.0532593 × 10−7 0 

1.0 4.3374140 × 10−6 3.2530605 × 10−6 2.1687070 × 10−6 1.0843535 × 10−6 0 

 𝑡𝑖 𝓇0 = 0 𝓇1 = 0.25 𝓇2 = 0.5 𝓇3 = 0.75 𝓇4 = 1 

𝓍2𝓇𝜂(𝑡𝑖) 

0 0 0 0 0 0 
0.2 2.3624048 × 10−6 1.7718036 × 10−6 1.1812024 × 10−6 5.9060119 × 10−7 0 

0.4 2.9107354 × 10−6 2.1830515 × 10−6 1.4553677 × 10−6 7.2768384 × 10−7 0 

0.6 1.0383274 × 10−6 7.7874556 × 10−7 5.1916371 × 10−7 2.5958186 × 10−7 0 

0.8 2.0213038 × 10−6 1.5159778 × 10−6 1.0106520 × 10−6 5.0532593 × 10−7 0 

1.0 4.3374140 × 10−6 3.2530605 × 10−6 2.1687070 × 10−6 1.0843535 × 10−6 0 

Finally, the geometric dynamical behaviors over the heritage and memory characteristics are seeking. In 

the running individual figures; geometrical attributives have been gained and exhibited for both presented 

applications over 𝛼 ∈ (0,1], 𝑡 ∈ 𝒯, and 𝓇 ∈ ℐ. Anyhow, Figures 1 and 2 related to Application 1 and plotted the 

fuzzy ABC numerical solution in phases of 𝛼(1)- and 𝛼(2)-fuzzy ABC fractional derivative with one another. 

Whilst, Figures 3 and 4 related to Application 2 and plotted the fuzzy ABC numerical solution in phases of 

𝛼(1)- and 𝛼(2)-fuzzy ABC fractional derivative with one another. 
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Figure 1: Computation of 𝛼(1)-fuzzy ABC solution of Application 1 obtained from the RKHSM: (a) 𝛼 = 1, (b) 𝛼 =
0.95, (c) 𝛼 = 0.90, and (d) 𝛼 = 0.85 wheresoever 𝓍1𝓇(𝑡): red offshoot and 𝓍2𝓇(𝑡): brown offshoot. 
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Figure 2: Computation of 𝛼(2)-fuzzy ABC solution of Application 1 obtained from the RKHSM: (a) 𝛼 = 1, (b) 𝛼 =
0.95, (c) 𝛼 = 0.90, and (d) 𝛼 = 0.85 wheresoever 𝓍1𝓇(𝑡): red offshoot and 𝓍2𝓇(𝑡): brown offshoot. 
 

  

  
Figure 3: Computation of 𝛼(1)-fuzzy ABC solution of Application 2 obtained from the RKHSM: (a) 𝛼 = 1, (b) 𝛼 =
0.95, (c) 𝛼 = 0.90, and (d) 𝛼 = 0.85 wheresoever 𝓍1𝓇(𝑡): red offshoot and 𝓍2𝓇(𝑡): brown offshoot. 
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Figure 4: Computation of 𝛼(2)-fuzzy ABC solution of Application 2 obtained from the RKHSM: (a) 𝛼 = 1, (b) 𝛼 =
0.95, (c) 𝛼 = 0.90, and (d) 𝛼 = 0.85 wheresoever 𝓍1𝓇(𝑡): red offshoot and 𝓍2𝓇(𝑡): brown offshoot. 

One can be observed from the graphs the underlying notes: all plots are almost matched and are analogous in 

their behaviors; the plots are in pretty contract with each other, essentially when theorizing the fuzzy ABC 

traditional derivative of 𝛼 = 1; and the fuzzy ABC FIVPs have powerful belongings on the model profiles. 

11  Highlight and Future Research 

In this novel analysis, fuzzy ABC fractional derivative, fuzzy ABC FIVPs, and fuzzy ABC solutions are discussed and 

utilized for the first time. Indeed, FSGD in the ABC sense and characterization theorem are likewise discussed for 

the first time as well. Also, the RKHSM is offered in detail as a novel version solver for such fuzzy ABC FIVPs. Over 

and above, a computational algorithm concerned with characterizing fuzzy ABC solutions is given. In this 

direction, two applications on fuzzy ABC FIVPs are fitted to conform to the approaching theoretical analysis in the 

fuzzy ABC calculus. Hereafter, those proposed extended can be used efficaciously as a substitution planner in the 

formulation of various kinds of uncertain differential problems under investigation in engineering and applied 

sciences. Our future research will be analyzed and arrange fuzzy ABC fractional integrodifferential equations. 
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