9. References
Abrams, M. D. (1990). Adaptations and responses to drought in Quercus
species of North America. Tree physiology 7 , 227−238.
Abrams, M. D. (2003). Where has all the white oak
gone?. BioScience 53, 927−939.
Addington, R. N., Donovan, L. A., Mitchell, R. J., et al. (2006).
Adjustments in hydraulic architecture of Pinus palustris maintain
similar stomatal conductance in xeric and mesic habitats. Plant,
Cell & Environment 29, 535−545.
Alder, N. N., Sperry, J. S., & Pockman, W. T. (1996). Root and stem
xylem embolism, stomatal conductance, and leaf turgor in Acer
grandidentatum populations along a soil moisture
gradient. Oecologia 105, 293−301.
Ambrose, A. R., Sillett, S. C., & Dawson, T. E. (2009). Effects of tree
height on branch hydraulics, leaf structure and gas exchange in
California redwoods. Plant, Cell & Environment 32,743−757.
Anderegg, W. R. (2015). Spatial and temporal variation in plant
hydraulic traits and their relevance for climate change impacts on
vegetation. New Phytologist 205, 1008−1014.
Au, T. F., Maxwell, J. T., Novick, K. A., et al. (2020).
Demographic shifts in eastern US forests increase the impact of
late‐season drought on forest growth. Ecography , 43,1475−1486.
Awad, H., Barigah, T., Badel, E., Cochard, H., & Herbette, S. (2010).
Poplar vulnerability to xylem cavitation acclimates to drier soil
conditions. Physiologia Plantarum 139, 280−288.
Beikircher, B., & Mayr, S. (2009). Intraspecific differences in drought
tolerance and acclimation in hydraulics of Ligustrum vulgare and
Viburnum lantana. Tree Physiology 29, 765−775.
Bhaskar, R., & Ackerly, D. D. (2006). Ecological relevance of minimum
seasonal water potentials. Physiologia Plantarum 127,353−359.
Bond, B. J., & Kavanagh, K. L. (1999). Stomatal behavior of four woody
species in relation to leaf-specific hydraulic conductance and threshold
water potential. Tree Physiology 19, 503−510.
Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., &
Shackel, K. A. (2010). The dynamics of embolism repair in xylem: in vivo
visualizations using high-resolution computed tomography. Plant
physiology 154, 1088−1095.
Buckley, T. N. (2005). The control of stomata by water
balance. New phytologist 168, 275−292.
Burgess, S. S., Pittermann, J., & Dawson, T. E. (2006). Hydraulic
efficiency and safety of branch xylem increases with height in Sequoia
sempervirens (D. Don) crowns. Plant, Cell &
Environment 29, 229−239.
Cavender-Bares, J., & Bazzaz, F. A. (2000). Changes in drought response
strategies with ontogeny in Quercus rubra: implications for scaling from
seedlings to mature trees. Oecologia 124, 8−18.
Cavender-Bares, J. (2016). Diversity, distribution and ecosystem
services of the North American oaks. International
oaks 27, 37−48.
Cavender‐Bares, J. (2019). Diversification, adaptation, and community
assembly of the American oaks (Quercus), a model clade for integrating
ecology and evolution. New Phytologist 221, 669−692.
Charra-Vaskou, K., Charrier, G., Wortemann, R., et al. (2012).
Drought and frost resistance of trees: a comparison of four species at
different sites and altitudes. Annals of Forest
Science 69, 325−333.
Choat, B., Drayton, W. M., Brodersen, C., Matthews, et al.(2010). Measurement of vulnerability to water stress‐induced cavitation
in grapevine: a comparison of four techniques applied to a long‐vesseled
species. Plant, Cell & Environment 33, 1502−1512.
Choat, B., Jansen, S., Brodribb, T. J., et al. (2012). Global
convergence in the vulnerability of forests to
drought. Nature 491, 752−755.
Cochard, H., & Tyree, M. T. (1990). Xylem dysfunction in Quercus:
vessel sizes, tyloses, cavitation and seasonal changes in
embolism. Tree Physiology 6, 393−407.
Cochard, H., Herbette, S., Barigah, T., et al. (2010). Does
sample length influence the shape of xylem embolism vulnerability
curves? A test with the Cavitron spinning technique. Plant, Cell
& Environment 33, 1543−1552.
Cochard, H., Badel, E., Herbette, S., et al. (2013). Methods for
measuring plant vulnerability to cavitation: a critical
review. Journal of Experimental Botany 64, 4779−4791.
Dai, A. (2011). Drought under global warming: a review. Wiley
Interdisciplinary Reviews: Climate Change 2, 45−65.
Davis, S. D., Sperry, J. S., & Hacke, U. G. (1999). The relationship
between xylem conduit diameter and cavitation caused by
freezing. American journal of botany 86, 1367−1372.
Delzon, S., & Cochard, H. (2014). Recent advances in tree hydraulics
highlight the ecological significance of the hydraulic safety
margin. New Phytologist 203, 355−358.
Denham, S. O., Oishi, A. C., Miniat, C. F., et al. (2021).
Eastern US deciduous tree species respond dissimilarly to declining soil
moisture but similarly to rising evaporative demand. Tree
Physiology 41 , 944−959.
Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the Eastern
and central United States: patterns and drivers. Global Change
Biology 17, 3312−3326.
Domec, J. C., & Gartner, B. L. (2001). Cavitation and water storage
capacity in bole xylem segments of mature and young Douglas-fir
trees. Trees 15, 204−214.
Domec, J. C., & Johnson, D. M. (2012). Does homeostasis or disturbance
of homeostasis in minimum leaf water potential explain the isohydric
versus anisohydric behavior of Vitis vinifera L. cultivars?. Tree
physiology 32, 245−248.
Domec, J. C., Ogée, J., Noormets, A., et al. (2012). Interactive
effects of nocturnal transpiration and climate change on the root
hydraulic redistribution and carbon and water budgets of southern United
States pine plantations. Tree Physiology 32, 707−723.
Durante, M., Maseda, P. H., & Fernández, R. J. (2011). Xylem efficiency
vs. safety: Acclimation to drought of seedling root anatomy for six
Patagonian shrub species. Journal of arid
environments 75, 397−402.
Elliott, K. J., & Swank, W. T. (1994). Impacts of drought on tree
mortality and growth in a mixed hardwood forest. Journal of
Vegetation Science 5, 229−236.
Elliott, K. J., Miniat, C. F., Pederson, N., & Laseter, S. H. (2015).
Forest tree growth response to hydroclimate variability in the southern
Appalachians. Global Change Biology 21, 4627−4641.
Ewers, B. E., Mackay, D. S., & Samanta, S. (2007). Interannual
consistency in canopy stomatal conductance control of leaf water
potential across seven tree species. Tree Physiology 27,11−24.
Fei, S., Kong, N., Steiner, K. C., et al. (2011). Change in oak
abundance in the Eastern United States from 1980 to 2008. Forest
Ecology and Management 262, 1370−1377.
Ficklin, D. L., & Novick, K. A. (2017). Historic and projected changes
in vapor pressure deficit suggest a continental‐scale drying of the
United States atmosphere. Journal of Geophysical Research:
Atmospheres 122, 2061−2079.
Flory, S. L., & Clay, K. (2010). Non-native grass invasion suppresses
forest succession. Oecologia 164, 1029−1038.
Fontes, C. G., & Cavender-Bares, J. (2020). Toward an integrated view
of the ‘elephant’: unlocking the mysteries of water transport and xylem
vulnerability in oaks. Tree physiology 40, 1-4.
Garcia-Forner, N., Biel, C., Savé, R., & Martínez-Vilalta, J. (2017).
Isohydric species are not necessarily more carbon limited than
anisohydric species during drought. Tree physiology 37,441−455.
Gea-Izquierdo, G., Fonti, P., Cherubini, P., et al. (2012). Xylem
hydraulic adjustment and growth response of Quercus canariensis Willd.
to climatic variability. Tree Physiology 32, 401−413.
Gu, L., Pallardy, S. G., Hosman, K. P., & Sun, Y. (2015).
Drought-influenced mortality of tree species with different predawn leaf
water dynamics in a decade-long study of a central US
forest. Biogeosciences 12, 2831−2845.
Gu, L., Pallardy, S. G., Yang, B., et al. (2016). Testing a land
model in ecosystem functional space via a comparison of observed and
modeled ecosystem flux responses to precipitation regimes and associated
stresses in a Central US forest. Journal of Geophysical Research:
Biogeosciences 121, 1884−1902.
Herbette, S., Wortemann, R., Awad, H., et al. (2010). Insights
into xylem vulnerability to cavitation in Fagus sylvatica L.: phenotypic
and environmental sources of variability. Tree
physiology 30, 1448−1455.
Hochberg, U., Rockwell, F. E., Holbrook, N. M., & Cochard, H. (2018).
Iso/anisohydry: a plant–environment interaction rather than a simple
hydraulic trait. Trends in Plant Science 23, 112−120.
Holtzman, N. M., Anderegg, L. D., Kraatz, S., et al. . (2021).
L-band vegetation optical depth as an indicator of plant water potential
in a temperate deciduous forest
stand. Biogeosciences 18, 739−753.
Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008).
Estimating potential habitat for 134 eastern US tree species under six
climate scenarios. Forest ecology and
management 254, 390−406.
Johnson, D. M., Wortemann, R., McCulloh, K. A., et al. (2016). A
test of the hydraulic vulnerability segmentation hypothesis in
angiosperm and conifer tree species. Tree physiology 36,983−993.
Johnson, D. M., Domec, J. C., Carter Berry, Z., et al. (2018).
Co‐occurring woody species have diverse hydraulic strategies and
mortality rates during an extreme drought. Plant, Cell &
Environment 41, 576−588.
Kannenberg, S. A., Novick, K. A., & Phillips, R. P. (2019). Anisohydric
behavior linked to persistent hydraulic damage and delayed drought
recovery across seven North American tree species. New
Phytologist 222, 1862−1872.
Kennedy, D., Swenson, S., Oleson, K. W., et al. (2019).
Implementing plant hydraulics in the community land model, version
5. Journal of Advances in Modeling Earth Systems 11,485−513.
Klein, T. (2014). The variability of stomatal sensitivity to leaf water
potential across tree species indicates a continuum between isohydric
and anisohydric behaviours. Functional ecology 28,1313−1320.
Köcher, P., Horna, V., & Leuschner, C. (2013). Stem water storage in
five coexisting temperate broad-leaved tree species: significance,
temporal dynamics and dependence on tree functional traits. Tree
physiology 33, 817−832.
Konings, A. G., & Gentine, P. (2017). Global variations in
ecosystem‐scale isohydricity. Global change biology 23,891−905.
Lamarque, L. J., Corso, D., Torres-Ruiz, J. M., et al. (2018). An
inconvenient truth about xylem resistance to embolism in the model
species for refilling Laurus nobilis L. Annals of Forest Science75, 1−15.
Lamy, J. B., Delzon, S., Bouche, P. S., et al . (2014). Limited
genetic variability and phenotypic plasticity detected for cavitation
resistance in a Mediterranean pine. New Phytologist 201,874−886.
Lanning, M., Wang, L., Benson, M., et al. (2020). Canopy isotopic
investigation reveals different water uptake dynamics of maples and
oaks. Phytochemistry 175, 112389.
Leach, J. E., Woodhead, T., & Day, W. (1982). Bias in pressure chamber
measurements of leaf water potential. Agricultural
Meteorology 27, 257−263.
Li, X., Blackman, C. J., Peters, J. M., et al . (2019). More than
iso/anisohydry: hydroscapes integrate plant water use and drought
tolerance traits in 10 eucalypt species from contrasting
climates. Functional Ecology 33, 1035−1049.
Lobo, A., Torres-Ruiz, J. M., Burlett, R., et al . (2018).
Assessing inter-and intraspecific variability of xylem vulnerability to
embolism in oaks. Forest ecology and management 424,53−61.
Macalady, A. K., & Bugmann, H. (2014). Growth-mortality relationships
in piñon pine (Pinus edulis) during severe droughts of the past century:
shifting processes in space and time. PloS one 9,e92770.
Maherali, H., & DeLucia, E. H. (2000). Xylem conductivity and
vulnerability to cavitation of ponderosa pine growing in contrasting
climates. Tree Physiology 20, 859−867.
Maherali, H., Moura, C. F., Caldeira, M. C., et al . (2006).
Functional coordination between leaf gas exchange and vulnerability to
xylem cavitation in temperate forest trees. Plant, Cell &
Environment 29, 571−583.
Martin-StPaul, N. K., Longepierre, D., Huc, R., et al . (2014).
How reliable are methods to assess xylem vulnerability to cavitation?
The issue of ‘open vessel’artifact in oaks. Tree
physiology 34, 894−905.
Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., et al. (2009).
Hydraulic adjustment of Scots pine across Europe. New
Phytologist 184, 353−364.
Martínez‐Vilalta, J., Poyatos, R., Aguadé, D., et al. (2014). A
new look at water transport regulation in plants. New
phytologist 204, 105−115.
Martínez‐Vilalta, J., & Garcia‐Forner, N. (2017). Water potential
regulation, stomatal behaviour and hydraulic transport under drought:
deconstructing the iso/anisohydric concept. Plant, Cell &
Environment 40, 962−976.
Martínez-Vilalta, J., Santiago, L. S., Poyatos, R., et al.(2021). Towards a statistically robust determination of minimum water
potential and hydraulic risk in plants. New Phytologist , in
press.
Matheny, A. M., Bohrer, G., Garrity, S. R., et al. (2015).
Observations of stem water storage in trees of opposing hydraulic
strategies. Ecosphere 6, 1−13.
Matheny, A. M., Fiorella, R. P., Bohrer, G., et al. (2017).
Contrasting strategies of hydraulic control in two codominant temperate
tree species. Ecohydrology 10, e1815.
McDowell, N., Barnard, H., Bond, B., et al. (2002). The
relationship between tree height and leaf area: sapwood area
ratio. Oecologia 132, 12−20.
McDowell, N., Pockman, W. T., Allen, C. D., et al. (2008).
Mechanisms of plant survival and mortality during drought: why do some
plants survive while others succumb to drought?. New
phytologist 178, 719−739.
McEwan, R. W., Dyer, J. M., & Pederson, N. (2011). Multiple interacting
ecosystem drivers: toward an encompassing hypothesis of oak forest
dynamics across eastern North America. Ecography 34,244−256.
Meddens, A. J., Hicke, J. A., Macalady, A. K., et al. (2015).
Patterns and causes of observed piñon pine mortality in the southwestern
United States. New Phytologist 206, 91−97.
Meier, I. C., & Leuschner, C. (2008). Genotypic variation and
phenotypic plasticity in the drought response of fine roots of European
beech. Tree physiology 28, 297−309.
Meinzer, F. C., Campanello, P. I., Domec, J. C., et al. (2008).
Constraints on physiological function associated with branch
architecture and wood density in tropical forest trees. Tree
Physiology 28, 1609−1617.
Meinzer, F. C., & McCulloh, K. A. (2013). Xylem recovery from
drought-induced embolism: where is the hydraulic point of no
return?. Tree physiology 33, 331−334.
Meinzer, F. C., Woodruff, D. R., Eissenstat, D. M., et al .
(2013). Above-and belowground controls on water use by trees of
different wood types in an eastern US deciduous forest. Tree
physiology 33, 345−356.
Meinzer, F. C., Woodruff, D. R., Marias, D. E., et al. (2014).
Dynamics of leaf water relations components in co‐occurring iso‐and
anisohydric conifer species. Plant, Cell &
Environment 37, 2577−2586.
Meinzer, F. C., Woodruff, D. R., Marias, et al. (2016). Mapping
‘hydroscapes’ along the iso‐to anisohydric continuum of stomatal
regulation of plant water status. Ecology letters 19,1343−1352.
Meinzer, F. C., Smith, D. D., Woodruff, D. R., et al. (2017).
Stomatal kinetics and photosynthetic gas exchange along a continuum of
isohydric to anisohydric regulation of plant water status. Plant,
cell & environment 40, 1618−1628.
Mirfenderesgi, G., Matheny, A. M., & Bohrer, G. (2019). Hydrodynamic
trait coordination and cost–benefit trade‐offs throughout the
isohydric–anisohydric continuum in
trees. Ecohydrology 12, e2041.
Naudts, K., Ryder, J., McGrath, M. J., et al. (2015). A
vertically discretised canopy description for ORCHIDEE (SVN r2290) and
the modifications to the energy, water and carbon
fluxes. Geoscientific Model Development 8, 2035−2065.
Novick, K., Oren, R., Stoy, P., et al. (2009). The relationship
between reference canopy conductance and simplified hydraulic
architecture. Advances in Water Resources 32, 809−819.
Novick, K. A., Ficklin, D. L., Stoy, P. C., et al. (2016). The
increasing importance of atmospheric demand for ecosystem water and
carbon fluxes. Nature climate change 6, 1023−1027.
Novick, K. A., Konings, A. G., & Gentine, P. (2019). Beyond soil water
potential: An expanded view on isohydricity including land–atmosphere
interactions and phenology. Plant, cell &
environment 42, 1802−1815.
Ogasa, M., Miki, N. H., Murakami, Y., & Yoshikawa, K. (2013). Recovery
performance in xylem hydraulic conductivity is correlated with
cavitation resistance for temperate deciduous tree species. Tree
physiology 33, 335−344.
Oishi, A. C., Oren, R., Novick, K. A., et al. (2010). Interannual
invariability of forest evapotranspiration and its consequence to water
flow downstream. Ecosystems 13, 421−436.
Oishi, A. C., Miniat, C. F., Novick, K. A., et al. (2018). Warmer
temperatures reduce net carbon uptake, but do not affect water use, in a
mature southern Appalachian forest. Agricultural and forest
meteorology 252, 269−282.
Olivier, M. D., Robert, S., & Fournier, R. A. (2016). Response of sugar
maple (Acer saccharum, Marsh.) tree crown structure to competition in
pure versus mixed stands. Forest Ecology and Management374, 20−32.
Pan, Y., Chen, J. M., Birdsey, R., et al. (2011). Age structure
and disturbance legacy of North American forests. Biogeosciences8, 715−732.
Peguero-Pina, J. J., Mendoza-Herrer, Ó., Gil-Pelegrín, E., &
Sancho-Knapik, D. (2018). Cavitation limits the recovery of gas exchange
after severe drought stress in holm oak (Quercus ilex
L.). Forests 9 , 443.
Percolla, M. I., Fickle, J. C., Rodríguez-Zaccaro, F. D., et al.(2021). Hydraulic function and conduit structure in the xylem of five
oak species. IAWA Journal 1, 1−20.
Phillips, N., Oren, R., & Zimmermann, R. (1996). Radial patterns of
xylem sap flow in non‐, diffuse‐and ring‐porous tree
species. Plant, Cell & Environment 19, 983−990.
Plaut, J. A., Yepez, E. A., Hill, J., et al. (2012). Hydraulic
limits preceding mortality in a piñon–juniper woodland under
experimental drought. Plant, Cell & Environment 35,1601−1617.
Richter, H. (1997). Water relations of plants in the field: some
comments on the measurement of selected parameters. Journal of
Experimental Botany 48, 1−7.
Roman, D. T., Novick, K. A., Brzostek, E. R., et al. (2015). The
role of isohydric and anisohydric species in determining ecosystem-scale
response to severe drought. Oecologia 179, 641−654.
Scholz, A., Klepsch, M., Karimi, Z., & Jansen, S. (2013). How to
quantify conduits in wood?. Frontiers in plant
science 4, 56.
Schultz, H. R. (2003). Differences in hydraulic architecture account for
near‐isohydric and anisohydric behaviour of two field‐grown Vitis
vinifera L. cultivars during drought. Plant, Cell &
Environment 26, 1393−1405.
Simonin, K. A., Burns, E., Choat, B., et al . (2015). Increasing
leaf hydraulic conductance with transpiration rate minimizes the water
potential drawdown from stem to leaf. Journal of Experimental
Botany 66, 1303−1315.
Skelton, R. P., West, A. G., & Dawson, T. E. (2015). Predicting plant
vulnerability to drought in biodiverse regions using functional
traits. Proceedings of the National Academy of
Sciences 112, 5744−5749.
Skelton, R. P., Dawson, T. E., Thompson, S. E., et al. (2018).
Low vulnerability to xylem embolism in leaves and stems of North
American oaks. Plant Physiology 177, 1066−1077.
Skelton, R. P., Anderegg, L. D., Diaz, J., et al. (2021).
Evolutionary relationships between drought-related traits and climate
shape large hydraulic safety margins in western North American
oaks. Proceedings of the National Academy of Sciences