References
Alarcón, C.R., Goodarzi, H., Lee, H., Liu, X., Tavazoie, S., and Tavazoie, S.F. (2015a). HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events. Cell 162 : 1299–1308.
Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N., and Tavazoie, S.F. (2015b). N6-methyladenosine marks primary microRNAs for processing. Nature 519 : 482–485.
Allis, C.D., and Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17 : 487–500.
Anadón, C., Guil, S., Simó-Riudalbas, L., Moutinho, C., Setien, F., Martínez-Cardús, A., et al. (2016a). Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumourigenesis. Oncogene 35 : 4407–4413.
Anadón, C., Guil, S., Simó-Riudalbas, L., Moutinho, C., Setien, F., Martínez-Cardús, A., et al. (2016b). Gene amplification-associated overexpression of the RNA editing enzyme ADAR1 enhances human lung tumourigenesis. Oncogene 35 : 4407–4413.
Ballestar, E., and Li, T. (2017). New insights into the epigenetics of inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 13 : 593–605.
Barbieri, I., and Kouzarides, T. (2020). Role of RNA modifications in cancer. Nat. Rev. Cancer 20 : 303–322.
Barbieri, I., Tzelepis, K., Pandolfini, L., Shi, J., Millán-Zambrano, G., Robson, S.C., et al. (2017). Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature 552 : 126–131.
Bedi, R.K., Huang, D., Eberle, S.A., Wiedmer, L., Śledź, P., and Caflisch, A. (2020). Small‐Molecule Inhibitors of METTL3, the Major Human Epitranscriptomic Writer. ChemMedChem 15 : 744–748.
Behm, M., Wahlstedt, H., Widmark, A., Eriksson, M., and Öhman, M. (2017). Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J. Cell Sci. 130 : 745–753.
Berdasco, M., and Esteller, M. (2018). Clinical epigenetics: seizing opportunities for translation. Nat. Rev. Genet.
Berdasco, M., and Esteller, M. (2019). Clinical epigenetics: seizing opportunities for translation. Nat. Rev. Genet. 20 : 109–127.
Boccaletto, P., Machnicka, M.A., Purta, E., Piątkowski, P., Bagiński, B., Wirecki, T.K., et al. (2018). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 46 : D303–D307.
Boriack-Sjodin, P.A., Gardino, A.K., Wynn, T.A., Buker, S.M., Laidlaw, M., Sickmier, E.A., et al. (2019). Abstract A112: Drug discovery efforts on the RNA protein methyltransferase METTL3/METTL14. In Drug Design, (American Association for Cancer Research), pp A112–A112.
Boriack-Sjodin, P.A., Ribich, S., and Copeland, R.A. (2018). RNA-modifying proteins as anticancer drug targets. Nat. Rev. Drug Discov. 17 : 435–453.
Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M., and Gilbert, W. V. (2014a). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature515 : 143–146.
Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M., and Gilbert, W. V. (2014b). Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature515 : 143–146.
Cavenagh, J.D., and Popat, R. (2018). Optimal Management of Histone Deacetylase Inhibitor-Related Adverse Events in Patients With Multiple Myeloma: A Focus on Panobinostat. Clin. Lymphoma. Myeloma Leuk.18 : 501–507.
Cenik, C., Chua, H.N., Singh, G., Akef, A., Snyder, M.P., Palazzo, A.F., et al. (2017). A common class of transcripts with 5′-intron depletion, distinct early coding sequence features, and N 1 -methyladenosine modification. RNA 23 : 270–283.
Chan, T.H.M., Lin, C.H., Qi, L., Fei, J., Li, Y., Yong, K.J., et al. (2014). A disrupted RNA editing balance mediated by ADARs (Adenosine DeAminases that act on RNA) in human hepatocellular carcinoma. Gut63 : 832–843.
Chan, T.H.M., Qamra, A., Tan, K.T., Guo, J., Yang, H., Qi, L., et al. (2016). ADAR-Mediated RNA Editing Predicts Progression and Prognosis of Gastric Cancer. Gastroenterology 151 : 637-650.e10.
Chellamuthu, A., and Gray, S.G. (2020). The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells 9 : 1758.
Chen, B., Ye, F., Yu, L., Jia, G., Huang, X., Zhang, X., et al. (2012). Development of Cell-Active N 6 -Methyladenosine RNA Demethylase FTO Inhibitor. J. Am. Chem. Soc. 134 : 17963–17971.
Chen, L., Li, Y., Lin, C.H., Chan, T.H.M., Chow, R.K.K., Song, Y., et al. (2013). Recoding RNA editing of AZIN1 predisposes to hepatocellular carcinoma. Nat. Med. 19 : 209–216.
Chen, T., Hao, Y.-J., Zhang, Y., Li, M.-M., Wang, M., Han, W., et al. (2015). m6A RNA Methylation Is Regulated by MicroRNAs and Promotes Reprogramming to Pluripotency. Cell Stem Cell 16 : 289–301.
Chen, X., Li, A., Sun, B.-F., Yang, Y., Han, Y.-N., Yuan, X., et al. (2019). 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21 : 978–990.
Chen, Y.-B., Liao, X.-Y., Zhang, J.-B., Wang, F., Qin, H.-D., Zhang, L., et al. (2017). ADAR2 functions as a tumour suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. Int. J. Oncol. 50 : 622–630.
Cheng, J.X., Chen, L., Li, Y., Cloe, A., Yue, M., Wei, J., et al. (2018). RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat. Commun. 9 : 1163.
Cossío, F.P., Esteller, M., and Berdasco, M. (2020). Towards a more precise therapy in cancer: Exploring epigenetic complexity. Curr. Opin. Chem. Biol. 57 : 41–49.
Cui, Q., Shi, H., Ye, P., Li, L., Qu, Q., Sun, G., et al. (2017). m 6 A RNA Methylation Regulates the Self-Renewal and Tumourigenesis of Glioblastoma Stem Cells. Cell Rep. 18 : 2622–2634.
Cully, M. (2019). Chemical inhibitors make their RNA epigenetic mark. Nat. Rev. Drug Discov. 18 : 892–894.
Dahal, U., Le, K., and Gupta, M. (2019). RNA m6A methyltransferase METTL3 regulates invasiveness of melanoma cells by matrix metallopeptidase 2. Melanoma Res. 29 : 382–389.
Dai, X., Wang, T., Gonzalez, G., and Wang, Y. (2018). Identification of YTH Domain-Containing Proteins as the Readers for N 1-Methyladenosine in RNA. Anal. Chem. 90 : 6380–6384.
Dai, Z., Ramesh, V., and Locasale, J.W. (2020). The evolving metabolic landscape of chromatin biology and epigenetics. Nat. Rev. Genet.
Deng, R., Cheng, Y., Ye, S., Zhang, J., Huang, R., Li, P., et al. (2019). m6A methyltransferase METTL3 suppresses colorectal cancer proliferation and migration through p38/ERK pathways. Onco. Targets. Ther. Volume 12 : 4391–4402.
Diesch, J., Zwick, A., Garz, A.-K., Palau, A., Buschbeck, M., and Götze, K.S. (2016). A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin. Epigenetics 8 : 71.
Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., et al. (2012). Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485 : 201–206.
Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M.S., et al. (2016). The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530 : 441–446.
Dou, N., Yu, S., Ye, X., Yang, D., Li, Y., and Gao, Y. (2016). Aberrant overexpression of ADAR1 promotes gastric cancer progression by activating mTOR/p70S6K signaling. Oncotarget 7 : 86161–86173.
Eisenberg, E., and Levanon, E.Y. (2018). A-to-I RNA editing — immune protector and transcriptome diversifier. Nat. Rev. Genet. 19 : 473–490.
Elkashef, S.M., Lin, A.-P., Myers, J., Sill, H., Jiang, D., Dahia, P.L.M., et al. (2017). IDH Mutation, Competitive Inhibition of FTO, and RNA Methylation. Cancer Cell 31 : 619–620.
Esteller, M., and Pandolfi, P.P. (2017). The Epitranscriptome of Noncoding RNAs in Cancer. Cancer Discov. 7 : 359–368.
Esteve-Puig, R., Climent, F., Piñeyro, D., Domingo-Domenech, E., Davalos, V., Encuentra, M., et al. (2020). Epigenetic Loss of m1A RNA Demethylase ALKBH3 in Hodgkin Lymphoma Targets Collagen Conferring Poor Clinical Outcome. Blood doi: 10.1182/blood.2020005823.
Frye, M., and Watt, F.M. (2006). The RNA Methyltransferase Misu (NSun2) Mediates Myc-Induced Proliferation and Is Upregulated in Tumours. Curr. Biol. 16 : 971–981.
Fu, Y., Dominissini, D., Rechavi, G., and He, C. (2014). Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15 : 293–306.
Galeano, F., Rossetti, C., Tomaselli, S., Cifaldi, L., Lezzerini, M., Pezzullo, M., et al. (2013). ADAR2-editing activity inhibits glioblastoma growth through the modulation of the CDC14B/Skp2/p21/p27 axis. Oncogene 32 : 998–1009.
Ganesan, A. (2018). Epigenetic drug discovery: a success story for cofactor interference. Philos. Trans. R. Soc. B Biol. Sci. 373 : 20170069.
Ganesan, A., Arimondo, P.B., Rots, M.G., Jeronimo, C., and Berdasco, M. (2019). The timeline of epigenetic drug discovery: from reality to dreams. Clin. Epigenetics 11 : 174.
Garcia-Campos, M.A., Edelheit, S., Toth, U., Safra, M., Shachar, R., Viukov, S., et al. (2019). Deciphering the “m6A Code” via Antibody-Independent Quantitative Profiling. Cell 178 : 731-747.e16.
Hamma, T., and Ferré-D’Amaré, A.R. (2006). Pseudouridine Synthases. Chem. Biol. 13 : 1125–1135.
Han, D., Liu, J., Chen, C., Dong, L., Liu, Y., Chang, R., et al. (2019a). Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 566 : 270–274.
Han, J., Wang, J., Yang, X., Yu, H., Zhou, R., Lu, H.-C., et al. (2019b). METTL3 promote tumour proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol. Cancer 18 : 110.
Hauser, A.-T., Robaa, D., and Jung, M. (2018). Epigenetic small molecule modulators of histone and DNA methylation. Curr. Opin. Chem. Biol.45 : 73–85.
He, Y., Selvaraju, S., Curtin, M.L., Jakob, C.G., Zhu, H., Comess, K.M., et al. (2017). The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex. Nat. Chem. Biol. 13 : 389–395.
Heck, A.M., Russo, J., Wilusz, J., Nishimura, E.O., and Wilusz, C.J. (2020). YTHDF2 destabilizes m 6 A-modified neural-specific RNAs to restrain differentiation in induced pluripotent stem cells. RNA26 : 739–755.
Hsu, P.J., Zhu, Y., Ma, H., Guo, Y., Shi, X., Liu, Y., et al. (2017). Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27 : 1115–1127.
Huang, H., Weng, H., Sun, W., Qin, X., Shi, H., Wu, H., et al. (2018). Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20 : 285–295.
Huang, H., Weng, H., Zhou, K., Wu, T., Zhao, B.S., Sun, M., et al. (2019a). Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally. Nature 567 : 414–419.
Huang, T., Chen, W., Liu, J., Gu, N., and Zhang, R. (2019b). Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol. 26 : 380–388.
Huang, Y., Su, R., Sheng, Y., Dong, L., Dong, Z., Xu, H., et al. (2019c). Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell 35 : 677-691.e10.
Huang, Y., Yan, J., Li, Q., Li, J., Gong, S., Zhou, H., et al. (2015). Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 43 : 373–384.
Hussain, S., Tuorto, F., Menon, S., Blanco, S., Cox, C., Flores, J. V., et al. (2013). The Mouse Cytosine-5 RNA Methyltransferase NSun2 Is a Component of the Chromatoid Body and Required for Testis Differentiation. Mol. Cell. Biol. 33 : 1561–1570.
Iles, M.M., Law, M.H., Stacey, S.N., Han, J., Fang, S., Pfeiffer, R., et al. (2013). A variant in FTO shows association with melanoma risk not due to BMI. Nat. Genet. 45 : 428–32, 432e1.
Ishizuka, J.J., Manguso, R.T., Cheruiyot, C.K., Bi, K., Panda, A., Iracheta-Vellve, A., et al. (2019). Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565 : 43–48.
Italiano, A., Soria, J.-C., Toulmonde, M., Michot, J.-M., Lucchesi, C., Varga, A., et al. (2018). Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19 : 649–659.
Jana, S., Hsieh, A.C., and Gupta, R. (2017). Reciprocal amplification of caspase-3 activity by nuclear export of a putative human RNA-modifying protein, PUS10 during TRAIL-induced apoptosis. Cell Death Dis. 8 : e3093–e3093.
Janin M, Ortiz-Barahona V, de Moura MC, Martínez-Cardús A, Llinàs-Arias P, Soler M, et al. (2019). Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 138 :1053-1074.
Jia, G., Fu, Y., Zhao, X., Dai, Q., Zheng, G., Yang, Y., et al. (2011). N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7 : 885–887.
Jiang, Q., Crews, L.A., Barrett, C.L., Chun, H.-J., Court, A.C., Isquith, J.M., et al. (2013a). ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci.110 : 1041–1046.
Jiang, Q., Crews, L.A., Barrett, C.L., Chun, H.-J., Court, A.C., Isquith, J.M., et al. (2013b). ADAR1 promotes malignant progenitor reprogramming in chronic myeloid leukemia. Proc. Natl. Acad. Sci.110 : 1041–1046.
Jones, P.A., Ohtani, H., Chakravarthy, A., and Carvalho, D.D. De (2019). Epigenetic therapy in immune-oncology. Nat. Rev. Cancer 19 : 151–161.
Kaniskan, H.Ü., Konze, K.D., and Jin, J. (2015a). Selective inhibitors of protein methyltransferases. J. Med. Chem. 58 : 1596–629.
Kaniskan, H.Ü., Konze, K.D., and Jin, J. (2015b). Selective inhibitors of protein methyltransferases. J. Med. Chem. 58 : 1596–629.
Li, Q., Huang, Y., Liu, X., Gan, J., Chen, H., and Yang, C.-G. (2016a). Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage. J. Biol. Chem. 291 : 11083–11093.
Li, X., Xiong, X., Wang, K., Wang, L., Shu, X., Ma, S., et al. (2016b). Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12 : 311–316.
Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., et al. (2017a). Base-Resolution Mapping Reveals Distinct m1A Methylome in Nuclear- and Mitochondrial-Encoded Transcripts. Mol. Cell 68 : 993-1005.e9.
Li, Y., Li, J., Luo, M., Zhou, C., Shi, X., Yang, W., et al. (2018a). Novel long noncoding RNA NMR promotes tumour progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett. 430 : 57–66.
Li, Z., Qian, P., Shao, W., Shi, H., He, X.C., Gogol, M., et al. (2018b). Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 28 : 904–917.
Li, Z., Weng, H., Su, R., Weng, X., Zuo, Z., Li, C., et al. (2017b). FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N 6 -Methyladenosine RNA Demethylase. Cancer Cell 31 : 127–141.
Lin, S., and Gregory, R.I. (2015). Identification of small molecule inhibitors of Zcchc11 TUTase activity. RNA Biol. 12 : 792–800.
Lin, X., Chai, G., Wu, Y., Li, J., Chen, F., Liu, J., et al. (2019). RNA m6A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail. Nat. Commun. 10 : 2065.
Linder, B., Grozhik, A. V, Olarerin-George, A.O., Meydan, C., Mason, C.E., and Jaffrey, S.R. (2015). Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12 : 767–772.
Liu, J., Eckert, M.A., Harada, B.T., Liu, S.-M., Lu, Z., Yu, K., et al. (2018). m6A mRNA methylation regulates AKT activity to promote the proliferation and tumourigenicity of endometrial cancer. Nat. Cell Biol.20 : 1074–1083.
Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. (2015). N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518 : 560–564.
Liu, T., Li, C., Jin, L., Li, C., and Wang, L. (2019). The Prognostic Value of m6A RNA Methylation Regulators in Colon Adenocarcinoma. Med. Sci. Monit. 25 : 9435–9445.
Lu, L., Gaffney, S.G., Cannataro, V.L., and Townsend, J. (2020). Transfer RNA methyltransferase gene NSUN2 mRNA expression modifies the effect of T cell activation score on patient survival in head and neck squamous carcinoma. Oral Oncol. 101 : 104554.
Lu, L., Zhu, G., Zeng, H., Xu, Q., and Holzmann, K. (2018). High tRNA Transferase NSUN2 Gene Expression is Associated with Poor Prognosis in Head and Neck Squamous Carcinoma. Cancer Invest. 36 : 246–253.
Ma, J., Yang, F., Zhou, C., Liu, F., Yuan, J., Wang, F., et al. (2017). METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N 6 ‐methyladenosine‐dependent primary MicroRNA processing. Hepatology 65 : 529–543.
Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell 149 : 1635–1646.
Montanaro, L., Brigotti, M., Clohessy, J., Barbieri, S., Ceccarelli, C., Santini, D., et al. (2006). Dyskerin expression influences the level of ribosomal RNA pseudo-uridylation and telomerase RNA component in human breast cancer. J. Pathol. 210 : 10–18.
Montanaro, L., Calienni, M., Bertoni, S., Rocchi, L., Sansone, P., Storci, G., et al. (2010). Novel Dyskerin-Mediated Mechanism of p53 Inactivation through Defective mRNA Translation. Cancer Res. 70 : 4767–4777.
Morena, F., Argentati, C., Bazzucchi, M., Emiliani, C., and Martino, S. (2018). Above the Epitranscriptome: RNA Modifications and Stem Cell Identity. Genes (Basel). 9 : 329.
Nakao, S., Mabuchi, M., Shimizu, T., Itoh, Y., Takeuchi, Y., Ueda, M., et al. (2014). Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorg. Med. Chem. Lett. 24 : 1071–1074.
Nishikura, K. (2016a). A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17 : 83–96.
Nishikura, K. (2016b). A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17 : 83–96.
Oakes, E., Anderson, A., Cohen-Gadol, A., and Hundley, H.A. (2017a). Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J. Biol. Chem. 292 : 4326–4335.
Oakes, E., Anderson, A., Cohen-Gadol, A., and Hundley, H.A. (2017b). Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J. Biol. Chem. 292 : 4326–4335.
Okamoto, M., Fujiwara, M., Hori, M., Okada, K., Yazama, F., Konishi, H., et al. (2014). tRNA Modifying Enzymes, NSUN2 and METTL1, Determine Sensitivity to 5-Fluorouracil in HeLa Cells. PLoS Genet. 10 : e1004639.
Ota, H., Sakurai, M., Gupta, R., Valente, L., Wulff, B.-E., Ariyoshi, K., et al. (2013). ADAR1 Forms a Complex with Dicer to Promote MicroRNA Processing and RNA-Induced Gene Silencing. Cell 153 : 575–589.
Paris, J., Morgan, M., Campos, J., Spencer, G.J., Shmakova, A., Ivanova, I., et al. (2019). Targeting the RNA m6A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia. Cell Stem Cell25 : 137-148.e6.
Pendleton, K.E., Chen, B., Liu, K., Hunter, O. V., Xie, Y., Tu, B.P., et al. (2017). The U6 snRNA m 6 A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell 169 : 824-835.e14.
Penzo, M., Guerrieri, A.N., Zacchini, F., Treré, D., and Montanaro, L. (2017). RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse. Genes (Basel). 8 :.
Penzo, M., Ludovini, V., Treré, D., Siggillino, A., Vannucci, J., Bellezza, G., et al. (2015). Dyskerin and TERC expression may condition survival in lung cancer patients. Oncotarget 6 : 21755–21760.
Porath, H.T., Carmi, S., and Levanon, E.Y. (2014). A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat. Commun. 5 : 4726.
Porath, H.T., Knisbacher, B.A., Eisenberg, E., and Levanon, E.Y. (2017). Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biol. 18 : 185.
Prebet, T., Sun, Z., Figueroa, M.E., Ketterling, R., Melnick, A., Greenberg, P.L., et al. (2014). Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: results of the US Leukemia Intergroup trial E1905. J. Clin. Oncol. 32 : 1242–8.
Qin, Y.-R., Qiao, J.-J., Chan, T.H.M., Zhu, Y.-H., Li, F.-F., Liu, H., et al. (2014). Adenosine-to-Inosine RNA Editing Mediated by ADARs in Esophageal Squamous Cell Carcinoma. Cancer Res. 74 : 840–851.
Rintala-Dempsey, A.C., and Kothe, U. (2017). Eukaryotic stand-alone pseudouridine synthases – RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 14 : 1185–1196.
Rosselló-Tortella, M., Ferrer, G., and Esteller, M. (2020). Epitranscriptomics in Hematopoiesis and Hematologic Malignancies. Blood Cancer Discov. 1 : 26–31.
Roundtree, I.A., Evans, M.E., Pan, T., and He, C. (2017a). Dynamic RNA Modifications in Gene Expression Regulation. Cell 169 : 1187–1200.
Roundtree, I.A., and He, C. (2016). RNA epigenetics — chemical messages for posttranscriptional gene regulation. Curr. Opin. Chem. Biol. 30 : 46–51.
Roundtree, I.A., Luo, G.-Z., Zhang, Z., Wang, X., Zhou, T., Cui, Y., et al. (2017b). YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife 6 :.
Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., et al. (2017). The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551 : 251–255.
Schwartz, S., Bernstein, D.A., Mumbach, M.R., Jovanovic, M., Herbst, R.H., León-Ricardo, B.X., et al. (2014). Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell 159 : 148–162.
Shaheen, R., Tasak, M., Maddirevula, S., Abdel-Salam, G.M.H., Sayed, I.S.M., Alazami, A.M., et al. (2019). PUS7 mutations impair pseudouridylation in humans and cause intellectual disability and microcephaly. Hum. Genet. 138 : 231–239.
Shi, H., Wang, X., Lu, Z., Zhao, B.S., Ma, H., Hsu, P.J., et al. (2017). YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27 : 315–328.
Shoshan, E., Mobley, A.K., Braeuer, R.R., Kamiya, T., Huang, L., Vasquez, M.E., et al. (2015). Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat. Cell Biol.17 : 311–321.
Sieron, P., Hader, C., Hatina, J., Engers, R., Wlazlinski, A., Müller, M., et al. (2009). DKC1 overexpression associated with prostate cancer progression. Br. J. Cancer 101 : 1410–1416.
Śledź, P., and Jinek, M. (2016). Structural insights into the molecular mechanism of the m6A writer complex. Elife 5 :.
Song, J., Zhuang, Y., Zhu, C., Meng, H., Lu, B., Xie, B., et al. (2020). Differential roles of human PUS10 in miRNA processing and tRNA pseudouridylation. Nat. Chem. Biol. 16 : 160–169.
Soukarieh, F., Nowicki, M.W., Bastide, A., Pöyry, T., Jones, C., Dudek, K., et al. (2016). Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur. J. Med. Chem.124 : 200–217.
Stein, E.M., Garcia-Manero, G., Rizzieri, D.A., Tibes, R., Berdeja, J.G., Savona, M.R., et al. (2018). The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131 : 2661–2669.
Su, R., Dong, L., Li, C., Nachtergaele, S., Wunderlich, M., Qing, Y., et al. (2018). R-2HG Exhibits Anti-tumour Activity by Targeting FTO/m6A/MYC/CEBPA Signaling. Cell 172 : 90-105.e23.
Svensen, N., and Jaffrey, S.R. (2016). Fluorescent RNA Aptamers as a Tool to Study RNA-Modifying Enzymes. Cell Chem. Biol. 23 : 415–425.
Taketo, K., Konno, M., Asai, A., Koseki, J., Toratani, M., Satoh, T., et al. (2017). The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int. J. Oncol.
Tanabe, A., Tanikawa, K., Tsunetomi, M., Takai, K., Ikeda, H., Konno, J., et al. (2016). RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett. 376 : 34–42.
Tang, H., Fan, X., Xing, J., Liu, Z., Jiang, B., Dou, Y., et al. (2015). NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging (Albany. NY). 7 : 1143–1155.
Terajima, H., Yoshitane, H., Ozaki, H., Suzuki, Y., Shimba, S., Kuroda, S., et al. (2017). ADARB1 catalyzes circadian A-to-I editing and regulates RNA rhythm. Nat. Genet. 49 : 146–151.
Toh, J.D.W., Sun, L., Lau, L.Z.M., Tan, J., Low, J.J.A., Tang, C.W.Q., et al. (2015). A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N 6 -methyladenosine demethylase FTO. Chem. Sci. 6 : 112–122.
Tomaselli, S., Galeano, F., Alon, S., Raho, S., Galardi, S., Polito, V.A., et al. (2015). Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biol. 16 : 5.
Trixl, L., and Lusser, A. (2019). The dynamic RNA modification 5‐methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip. Rev. RNA 10 : e1510.
Tuorto, F., Liebers, R., Musch, T., Schaefer, M., Hofmann, S., Kellner, S., et al. (2012). RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol. 19 : 900–905.
Véliz, E.A., Easterwood, L.M., and Beal, P.A. (2003). Substrate Analogues for an RNA-Editing Adenosine Deaminase: Mechanistic Investigation and Inhibitor Design. J. Am. Chem. Soc. 125 : 10867–10876.
Villanueva, L., Álvarez-Errico, D., and Esteller, M. (2020). The Contribution of Epigenetics to Cancer Immunotherapy. Trends Immunol.41 : 676–691.
Vu, L.P., Pickering, B.F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., et al. (2017). The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 23 : 1369–1376.
Wang, J., Zhang, C., He, W., and Gou, X. (2020). Effect of m6A RNA Methylation Regulators on Malignant Progression and Prognosis in Renal Clear Cell Carcinoma. Front. Oncol. 10 :.
Wang, T., Hong, T., Huang, Y., Su, H., Wu, F., Chen, Y., et al. (2015). Fluorescein Derivatives as Bifunctional Molecules for the Simultaneous Inhibiting and Labeling of FTO Protein. J. Am. Chem. Soc. 137 : 13736–13739.
Wang, X., Lu, Z., Gomez, A., Hon, G.C., Yue, Y., Han, D., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505 : 117–120.
Weng, H., Huang, H., Wu, H., Qin, X., Zhao, B.S., Dong, L., et al. (2018). METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell22 : 191-205.e9.
Woo, H.-H., and Chambers, S.K. (2019). Human ALKBH3-induced m1A demethylation increases the CSF-1 mRNA stability in breast and ovarian cancer cells. Biochim. Biophys. Acta - Gene Regul. Mech. 1862 : 35–46.
Xiao, W., Adhikari, S., Dahal, U., Chen, Y.-S., Hao, Y.-J., Sun, B.-F., et al. (2016). Nuclear m 6 A Reader YTHDC1 Regulates mRNA Splicing. Mol. Cell 61 : 507–519.
Xing, J., Yi, J., Cai, X., Tang, H., Liu, Z., Zhang, X., et al. (2015). NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. Mol. Cell. Biol. 35 : 4043–4052.
Yan, F., Al-Kali, A., Zhang, Z., Liu, J., Pang, J., Zhao, N., et al. (2018). A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res. 28 : 1062–1076.
Yang, D.-D., Chen, Z.-H., Yu, K., Lu, J.-H., Wu, Q.-N., Wang, Y., et al. (2020). METTL3 Promotes the Progression of Gastric Cancer via Targeting the MYC Pathway. Front. Oncol. 10 :.
Yang, J., Risch, E., Zhang, M., Huang, C., Huang, H., and Lu, L. (2017a). Association of tRNA methyltransferase NSUN2/IGF-II molecular signature with ovarian cancer survival. Futur. Oncol. 13 : 1981–1990.
Yang, S., Wei, J., Cui, Y.-H., Park, G., Shah, P., Deng, Y., et al. (2019). m6A mRNA demethylase FTO regulates melanoma tumourigenicity and response to anti-PD-1 blockade. Nat. Commun. 10 : 2782.
Yang, X., Yang, Y., Sun, B.-F., Chen, Y.-S., Xu, J.-W., Lai, W.-Y., et al. (2017b). 5-methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res. 27 : 606–625.
Zhang, C., Chen, Y., Sun, B., Wang, L., Yang, Y., Ma, D., et al. (2017a). m6A modulates haematopoietic stem and progenitor cell specification. Nature 549 : 273–276.
Zhang, C., Samanta, D., Lu, H., Bullen, J.W., Zhang, H., Chen, I., et al. (2016). Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m 6 A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. 113 : E2047–E2056.
Zhang, J., Chen, Z., Tang, Z., Huang, J., Hu, X., and He, J. (2017b). RNA editing is induced by type I interferon in esophageal squamous cell carcinoma. Tumour Biol. 39 : 101042831770854.
Zhang, S., Zhao, B.S., Zhou, A., Lin, K., Zheng, S., Lu, Z., et al. (2017c). m 6 A Demethylase ALKBH5 Maintains Tumourigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. Cancer Cell 31 : 591-606.e6.
Zhang, Z., Chen, L.-Q., Zhao, Y.-L., Yang, C.-G., Roundtree, I.A., Zhang, Z., et al. (2019). Single-base mapping of m 6 A by an antibody-independent method. Sci. Adv. 5 : eaax0250.
Zhao, X., Patton, J.R., Davis, S.L., Florence, B., Ames, S.J., and Spanjaard, R.A. (2004). Regulation of Nuclear Receptor Activity by a Pseudouridine Synthase through Posttranscriptional Modification of Steroid Receptor RNA Activator. Mol. Cell 15 : 549–558.
Zheng, G., Dahl, J.A., Niu, Y., Fedorcsak, P., Huang, C.-M., Li, C.J., et al. (2013). ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol. Cell 49 : 18–29.
Zheng, W., Dong, X., Zhao, Y., Wang, S., Jiang, H., Zhang, M., et al. (2019). Multiple Functions and Mechanisms Underlying the Role of METTL3 in Human Cancers. Front. Oncol. 9 :.
Zhong, X., Yu, J., Frazier, K., Weng, X., Li, Y., Cham, C.M., et al. (2018). Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m6A mRNA Methylation. Cell Rep. 25 : 1816-1828.e4.
Zipeto, M.A., Court, A.C., Sadarangani, A., Delos Santos, N.P., Balaian, L., Chun, H.-J., et al. (2016). ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell19 : 177–191.