5 References
[1] R. J. Carvalho, J. Cabrera-Crespo, M. M. Tanizaki, V. M. Gonçalves, Development of production and purification processes of recombinant fragment of pneumococcal surface protein A in Escherichia coli using different carbon sources and chromatography sequences,Applied Microbiology and Biotechnology 2012, 94, 683.
[2] C. Walther, D. Boras, L. Demmel, M. Berkemeyer, et al., Integrated process development - quality by design compliant evaluation of upstream variations at the microscale level, Journal of Chemical Technology and Biotechnology 2018, 93, 2021.
[3] S. Ali, M. A. Perez-Pardo, J. P. Aucamp, A. Craig, et al., Characterization and feasibility of a miniaturized stirred tank bioreactor to perform E. coli high cell density fed-batch fermentations,Biotechnology Progress 2012, 28, 66.
[4] Q. Li, G. J. Mannall, S. Ali, M. Hoare, An ultra scale-down approach to study the interaction of fermentation, homogenization, and centrifugation for antibody fragment recovery from rec E. coli,Biotechnology and Bioengineering 2013, 110, 2150.
[5] D. J. Roush, Y. Lu, Advances in primary recovery: Centrifugation and membrane technology, Biotechnology Progress 2008, 24, 488.
[6] A. Meitz, P. Sagmeister, T. Langemann, C. Herwig, An integrated downstream process development strategy along QbD principles,Bioengineering 2014, 1, 213.
[7] J. M. Newton, D. Schofield, J. Vlahopoulou, Y. Zhou, Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss, Biotechnology progress 2016, 32, 1069.
[8] J. P. Aucamp, R. Davies, D. Hallet, A. Weiss, et al., Integration of host strain bioengineering and bioprocess development using ultra-scale down studies to select the optimum combination: An antibody fragment primary recovery case study, Biotechnology and Bioengineering 2014, 111, 1971.
[9] A. Shokri, A. M. Sandén, G. Larsson, Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage,Applied Microbiology and Biotechnology 2002, 58, 386.
[10] E. Bäcklund, D. Reeks, K. Markland, N. Weir, et al., Fedbatch design for periplasmic product retention in Escherichia coli,Journal of Biotechnology 2008, 135, 358.
[11] D. N. Adhyaru, N. S. Bhatt, H. A. Modi, Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1, Bioresources and Bioprocessing2015, 2.
[12] E. Faulkner, M. Barrett, S. Okor, P. Kieran, et al., Use of fed-batch cultivation for achieving high cell densities for the pilot-scale production of a recombinant protein (phenylalanine dehydrogenase) in Escherichia coli, Biotechnology Progress 2006, 22, 889.
[13] M. A. Perez-Pardo, S. Ali, B. Balasundaram, G. J. Mannall, et al., Assessment of the manufacturability of Escherichia coli high cell density fermentations, Biotechnology Progress 2011, 27, 1488.
[14] C.-C. Hsu, O. R. T. Thomas, T. W. Overton, Periplasmic expression in and release of Fab fragments from Escherichia coli using stress minimization, Journal of Chemical Technology & Biotechnology 2015, n/a.
[15] Y. Okamoto, K. Ohmori, C. E. Glatz, Harvest time effects on membrane cake resistance of Escherichia coli broth, Journal of Membrane Science 2001, 190, 93.
[16] Y. Zhou, Z. Lu, X. Wang, J. N. Selvaraj, et al., Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli, Applied Microbiology and Biotechnology 2018, 102, 1545.
[17] M. Luo, M. Zhao, C. Cagliero, H. Jiang, et al., A general platform for efficient extracellular expression and purification of Fab from Escherichia coli, Applied Microbiology and Biotechnology2019, 103, 3341.
[18] M. Barazesh, Z. Mostafavipour, S. Kavousipour, S. Mohammadi, et al., Two simple methods for optimizing the production of ”difficult-to- Express” GnRH-DFF40 chimeric protein, Advanced Pharmaceutical Bulletin 2019, 9, 423.
[19] J. Eichmann, M. Oberpaul, T. Weidner, D. Gerlach, et al., Selection of High Producers From Combinatorial Libraries for the Production of Recombinant Proteins in Escherichia coli and Vibrio natriegens, Frontiers in Bioengineering and Biotechnology 2019, 7.
[20] A. Kulmala, T. Huovinen, U. Lamminmäki, Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli,Scientific Reports 2017, 7.
[21] G. Walsh, Biopharmaceutical benchmarks 2014, Nat Biotech2014, 32, 992.
[22] Z. A. Ahmad, S. K. Yeap, A. M. Ali, W. Y. Ho, et al., scFv antibody: principles and clinical application, Clin Dev Immunol2012, 2012, 980250.
[23] M. Ellis, P. Patel, M. Edon, W. Ramage, et al., Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab’ fragments, Biotechnology Progress 2017, 33, 212.
[24] S. Kumar, J. Kalsi, D. S. Latchman, L. H. Pearl, et al., Expression of the Fabs of human auto-antibodies in Escherichia coli: Optimization and determination of their fine binding characteristics and cross-reactivity, Journal of molecular biology 2001, 308, 527.
[25] T. Gundinger, A. Pansy, O. Spadiut, A sensitive and robust HPLC method to quantify recombinant antibody fragments in E. coli crude cell lysate, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2018, 1083, 242.
[26] Y. Zhou, P. Liu, Y. Gan, W. Sandoval, et al., Enhancing full-length antibody production by signal peptide engineering,Microbial Cell Factories 2016, 15.
[27] K. F. J. Metzger, W. Padutsch, A. Pekarsky, J. Kopp, et al., IGF1 inclusion bodies: A QbD based process approach for efficient USP as well as early DSP unit operations, Journal of Biotechnology 2020, 312, 23.
[28] H. J. Lee, C. M. Lee, K. Kim, J. M. Yoo, et al., Purification of antibody fragments for the reduction of charge variants using cation exchange chromatography, Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2018, 1080, 20.
[29] A. L. Cataldo, D. Burgstaller, G. Hribar, A. Jungbauer, et al., Economics and ecology: Modelling of continuous primary recovery and capture scenarios for recombinant antibody production, Journal of Biotechnology 2020, 308, 87.
[30] M. Melcher, T. Scharl, M. Luchner, G. Striedner, et al., Boosted structured additive regression for Escherichia coli fed-batch fermentation modeling, Biotechnology and Bioengineering 2017, 114, 321.
[31] M. Fink, S. Vazulka, E. Egger, J. Jarmer, et al., Microbioreactor Cultivations of Fab-Producing Escherichia coli Reveal Genome-Integrated Systems as Suitable for Prospective Studies on Direct Fab Expression Effects, Biotechnology Journal 2019, 14.
[32] M. Fink, M. Cserjan-Puschmann, D. Reinisch, G. Striedner, High-throughput microbioreactor cultivations greatly contribute to early-stage fermentation process development Under Review.
[33] C. Schimek, M. Kubek, D. Scheich, M. Fink, et al., Three-dimensional chromatography for purification and characterization of antibody fragments and related impurities from Escherichia coli crude extracts, UNDER REVIEW.
[34] G. Rodrigo, M. Gruvegard, J. Alstine, Antibody Fragments and Their Purification by Protein L Affinity Chromatography,Antibodies 2015, 4, 259.
Table 1. Overview of relevant upstream and downstream parameters.