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Abstract

In the present paper, we study a class of quasilinear Choquard equations involv-

ing N -Laplacian and the nonlinearity with the critical exponential growth. We

discuss the existence of positive solutions of such equations.

1. Introduction

This paper is concerned with the existence of the positive solutions for the family of quasilinear equations

with N -Laplacian and exponential Choquard type nonlinearity
−∆Nu−∆N (u2)u =

(∫
Ω

F (y, u)

|x− y|µ
dy

)
f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(P∗)

where Ω is a smooth bounded domain in RN , N ≥ 2, 0 < µ < N and ∆N := div
(
|∇u|N−2∇u

)
is called the

N -Laplacian. The function f : Ω × R → R is given by f(x, s) = g(x, s) exp(|s|
2N

N−1 ), where g ∈ C(Ω̄× R)
satis�es some appropriate assumptions described later.

The problems involving the quasilinear operator −∆pu − ∆p(u
2)u, 1 < p < ∞, has been of interest to

many researchers for long due to its signi�cant applications in the modeling of the physical phenomenon

such as in plasma physics and �uid mechanics [4], in dissipative quantum mechanics [18], etc. Solutions of

such equation are related to the existence of standing wave solutions for quasilinear Schrödinger equations

of the form

iut = −∆u+ V (x)u− h1(|u|2)u− C∆h2(|u|2)h′2(|u|2)u, x ∈ RN , (1.1)

where V is a potential, C is a real constant, h1 and h2 are real functions. Depending upon the di�erent

type of h2, the quasilinear equations of the form (1.1) appear in the study of mathematical physics. For

example, in the modeling of the super�uid �lm equation in plasma physics, h2(s) = s (see [35]) and for

studying the self-channeling of a high-power ultra short laser in matter h2 is considered to be
√
1 + s2 (see

[35]).

The main mathematical di�culty we face in studying the problem of type (P∗) occurs due to the quasilinear

term ∆N (u2)u, which doesn't allow the natural energy functional corresponding to the problem (P∗) to

be well de�ned for all u ∈ W 1,N
0 (Ω) (de�ned in Section 2). Hence, we can not apply variational method

directly for such problem. To overcome this inconvenience, several methods and arguments have been

developed, such as the perturbation method (see for e.g.,[22, 25]) a constrained minimization technique

(see for e.g., [23, 24, 34, 36]), and a change of variables (see for e.g., [6], [10]-[17]). The nonlinearity in

the problem (P∗), which is nonlocal in nature, is driven by the Hardy-Littlewood-Sobolev inequality and

the Trudinger-Moser inequality. Let us �rst recall the following well known Hardy-Littlewood-Sobolev

inequality [Theorem 4.3, p.106] [20].
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Proposition 1.1. (Hardy-Littlewood-Sobolev inequality) Let t, r > 1 and 0 < µ < N with 1/t +

µ/N+1/r = 2, g1 ∈ Lt(Rn) and g2 ∈ Lr(Rn). Then there exists a sharp constant C(t,N, µ, r), independent

of g1, g2 such that ∫
RN

∫
RN

g1(x)g2(y)

|x− y|µ
dxdy ≤ C(t,N, µ, r)∥g1∥Lt(RN )∥g2∥Lr(RN ). (1.2)

If t = r = 2N
2N−µ then

C(t,N, µ, r) = C(N,µ) = π
µ
2
Γ
(
N
2 − µ

2

)
Γ
(
N − µ

2

) {Γ
(
N
2

)
Γ(N)

}−1+ µ
N

.

In this case there is equality in (1.2) if and only if g1 ≡ (constant)g2 and

g1(x) = c0(a
2 + |x− b|2)

−(2N−µ)
2

for some c0 ∈ C, 0 ̸= a ∈ R and b ∈ RN .

Now a days, an ample amount of attention has been attributed to the study of Choquard type equations,

which was started with the seminal work of S. Pekar [32], where the author considered the following

nonlinear Schrödinger-Newton equation:

−∆u+ V (x)u = (Kµ ∗ u2)u+ λf1(x, u) in RN , (1.3)

where λ > 0, Kµ denotes the Riesz potential, V : RN → R is a continuous function and f1 : RN × R → R
is a Carathéodory function with some appropriate growth assumptions. When λ = 0, the nonlinearity

in the right-hand side of (1.3) is termed as Choquard type nonlinearty. In the application point of view,

such type of nonlinearity plays an important role in describing the Bose-Einstein condensation (see [7])

and also, appears in the modeling of the self gravitational collapse of a quantum mechanical wave function

(see [33]). P. Choquard (see [19]) studied such elliptic equations of type (1.3) for construing the quantum

theory of a polaron at rest and for modeling the phenomenon of an electron being trapped in its own hole

in the Hartree-Fock theory. When V (x) = 1, λ = 0, the equations of type (1.3) were studied rigorously in

[20, 21]. For more extensive study of Choquard equations, without attempting to provide a complete list,

we refer to [27, 28, 29, 30] and the references therein.

The main feature of the problem (P∗) is that the nonlinear term f(x, t) has the maximal growth on t, that

is, critical exponential growth with respect to the following Trudinger�Moser inequality (see [31]):

Theorem 1.2. (Trudinger�Moser inequality) For N ≥ 2, u ∈W 1,N
0 (Ω)

sup
∥u∥≤1

∫
Ω

exp(α|u|
N

N−1 ) dx <∞

if and only if α ≤ αN , where αN = Nω
1

N−1

N−1 and ωN−1 = (N − 1)- dimensional surface area of SN−1.

Here the Sobolev space W 1,N
0 (Ω) and the corresponding norm ∥·∥ are de�ned in Section 2. The critical

growth non-compact problems associated to this inequality are initially studied by the work of Adimurthi

[1] and de Figueiredo et. al [8]. More recently, authors in [13, 14, 15] studied the existence of multiple

positive solutions for quasilinear equations involving exponential nonlinearities. Unlike as in the case of

critical exponential problem involving N -Laplacian, where we generally consider the critical exponential

growth as exp(|t|N/(N−1)), in our problem (P∗), due to the presence of the quasilinear operator, the critical

exponential growth becomes exp(|t|2N/(N−1)). In the case 1 < p < N , the nonlinearity is of polynomial

growth and the critical growth is t2p
∗
, where p∗ = Np/(N − p) (see [9, 11, 26]). When p = 2, the problem

of type (P∗) without the convolution term, that is the equation

−∆u−∆(u2)u+ V (x)u = f(x, u) in R2,
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where V : RN → R is a continuous potential and f : R2 × R → R is a continuous function with some

suitable assumption and is having critical exponential growth (exp(αs4)), was studied by Wang et. al in

[10]. Later, Wang et. al [37] extended this problem for p = N ≥ 2.

Involving critical exponential Choquard type nonlinearity and Laplacian operator, Alves et. al [2] studied

the following problem

−ϵ2∆u+ V (x)u =

(∫
R2

F (y, u)

|x− y|µ
dy

)
f(x, u), x ∈ R2,

where ϵ > 0, 0 < µ < 2, V : R2 → R is the continuous potential function with some particular properties

and the continuous function f : R2 ×R → R enjoys the critical exponential growth with some appropriate

assumptions. Consequently, for the higher dimension, that is for N ≥ 2, authors in [3] discussed the

Kirchho�- Choquard problems involving the N -Laplacian with critical exponential growth.

Inspired from all the above mentioned works, in this article, we investigate the existence results for the

problem (P∗), involving the Choquard type critical nonlinearity motivated by the above inequality (1.2).

The main contribution in this work is to identify the �rst critical level for this problem and study the

Palais-Smale sequences below this level. We would like to mention that to the best of our knowledge, there

is no work on the existence of positive solutions to the elliptic equations involving quasilinear operator

and critical exponential Choquard type nonlinearity. In this article, we study such equations for the �rst

time. Our result is new even for the case N = 2.

We now state all the hypotheses imposed on the continuous function f : Ω × R → R, given by f(x, s) =

g(x, s) exp
(
s

2N
N−1

)
, as following:

(f1) g ∈ C(Ω× R), g(x, s) = 0, for all s ≤ 0, g(x, s) > 0, for all s > 0.

(f2) lim
s→0

f(x, s)

sN−1
= 0, uniformly in x ∈ Ω.

(f3) For any ϵ > 0, lim
s→∞

sup
x∈Ω

g(x, s) exp
(
−ϵ|s|

2N
N−1

)
= 0 and lim

s→∞
inf
x∈Ω

g(x, s)exp(ϵ|s|
2N

N−1 ) = ∞.

(f4) There exist positive constants s′ and m0 such that

0 < sm0F (x, s) ≤M0f(x, s) for all (x, s) ∈ R2 × [s′,+∞).

(f5) There exists τ > N such that 0 < τF (x, s) ≤ f(x, s)s, for all s > 0.

(f6) We assume that

lim
s→+∞

sf(x, s)F (x, s)

exp
(
2|s|

2N
N−1

) = ∞, uniformly in x ∈ Ω. (1.4)

Example 1.3. Consider f(x, s) = g(x, s)e|s|
2N

N−1
, where g(x, s) =

{
ta0+(N−1) exp(d0s

r), if s > 0

0, if s ≤ 0
for

some a0 > 0, 0 < d0 ≤ αN and 1 ≤ r < 2N
N−1 . Then f satis�es all the conditions from (f1)-(f6).

Our main result reads as following:

Theorem 1.4. Let Ω ⊂ RN (N ≥ 2) be a smooth bounded domain and let the hypotheses (f1)-(f6) hold.

Then the problem (P∗) has a non trivial positive weak solution.

Notation. Throughout this paper, we make use of the following notations:

• If u is a measurable function, we denote the positive and negative parts by u+ = max {u, 0} and

u− = max {−u, 0}, respectively.
• If A is a measurable set in RN , we denote by |A| the Lebesgue measure of A.

• The arrows ⇀ , → denote weak convergence, strong convergence, respectively.

• Br(x) denotes the ball of radius r > 0 centered at x ∈ Ω.
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• Br(x) denotes the closure of the set Br(x) with respect to W 1,N
0 (Ω)-norm topology.

• S denotes the closure of a set S ⊂ RN .
• A ⊂⊂ B implies A is compact in B.

• c, C1, C2, · · · , C̃1, C̃2, · · · , C and C̃ denote (possibly di�erent from line to line) positive constants.

2. Preliminaries and Variational Set-up

For u : Ω → R, measurable function, and for 1 ≤ p ≤ ∞, we de�ne the Lebesgue space Lp(Ω) as

Lp(Ω) = {u : Ω → R measurable|
∫
Ω

|u|pdx <∞}

equipped with the usual norm denoted by ∥u∥Lp(Ω). Now the Sobolev space W 1,p
0 (Ω) is de�ned as

W 1,p
0 (Ω) = {u ∈ Lp(Ω)|

∫
Ω

|∇u|pdx <∞}

which is endowed with the norm

∥u∥:=
(∫

Ω

|∇u|pdx
)1/p

.

We have that the embedding W 1,N
0 (Ω) ∋ u 7→ exp(|u|β) ∈ L1(Ω) is compact for all β ∈

[
1, N

N−1

)
and

is continuous for β = N
N−1 . Consequently, the map M : W 1,N

0 (Ω) → Lq(Ω), for q ∈ [1,∞), de�ned by

M(u) := exp
(
|u|

N
N−1

)
is continuous with respect to the norm topology.

The natural energy functional associated to the problem (P∗) is the following:

I(u) =
1

N

∫
Ω

(1 + 2N−1|u|N )|∇u|Ndx− 1

2

∫
Ω

∫
Ω

F (y, u(y))F (x, u(x))

|x− y|µ
dxdy. (2.1)

Observe that, the functional I is not well de�ned in W 1,N
0 (Ω) due to the fact that

∫
Ω

uN |∇u|Ndx is not

�nite for all u ∈W 1,N
0 (Ω). So, it is di�cult to apply variational methods directly in our problem (P∗). In

order to overcome this di�culty, we apply the following change of variables which was introduced in [6],

namely, w := h−1(u), where h is de�ned by
h′(s) =

1

(1 + 2N−1|h(s)|N )
1
N

in [0,∞),

h(s) = −h(−s) in (−∞, 0].

(2.2)

Now we gather some properties of h, which we follow throughout in this article. For the detailed proofs

of such results, one can see [6, 10].

Lemma 2.1. The function h satis�es the following properties:

(h1) h is uniquely de�ned, C∞ and invertible;

(h2) h(0) = 0;

(h3) 0 < h′(s) ≤ 1 for all s ∈ R;
(h4)

1
2h(s) ≤ sh′(s) ≤ h(s) for all s > 0;

(h5) |h(s)|≤ |s| for all s ∈ R;
(h6) |h(s)|≤ 21/(2N)|s|1/2 for all s ∈ R;
(h7) (h(s))2 − h(s)h′(s)s ≥ 0 for all s ∈ R;
(h8) |h(s)|≥ h(1)|s| for |s|≤ 1 and |h(s)|≥ h(1)|s|1/2 for |s|≥ 1;

(h9) h
′′(s) < 0 when s > 0 and h′′(s) > 0 when s < 0.

Example 2.2. One of the example of such functions is given in
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Figure 1. Plot of the function h

After employing the change of variable w = h−1(u), we de�ne the new functional J :W 1,N
0 (Ω) → R as

J(w) =
1

N

∫
Ω

|∇w|Ndx− 1

2

∫
Ω

∫
Ω

F (y, h(w))F (x, h(w))

|x− y|µ
dxdy. (2.3)

From the properties of f, h, it can be derived that the functional J is well de�ned and J ∈ C1.We observe

that if w ∈W 1,N
0 (Ω) is a critical point of the functional J , that is for every v ∈W 1,N

0 (Ω),∫
Ω

|∇w|N−2∇w∇vdx− 1

2

∫
Ω

∫
Ω

F (y, h(w)(y))f(x, h(w)(x))

|x− y|µ
h′(w)v(x)dxdy = 0, (2.4)

then w is a weak solution (solution, for short) to the following problem:
−∆Nw =

(∫
R2

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w)) in Ω,

w > 0 in Ω,

w = 0 on ∂Ω.

(2.5)

It is easy to see that problem (2.5) is equivalent to our problem (P∗), which takes u = h(w) as its solutions.

Thus, our main objective is now reduced to proving the existence of the solution of (2.5).

3. Proof of the main theorem

3.1. Mountain pass geometry. We begin this section with the study of mountain pass structure and

Palais-Smale sequences corresponding to the energy functional J :W 1,N
0 (Ω) → R associated to (2.5). From

the assumptions, (f2)-(f3), we obtain that for any ϵ > 0, r ≥ 1, there exist C̃(N, ϵ) and C(N, ϵ) > 0 such

that

|f(x, s)|≤ ϵ|s|N−1+C̃(N, ϵ)|s|r−1exp
(
(1 + ϵ)|s|

2N
N−1

)
, for all (x, s) ∈ Ω× R, (3.1)

|F (x, s)|≤ ϵ|s|N+C(N, ϵ)|s|rexp
(
(1 + ϵ)|s|

2N
N−1

)
, for all (x, s) ∈ Ω× R. (3.2)

Thus, for any u ∈ W 1,N
0 (Ω), in light of Sobolev embedding, we have u ∈ Lq(Ω) for all q ∈ [1,∞), which

implies that

F (x, u) ∈ Lq(Ω) for any q ≥ 1. (3.3)

Now by (2.2), we have if w ∈W 1,N
0 (Ω), then h(w) ∈W 1,N

0 (Ω), which together with Proposition 1.1 implies

that ∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx ≤ C(N,µ)∥F (·, h(w))∥2

L
2N

2N−µ (Ω)
. (3.4)
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Lemma 3.1. Assume that the conditions (f1)-(f5) hold and let h be de�ned as in (2.2). Then there exist

ρ∗ > 0 and R∗ > 0 such that

J(w) ≥ R∗ > 0 for any w ∈W 1,N
0 (Ω) with ∥w∥= ρ∗.

Proof. Let w ∈W 1,N
0 (Ω. From (3.4), (3.2), Hölder inequality, Sobolev inequality and Lemma 2.1-(h5), (h6),

we have∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

≤ C(N,µ)∥ϵ|h(w)|N+C(ϵ)|h(w)|rexp
(
(1 + ϵ)|h(w)|

2N
N−1

)
∥2 2N

2N−µ

≤ C(µ)

[
2

2N
2N−µ

{
ϵ

2N
2N−µ

∫
Ω

|h(w)|
2N2

2N−µ dx (3.5)

+ (C(ϵ))
2N

2N−µ

∫
Ω

|h(w)|
2Nr

2N−µ exp

(
2N

2N − µ
(1 + ϵ)|h(w)|

2N
N−1

)
dx

}] 2N−µ
N

≤ C(N,µ)

[
2

2N
2N−µ

{
ϵ

2N
2N−µ

∫
Ω

|w|
2N2

2N−µ dx (3.6)

+ (C(ϵ))
2N

2N−µ

∫
Ω

2
r

2N−µ |w|
Nr

2N−µ exp

(
2N

2N − µ
(1 + ϵ)2

1
N−1 |w|

N
N−1

)
dx

}] 2N−µ
N

≤ C(N,µ)4

[
ϵ2∥w∥2N

L
2N2

2N−µ (Ω)
+(C(ϵ))22

r
N ∥w∥2r

L
2Nr

2N−µ (Ω)

{∫
Ω

exp

(
4N(1 + ϵ)

2N − µ
2

1
N−1 (|w|)

N
N−1

)
dx

} 2N−µ
2N

]

≤ C1(N,µ, ϵ)

[
∥w∥2N+∥w∥2r

{∫
Ω

exp

(
4N(1 + ϵ)

2N − µ
2

1
N−1 (|w|)

N
N−1

)
dx

} 2N−µ
2N

]

≤ C1(N,µ, ϵ)

∥w∥2N+∥w∥2r
{∫

Ω

exp

(
4N(1 + ϵ)

2N − µ
2

1
N−1 ∥w∥

N
N−1

(
|w|
∥w∥

) N
N−1

)
dx

} 2N−µ
2N

 (3.7)

So, for su�ciently small ϵ > 0 if we choose w such that ∥w∥ is small enough so that

4N2
1

N−1 (1 + ϵ)∥w∥
N

N−1

2N − µ
< αN ,

then using Theorem 1.2 in (3.5), we obtain∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx ≤ C1(N,µ, ϵ)

(
∥w∥2N+∥w∥2r

)
. (3.8)

Using (2.3), (3.8), we have

J(w) ≥ 1

N
∥w∥N−C1(N,µ, ϵ)

(
∥w∥2N+∥w∥2r

)
.

Now by taking r > 0 such that 2r > N , we can choose 0 < ρ∗ < 1 su�ciently small so that, we �nally

obtain J(w) ≥ R∗ > 0 for all w ∈W 1,N
0 (Ω) with ∥w∥= ρ∗ and for some R∗ > 0 depending on ρ∗. □

Lemma 3.2. Assume that the conditions (f1)-(f5) hold and let h be de�ned as in (2.2). Then there exists

v∗ ∈W 1,N
0 (Ω) with ∥v∗∥> ρ∗ such that J(v∗) < 0 , where ρ∗ is given as in Lemma 3.1.

Proof. The condition (f5) implies that there exist some positive constant C1, C2 > 0 such that

F (x, s) ≥ C1s
τ − C2 for all (x, s) ∈ Ω× [0,∞). (3.9)
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Let ϕ(≥ 0) ∈ C∞
c (Ω) such that ∥ϕ∥= 1. Now by Lemma 2.1-(h6),(h8) and (3.9), for large t > 1, we obtain∫

Ω

(∫
Ω

F (y, h(tϕ))

|x− y|µ
dy

)
F (x, h(tϕ)) dx

≥
∫
Ω

∫
Ω

(C1(h(tϕ(y)))
τ − C2)(C1(h(tϕ(x)))

τ − C2)

|x− y|µ
dxdy

= C2
1

∫
Ω

∫
Ω

(h(tϕ(y)))τ (h(tϕ(x)))τ

|x− y|µ
dxdy

− 2C1C2

∫
Ω

∫
Ω

(h(tϕ(x)))τ

|x− y|µ
dxdy + C2

2

∫
Ω

∫
Ω

1

|x− y|µ
dxdy

≥ C2
1 (h(1))

2τ tτ
∫
Ω

∫
Ω

(ϕ(y))
τ
2 (ϕ(x))

τ
2

|x− y|µ
dxdy

− 2C1C22
τ

2N t
τ
2

∫
Ω

∫
Ω

(ϕ(x))
τ
2

|x− y|µ
dxdy + C2

2

∫
Ω

∫
Ω

1

|x− y|µ
dxdy.

From the last relation and (2.3) , we obtain

J(tϕ) ≤ ∥tϕ∥N−1

2

∫
Ω

(∫
Ω

F (y, h(tϕ))

|x− y|µ
dy

)
F (x, h(tϕ)) dx

≤ C3t
N − C4t

τ + C5t
τ
2 − C6, (3.10)

where C ′
is are positive constants for i = 3, 4, 5, 6. From (3.10), we infer that J(tϕ) → −∞ as t → ∞,

since τ > N . Thus, there exists t0(> 0) ∈ R so that v∗(:= t0ϕ) ∈ W 1,N
0 (Ω) with ∥v∗∥> ρ∗ such that

J(v∗) < 0. □

From the above two lemmas, we get that J satis�es the mountain pass geometry near 0. Let Γ = {γ ∈
C([0, 1],W 1,N

0 (Ω)) : γ(0) = 0, J(γ(1)) < 0} and de�ne the mountain pass critical level

β∗ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)). (3.11)

Then by Lemma 3.1, Lemma 3.2 and the mountain pass theorem we know that there exists a Palais-Smale

sequence {wk} ⊂W 1,N
0 (Ω) for J at level β∗, that is, as k → ∞

J(wk) → β∗; and J
′(wk) → 0 in

(
W 1,N

0 (Ω)
)∗
.

Moreover, Lemma 3.1 guarantees that β∗ > 0.

3.2. Analysis of Palais-Smale sequence.

Lemma 3.3. Let (f1) and (f5) hold. Let h be given as in (2.2). Then every Palais-Smale sequence of J

is bounded in W 1,N
0 (Ω).

Proof. Let {wk} ⊂W 1,N
0 (Ω) be a Palais-Smale sequence of J at level c ∈ R, that is, as k → ∞

J(wk) → c, J ′(wk) → 0 inW−1, N(Ω).

Then we have

1

N
∥wk∥N−1

2

∫
Ω

(∫
Ω

F (y, h(wk)

|x− y|µ
dy

)
F (x, h(wk)) dx→ c as k → ∞,∣∣∣∣∫

Ω

∇|wk(x)|N−2∇wk∇ϕdx

−
∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)ϕ dx

∣∣∣∣ ≤ ϵk∥ϕ∥, (3.12)

where ϵk → 0 as k → ∞. In the last relation, taking ϕ = wk we get∣∣∣∣∥wk∥N−
∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk)h

′(wk)wk dx

∣∣∣∣ ≤ ϵk∥wk∥. (3.13)
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Now set

vk :=
h(wk)

h′(wk)
.

Since by Lemma 2.1-(h4), we have |vk|≤ 2|wk| and by using (2.2) and Lemma 2.1-(h5), we get

|∇vk|=
(
1 +

2N−1|h(wk)|N

1 + 2N−1|h(wk)|N

)
|∇wk|N≤ 2|∇wk|,

combining these, we obtain

∥vk∥≤ 2∥wk∥.

Therefore, vk ∈W 1,N
0 (Ω). Then by choosing ϕ = vk and inserting this into (3.12), we deduce

⟨J ′(wk), vk⟩ =
∫
Ω

(
1 +

2N−1|h(wk)|N

1 + 2N−1|h(wk)|N

)
|∇wk|Ndx

−
∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h(wk)dx

= ϵk∥wk∥. (3.14)

Using (3.14) and (f5), for some q > 2N , we get

C + ϵk∥wk∥ ≥ J(wk)−
1

q
⟨J ′(wk), vk⟩

≥
∫
Ω

[
1

N
− 1

q

(
1 +

2N−1|h(wk)|N

1 + 2N−1|h(wk)|N

)]
|∇wk|Ndx

− 1

2

∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)[
F (x, h(wk))−

2

q
f(x, h(wk))h(wk)

]
dx

≥
∫
Ω

(
1

N
− 2

q

)
|∇wk|Ndx =

(
1

N
− 2

q

)
∥wk∥N , (3.15)

the above relation yields that {wk} must be bounded in W 1,N
0 (Ω). □

Next, we have the following lemma:

Lemma 3.4. If f satis�es (f1)-(f6) and h is de�ned as in (2.2), then

0 < β∗ <
1

N(h(1))2N

(
2N − µ

2N
αN

)N−1

,

where β∗ is given as in (3.11).

Proof. Since for w ̸≡ 0, by Lemma 3.2, J(tw) → −∞ as t→ +∞, hence, from (3.11), we get

β∗ ≤ max
t∈[0,1],w∈W 1,N

0 (Ω)\{0}
J(tw).

So, it is su�cient to prove that there exists w ∈W 1,N
0 (Ω) such that ∥w∥= 1 and

max
t∈[0,∞)

J(tw) <
1

N(h(1))
2N

(
2N − µ

2N
αN

)N−1

.

To show this, let us consider the sequence of Moser functions {Mk} de�ned as

Mk(x) =
1

ω
1
N

N−1



(log k)
N−1
N , 0 ≤ |x|≤ δ

k
,

log
(
δ
|x|

)
(log k)

1
N

,
δ

k
≤ |x|≤ δ

0, |x|≥ δ.
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Then it is easy to see that supp(Mk) ⊂ Bδ(0) and ∥Mk∥= 1 for all k ∈ N. Now we assert that there

exists some k ∈ N such that

max
t∈[0,∞)

J(tMk) <
1

N(h(1))2N

(
2N − µ

2N
αN

)N−1

. (3.16)

Indeed, if this doesn't hold then for all k ∈ N, there exists tk > 0 such that

max
t∈[0,∞)

J(tMk) = J(tkMk) ≥
1

N(h(1))2N

(
2N − µ

2N
αN

)N−1

. (3.17)

Since (f1) implies that F (x, h(tkMk)) ≥ 0 for all k ∈ N so by the de�nition of J(tkwk) together with

(3.17), we obtain

tNk ≥ 1

(h(1))2N

(
2N − µ

2N
αN

)N−1

. (3.18)

Also, in view of (3.17), we have d
dt (J(tMk))|t=tk= 0. This combining with Lemma 2.1-(h4) yields that

tNk =

∫
Ω

(∫
Ω

F (y, h(tkMk))

|x− y|µ
dy

)
f(x, h(tkMk))h

′(tkMk)tkMk dx

≥ 1

2

∫
Bδ/k(0)

f(x, h(tkMk))h(tkMk)

(∫
Bδ/k(0)

F (y, h(tkMk))

|x− y|µ
dy

)
dx. (3.19)

Now from (1.4), we know that for each b > 0 there exists a constant Rb such that

sf(x, s)F (x, s) ≥ b exp
(
2|s|

2N
N−1

)
, whenever s ≥ Rb.

From (3.18), we infer that tkMk → ∞ as k → ∞ in Bδ/k(0). Now by Lemma 2.1-(h8), we get h(tkMk) →
∞ as k → ∞, uniformly in Bδ/k(0). So, we can choose sb ∈ N such that in Bδ/k(0),

h(tkMk) ≥ Rb, for all k ≥ sb.

In addition, using the same idea as in [2] (see equation (2.11)), we can have∫
Bδ/k(0)

∫
Bδ/k(0)

dxdy

|x− y|µ
≥ Cµ,N

(
δ

k

)2N−µ

,

where Cµ,N is a positive constant depending on µ and N . Using these estimates in (3.19) together with

(3.18) and Lemma 2.1-(h8), for su�ciently large b, we get

tNk ≥ b

2

∫
Bδ/k(0)

∫
Bδ/k(0)

dxdy

|x− y|µ
exp

(
2(h(tkMk))

2N
N−1

)
≥ b

2

∫
Bδ/k(0)

∫
Bδ/k(0)

dxdy

|x− y|µ
exp

(
2((h(1))2(tkMk))

N
N−1

)

=
b

2
exp

log k

2(h(1))
2N

N−1 (tk)
N

N−1

ω
1

N−1

N−1

∫
Bδ/k(0)

∫
Bδ/k(0)

dxdy

|x− y|µ

≥ b

2
exp

log k

2(h(1))
2N

N−1 t
N

N−1

k

ω
1

N−1

N−1

Cµ,N

(
δ

k

)2N−µ

=
b

2
exp

log k

2(h(1))
2N

N−1 t
N

N−1

k

ω
1

N−1

N−1

− (2N − µ)

Cµ,N (δ)
2N−µ

≥ b

2
Cµ,Nδ

2N−µ. (3.20)

On the other hand, using the fact that J(tw) → −∞ as t→ ∞ and (3.17), we get that the sequence {tk}
is bounded, which contradicts (3.20), since b is arbitrary. This establishes our claim (3.16) and hence, we

conclude the proof. □
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3.3. Convergence results. Let {wk} ⊂ W 1,N
0 (Ω) be a Palais-Smale sequence for J . Now Lemma 3.3

yields that {wk} is bounded in W 1,N
0 (Ω). Thus, there exists w ∈W 1,N

0 (Ω) such that up to a subsequence,

still denoted by {wk},

wk ⇀ w weakly in W 1,N
0 (Ω),

wk → w strongly in Lq(Ω), q ∈ [1,∞),

wk(x) → w(x) point-wise a.e. in Ω,

as k → ∞. Also, from (3.12) and (3.13), we obtain that for some positive constants C ′, C ′′,∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx ≤ C ′, (3.21)∫

Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx ≤ C ′′. (3.22)

Now we have the next two results, where we consider {wk} to be satisfying all the above facts.

Lemma 3.5. Assume that the assumptions (f1)-(f5) hold and let h be de�ned as in (2.2). Let {wk} ⊂
W 1,N

0 (Ω) be a Palais-Smale sequence for J . Then we have

lim
k→∞

∫
Ω

(∫
Ω

|F (y, h(wk))− F (y, h(w))|
|x− y|µ

dy

)
|F (x, h(wk))− F (x, h(w))| dx = 0. (3.23)

Proof. We know that if a function F ∈ L1(Ω) then for any ϵ > 0 there exists a δ(ϵ) > 0 such that∣∣∣∣∫
Ω′

F(x) dx

∣∣∣∣ < ϵ,

for any measurable set Ω′ ⊂ Ω with |Ω′|≤ δ(ϵ). Also, if F ∈ L1(Ω) then for any �xed δ0 > 0 there exists

α > 0 such that

|{x ∈ Ω : |F(x)|≥ α}|≤ δ0.

Now (3.21) gives that (∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (·, h(wk)) ∈ L1(Ω)

and similarly, (3.4) gives that (∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (·, h(w)) ∈ L1(Ω).

Now we �x δ∗ > 0 and choose α > max

{
1,
(

2C′′M0

δ∗

) 1
m0+1

, s′
}
. Then by using (f4), Lemma 2.1-(h4) and

(3.21), we deduce∫
Ω∩{h(wk)≥α}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx

≤M0

∫
Ω∩{h(wk)≥α}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))

(h(wk))m0
dx

≤M0

∫
Ω∩{h(wk)≥α}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h(wk)

(h(wk))m0+1
dx

≤ 2M0

αm0+1

∫
Ω∩{h(wk)≥α}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx < δ∗. (3.24)

Using the similar argument as above in addition with Fatou's lemma, we have∫
Ω∩{h(w)≥α}

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx ≤ δ∗. (3.25)
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Combining (3.24) and (3.25), we have∣∣∣∣∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx−

∫
Ω

(∫
Ω

f(y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

∣∣∣∣
≤ 2δ∗ +

∣∣∣∣ ∫
Ω∩{h(wk)≤α}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx

−
∫
Ω∩{h(w)≤α}

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

∣∣∣∣.
Next, we show that as k → ∞∫

Ω∩{h(wk)≤α}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx→

∫
Ω∩{h(w)≤α}

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx.

Since

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
F (·, h(w)) ∈ L1(Ω), Fubini's theorem yields that

lim
Λ→∞

∫
Ω∩{h(w)≤α}

(∫
Ω∩{h(w)≥Λ}

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

= lim
Λ→∞

∫
Ω∩{h(w)≥Λ}

(∫
Ω∩{h(w)≤α}

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx = 0.

Thus, we can �x Λ > max

{(
2C′M0

δ∗

) 1
m0+1

, s′
}

such that, using (3.21), (f4) and Lemma 2.1-(h4), we

deduce ∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≥Λ}

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx

≤M0

∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≥Λ}

f(y, h(wk))

(h(wk))m0 |x− y|µ
dy

)
F (x, h(wk)) dx

≤ M0

Λm0+1

∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≥Λ}

f(y, h(wk))h(wk)(y)

|x− y|µ
dy

)
F (x, h(wk)) dx

≤ 2M0

Λm0+1

∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≥Λ}

f(y, h(wk))h
′(wk)wk(y)

|x− y|µ
dy

)
F (x, h(wk)) dx

≤ 2M0

Λm0+1

∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx ≤ δ∗.

Again, following the similar argument as above and employing Fatou's lemma, we can derive∫
Ω∩{h(w)≤α}

(∫
Ω∩{h(w)≥Λ}

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx ≤ δ∗.

Thus, we obtain∣∣∣∣∣
∫
Ω∩{h(w)≤α}

(∫
Ω∩{h(w)≥Λ}

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

−
∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≥Λ}

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx

∣∣∣∣∣ ≤ 2δ∗.

Now we claim that as k → ∞, for �xed positive real numbers α and Λ, the following holds:∣∣∣∣∣
∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≤Λ}

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx

−
∫
Ω∩{h(w)≤α}

(∫
Ω∩{h(w)≤Λ}

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

∣∣∣∣∣→ 0.

(3.26)
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It is easy to compute that(∫
Ω∩{h(wk)≤Λ}

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk))χΩ∩{h(wk)≤α}

→

(∫
Ω∩{h(w)≤Λ}

F (y, h(w))

|x− y|µ
dy

)
F (x, h(w))χΩ∩{h(w)≤α} (3.27)

point-wise a.e. as k → ∞. Now using N = r in (3.2), Lemma 2.1-(h5) and (1.2), we get a constant

Cα,Λ > 0 depending on α and Λ such that∫
Ω∩{h(wk)≤α}

(∫
Ω∩{h(wk)≤Λ}

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk))dx

≤ Cα,Λ

∫
Ω∩{h(wk)≤α}

(∫
{h(wk)≤Λ}

|h(wk)(y)|r

|x− y|µ
dy

)
|h(wk)(x)|rdx

≤ Cα,Λ

∫
Ω∩{h(wk)≤α}

(∫
{h(wk)≤Λ}

|wk(y)|r

|x− y|µ
dy

)
|wk(x)|rdx

≤ Cα,Λ

∫
Ω

∫
Ω

(
|wk(y)|r

|x− y|µ
dy

)
|wk(x)|r dx

≤ Cα,ΛC(N,µ)∥wk∥2r
L

2Nr
2N−µ (Ω)

→ Cα,ΛC(N,µ)∥w∥2r
L

2Nr
2N−µ (Ω)

as k → ∞, (3.28)

since wk → w strongly in Lq(Ω) for each q ∈ [1,∞). This combining with Theorem 4.9 in [5] implies that

there exists G ∈ L1(Ω) such that up to a subsequence, for each k ∈ N, we have∣∣∣∣∣
(∫

Ω∩{h(wk)≤Λ}

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk))χΩ∩{h(wk)≤α}

∣∣∣∣∣ ≤ |G(x)|.

Therefore, using (3.27) and employing the Lebesgue dominated convergence theorem, we obtain (3.26).

Thus, Λ → ∞ ∫
Ω

∫
Ω∩{|h(w)|≥Λ}

F (y, h(w))

|x− y|µ
F (x, h(w))dy dx = o(Λ), (3.29)∫

Ω

∫
{|h(wk)|≥Λ}

F (y, h(wk))

|x− y|µ
F (x, h(wk))dy dx = o(Λ), (3.30)∫

Ω

∫
{|h(w)|≥Λ}

F (y, h(wk))

|x− y|µ
F (x, h(w))dy dx = o(Λ), (3.31)

and ∫
Ω

∫
{|h(wk)|≥Λ}

F (y, h(wk))

|x− y|µ
F (x, h(w))dy dx = o(Λ). (3.32)
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So, ∫
Ω

(∫
Ω

|F (y, h(wk))− F (y, h(w))|
|x− y|µ

dy

)
|F (x, h(wk))− F (x, h(w))| dx

≤ 2

∫
Ω

(∫
Ω

χ{h(wk)≥Λ}(y)F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx

+ 4

∫
Ω

(∫
Ω

F (y, h(wk))χ{h(w)≥Λ}(x)F (x, h(w))

|x− y|µ
dy

)
dx

+ 4

∫
Ω

(∫
Ω

χ{h(wk)≥Λ}(y)F (y, h(wk))F (x, h(w))

|x− y|µ
dy

)
dx

+ 2

∫
Ω

(∫
Ω

χ{h(w)≥Λ}(y)F (y, h(w))

|x− y|µ
dy

)
F (x, h(w)) dx

+

∫
Ω

[(∫
Ω

|F (y, h(wk))χ{h(wk)≤Λ}(y)− F (y, h(w))χ{h(w)≤Λ}(y)|
|x− y|µ

dy

)

|F (x, h(wk))χ{h(wk)≤Λ}(x)− F (x, h(w))χ{h(w)≤Λ}(x)|

]
dx.

Then from Lebesgue dominated convergence theorem we infer that the last integration tends to 0 as

k → ∞. Hence, making use of (3.29)-(3.32), we �nally conclude (3.23). □

Lemma 3.6. Assume that (f1)-(f5) hold and h is de�ned as in (2.2). Let {wk} ⊂ W 1,N
0 (Ω) be a Palais-

Smale sequence for J . Then for all φ ∈W 1,N
0 (Ω), we have

lim
k→∞

∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)φ dx =

∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)φ dx.

Proof. Let Ω′ ⊂⊂ Ω and ψ ∈ C∞
c (Ω) such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 in Ω′. One can easily compute that∥∥∥∥ ψ

1 + wk

∥∥∥∥N =

∫
Ω

∣∣∣∣ ∇ψ
1 + wk

− ψ
∇wk

(1 + wk)2

∣∣∣∣N dx ≤ 2N−1(∥ψ∥N+∥wk∥N ), (3.33)

which yields that ψ
1+wk

∈ W 1,N
0 (Ω). Now taking ϕ = ψ

1+wk
in (3.12) as a test function and using Lemma

2.1-(h3) and (3.33), we obtain∫
Ω′

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))

1 + uk
h′(wk) dx

≤
∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk)h

′(wk)ψ

1 + wk
dx

≤
∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk)ψ

1 + wk
dx

= ϵk

∥∥∥∥ ψ

1 + wk

∥∥∥∥+ ∫
Ω

|∇wk|N−2∇wk∇
(

ψ

1 + wk

)
dx

≤ ϵk2
N−1
N (∥ψ∥+∥wk∥) +

∫
Ω

|∇wk|N−2∇wk
(

∇ψ
1 + wk

− φ
∇wk

(1 + wk)2

)
dx

≤ ϵk2
N−1
N (∥φ∥+∥wk∥) +

∫
Ω

|∇wk|N−1(|∇ψ|+|∇wk|) dx

≤ ϵk2
N−1
N (∥ψ∥+∥wk∥) + [∥ψ∥∥wk∥N−1+∥wk∥N ] ≤ C1,

(3.34)
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where C1 is a positive constant and in the last line we used the fact that {wk} is bounded in W 1,N
0 (Ω).

Again, using the boundedness of the sequence {wk}, from (3.13), we get∫
Ω′

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx

≤
∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx

≤ ϵk∥wk∥+∥wk∥N≤ C2 (3.35)

for some constant C2 > 0. Combining (3.34) and (3.35), we deduce∫
Ω′

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk) dx

≤ 2

∫
Ω′∩{wk<1}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)

1 + wk
dx

+

∫
Ω′∩{wk≥1}

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
wkf(x, h(wk))h

′(wk) dx

≤ 2

∫
Ω′

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)

1 + wk
dx

+

∫
Ω′

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
wkf(x, h(wk))h

′(wk) dx

≤ 2C1 + C2 := C3.

Thus, the sequence {vk} :=
{(∫

Ω
F (y,h(wk))

|x−y|µ dy
)
f(x, h(wk))h

′(wk)
}

is bounded in L1
loc(Ω). Therefore,

there exists a radon measure ζ such that, up to a subsequence, vk ⇀ ζ in the weak∗-topology as k → ∞.

Hence, we have

lim
k→∞

∫
Ω

∫
Ω

(
F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)η dx =

∫
Ω

η dζ, ∀η ∈ C∞
c (Ω).

Since wk satis�es (3.12), we achieve∫
A

ηdζ = lim
k→∞

∫
A

|∇wk|N−2∇wk∇η dx, ∀A ⊂ Ω,

which together with Lemma 4.1 yields that the Radon measure ζ is absolutely continuous with respect to

the Lebesgue measure. So, there exists a function ϱ ∈ L1
loc(Ω) such that for any η ∈ C∞

c (Ω), it holds that∫
Ω
η dζ =

∫
Ω
ηϱ dx, thanks to Radon-Nikodym theorem,. Therefore, we obtain

lim
k→∞

∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)η(x) dx

=

∫
Ω

ηϱ dx =

∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)η(x) dx, ∀η ∈ C∞

c (Ω),

since C∞
c (Ω) is dense in W 1,N

0 (Ω), this completes the proof. □

Proof of Theorem 1.4: Let {wk} be a Palais-Smale sequence at the level β∗. Then {wk} can be obtained

as a minimizing sequence associated to the variational problem (3.11). Then by Lemma 3.3, there exists

w ∈W 1,N
0 (Ω) such that, up to a subsequence, wk ⇀ w weakly in W 1,N

0 (Ω) as k → ∞.

Now by using Lemma 4.1 and Lemma 3.6, we infer that w forms a weak solution of (2.5). We claim that

w ̸≡ 0. Indeed, if not, that is, if w ≡ 0 then using Lemma 3.5, we have∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
F (x, h(wk)) dx→ 0 as k → ∞,

which yields that lim
k→∞

J(wk) =
1

N
lim
k→∞

∥wk∥N= β∗. That is,

lim
k→∞

∥wk∥N= β∗N.
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Therefore, for any real number l > 0, there exists k0 ∈ N such that

∥wk∥
N

N−1<
2N − µ

2N(h(1))2N
αN − l, for all k ≥ k0. (3.36)

Next, we show that ∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx→ 0 as k → ∞. (3.37)

Now using Proposition 1.1, (3.1), Lemma 2.1-(h4)-(h6), Hölder inequality and Sobolev inequality, we

deduce∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wkdx

≤ τ

∫
Ω

(∫
Ω

f(y, h(wk))h(wk)

|x− y|µ
dy

)
f(x, h(wk))h(wk)dx

≤ τC(N,µ)

(∫
Ω

|f(x, h(wk))h(wk)|
2N

2N−µ dx

) 2N−µ
N

≤ C̃1(N,µ, ϵ)

(∫
Ω

(
|h(wk)|N+|h(wk)|rexp((1 + ϵ)|h(wk)|

2N
N−1 )

) 2N
2N−µ

dx

) 2N−µ
N

≤ C̃1(N,µ, ϵ)

[
∥wk∥2N

L
2N2

2N−µ (Ω)
+∥wk∥2r

L
2Nr

2N−µ (Ω)

(∫
Ω

exp

(
2(1 + ϵ)

2N

2N − µ
h|(wk)|

2N
N−1

)
dx

) 2N−µ
2N

]

≤ C̃2(N,µ, ϵ)

∥wk∥2N+∥wk∥2r
(∫

Ω

exp

(
2(1 + ϵ)

2N

2N − µ
2

1
N−1 ∥wk∥

N
N−1

(
|wk|
∥wk∥

) N
N−1

)
dx

) 2N−µ
2N

 .
(3.38)

Using (3.36), we can choose l ( for example, take l = 2N−µ
(h(1))2N2N

αN − 2N−µ

2(1+ϵ)2
1

N−1 2N
αN > 0, as h(1) ≤ 1)

such that, for su�ciently large k ∈ N, 2(1+ϵ) 2N
2N−µ2

1
N−1 ∥wk∥

N
N−1< αN . Therefore, in the light of Theorem

1.2 along with Lemma 3.4, for su�ciently large k ∈ N, from (3.38), it follows that∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wkdx < C.

Now by employing Vitali's convergence theorem, we obtain∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx→ 0 as k → ∞.

Since, {vn} is a Palais-Smale sequence for J , hence we have lim
k→∞

⟨J ′(wk), wk⟩ = 0 which together with

(3.37) gives that limk→∞∥wk∥N= 0. Thus, from Lemma 3.5, it follows that lim
k→∞

J(wk) = 0 = β∗ which is

a contradiction to the fact that β∗ > 0. Hence, w ̸≡ 0.

Next, we prove that w > 0 in Ω. Now Lemma 3.3 yields that {wk} is bounded. Therefore, there exists a

constant a∗ > 0 such that, up to a subsequence, ∥wk∥→ a∗ as k → ∞. From the fact that J ′(wk) → 0

strongly in
(
W 1,N

0 (Ω)
)∗

and using Lemma 3.6 and Lemma 4.1, when k → ∞, we obtain∫
Ω

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)φ dx→
∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)φ dx

and ∫
Ω

|∇w|N−2∇w∇φ dx =

∫
Ω

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)φ dx,

for all φ ∈ W 1,N
0 (Ω). In particular, taking φ = w− in the above equation, we obtain ∥w−∥= 0 which

implies that w− = 0 a.e. in Ω. Therefore, w ≥ 0 a.e. in Ω.

From Theorem 1.2, we have f(·, h(w)) ∈ Lq(Ω), for 1 ≤ q < ∞. From (3.3), we know that F (x, h(w)) ∈
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Lq(Ω), for any q ∈ [1,∞). Since µ ∈ (0, N) and Ω is bounded then using the fact that y → |x−y|−µ∈ Lq(Ω)

for all q ∈ (1, Nµ ) uniformly in x ∈ Ω and applying Hölder's inequality, we can deduce∫
Ω

F (y, h(w))

|x− y|µ
dy ∈ L∞(Ω). (3.39)

Therefore, using the fact that h′(s) ≤ 1, we get(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w) ∈ Lq(Ω),

for 1 ≤ q <∞. Now by employing the regularity results for the elliptic equations, we infer that w ∈ L∞(Ω)

and w ∈ C1,γ(Ω) for some γ ∈ (0, 1). Finally, from the strong maximum principle, we draw the conclusion

that w > 0 in Ω and w ̸≡ 0. This completes the proof of Theorem 1.4.

4. Appendix A

In this section, we give prove of the following almost everywhere convergence of gradients of Palais-Smale

sequences using Concentration compactness arguments.

Lemma 4.1. Suppose the assumptions (f1)-(f6) hold and h is de�ned as in (2.2). Let {wk} ⊂ W 1,N
0 (Ω)

be a Palais-Smale sequence for J . Then ∇wk → ∇w a.e. in Ω. Moreover, we have, as k → ∞

|∇wk|N−2∇wk ⇀ |∇w|N−2∇w weakly in (L
N

N−1 (Ω))N . (4.1)

Proof. Since Lemma 3.3 yields that {wk} is bounded in W 1,N
0 (Ω), there exists w ∈ W 1,N

0 (Ω) such that,

in the sense of subsequence, we have wk ⇀ w weakly in W 1,N
0 (Ω), wk → w strongly in Lq(Ω), q ∈ [1,∞),

wk(x) → w(x) point-wise a.e. in Ω, as k → ∞. From the properties of the sequence {wk}, it is evident
that the sequence {|∇wk|N−2∇wk} must be bounded in (L

N
N−1 (Ω))N , which implies that there exists

u ∈ (L
N

N−1 (Ω))N such that,

|∇wk|N−2∇wk ⇀ u weakly in (L
N

N−1 (Ω))N as k → ∞. (4.2)

Also we have, {|∇wk|N} is bounded in L1(Ω), which yields that there exists a non-negative radon measure

σ such that, up to a subsequence, we have

|∇wk|N→ σ in (C(Ω))∗ as k → ∞. (4.3)

Our aim is to show u = |∇w|N−2∇w. For that, �rst we take ν > 0 and set Xν := {x ∈ Ω : σ(Bl(x)∩Ω) ≥
ν, for all l > 0}.
Claim 1: Xν is a �nite set.

Indeed, if not, then there exists a sequence of distinct points {zk} in Xν such that, σ(Bl(zk) ∩Ω) ≥ ν for

all l > 0 and for all k ∈ N. This gives that σ({zk}) ≥ ν for all k. Therefore, σ(Xν) = +∞. But this is a

contradiction to the fact that

σ(Xν) = lim
k→∞

∫
Xν

|∇wk|N dx ≤ C.

Hence, the claim holds. Thus, we can take Xν = {z1, z2, . . . , zn}.
Claim 2: We can choose ν > 0, such that ν

1
N−1 < 2N−µ

2N αN and we have

lim
k→∞

∫
S

(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk dx

=

∫
S

(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)w dx, (4.4)

where S is any compact subset of Ω \Xν .

Let z0 ∈ S and l0 > 0 be such that σ(Bl0(z0) ∩ Ω) < ν that is z0 /∈ Xσ. Also, we consider ϕ ∈ C∞
c (Ω)
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satisfying 0 ≤ ϕ(x) ≤ 1 for x ∈ Ω, ϕ ≡ 1 in B l0
2
(z0) ∩ Ω and ϕ ≡ 0 in Ω \ (Bl0(z0) ∩ Ω). Then

lim
k→∞

∫
B l0

2

(z0)∩Ω

|∇wk|Ndx ≤ lim
k→∞

∫
Bl0

(z0)∩Ω

|∇wk|Nϕdx ≤ σ(Bl0(z0) ∩ Ω) < ν.

Hence, for su�ciently large k ∈ N and su�ciently ϵ > 0 small, it follows that∫
B l0

2

(z0)∩Ω

|∇wk|N≤ ν(1− ϵ). (4.5)

Now we estimate the following using (f3), (4.5) and Lemma 2.1-(h6):∫
B l0

2

(z0)∩Ω

|f(x, h(wk))|q dx =

∫
B l0

2

(z0)∩Ω

|g(x, h(wk))|qexp
(
q|h(wk)|

2N
N−1

)
dx

≤ C

∫
B l0

2

(z0)∩Ω

exp
(
(1 + ϵ)2

1
N−1 q|h(wk)|

2N
N−1

)
dx

≤ C

∫
B l0

2

(z0)∩Ω

exp
(
(1 + ϵ)2

1
N−1 q|wk|

N
N−1

)
dx

≤ C

∫
B l0

2

(z0)∩Ω

exp

(1 + ϵ)q2
1

N−1 ν
1

N−1 (1− ϵ)
1

N−1

 |wk|N∫
B l0

2

(z0)∩Ω

|∇wk|Ndx


1

N−1

 dx

(4.6)

Thus, we can choose q > 1 and ϵ > 0 such that (1 + ϵ)2
1

N−1 qν
1

N−1 < αN and then using Theorem 1.2 in

the last relation, we obtain ∫
B l0

2

(z0)∩Ω

|f(x, h(wk))|q dx ≤ C. (4.7)

Next, we consider∫
B l0

2

(z0)∩Ω

∣∣∣∣(∫
Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk −
(∫

Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)w

∣∣∣∣ dx
≤
∫
B l0

2

(z0)∩Ω

∣∣∣∣(∫
Ω

F (y, h(w))

|x− y|µ
dy

)
(f(x, h(wk))h

′(wk)wk − f(x, h(w))h′(w))w

∣∣∣∣ dx
+

∫
B l0

2

(z0)∩Ω

∣∣∣∣(∫
Ω

F (y, h(wk))− F (y, h(w))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk

∣∣∣∣ dx
:= J1 + J2.

From the asymptotic growth assumptions on f , we obtain

lim
s→∞

f(x, s)t

(f(x, s))r
= 0 uniformly in x ∈ Ω, for all r > 1. (4.8)

Using (3.39), we get

J1 ≤ C

∫
B l0

2

(z0)∩Ω

|f(x, h(wk))h′(wk)wk − f(x, h(w))h′(w)w| dx,

where C > 0 is a constant. Moreover, (4.8) and (4.6) imply that {f(x, h(wk))h′(wk)wk} is an equi-

integrable family of functions over B l0
2
(z0) ∩ Ω. Also, the continuity of f and h implies the pointwise

convergence of f(x, h(wk))h
′(wk)wk to f(x, h(w))h′(w)w as k → ∞. Hence, by applying Vitali's conver-

gence theorem, we obtain J1 → 0 as k → ∞. Next, we show that J2 → 0 as k → ∞.

First by using the semigroup property of the Riesz Potential, we get the following for some constant C > 0,
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independent of k:∫
Ω

(∫
Ω

F (y, h(wk))− F (y, h(w))

|x− y|µ
dy

)
χB l0

2

(z0)∩Ω(x)f(x, h(wk))h
′(wk)wk dx

≤ C

(∫
Ω

(∫
Ω

|F (y, h(wk))− F (y, h(w))|dy
|x− y|µ

)
|F (x, h(uk))− F (x, h(u))| dx

) 1
2

×
(∫

Ω

(∫
Ω

χB l0
2

(z0)∩Ω(y)
f(y, h(wk))h

′(wk)wk
|x− y|µ

dy

)
χB l0

2

(z0)∩Ω(x)f(x, h(wk))h
′(wk)wk dx

) 1
2

.

Combining (4.6), (4.8) and the fact that ν can be chosen su�ciently small with ν
1

N−1 < 2N−µ
2N αN , it

follows that(∫
Ω

(∫
Ω

χB l0
2

(z0)∩Ω(y)f(y, h(wk))h
′(wk)wkdy

)
χB l0

2

(z0)∩Ω(x)f(x, h(wk))h
′(wk)wk dx

) 1
2

≤ ∥χB l0
2

(z0)∩Ωf(·, h(wk))h
′(wk)wk∥

L
2N

2N−µ (Ω)
≤ C.

Now using Lemma 3.5, we get J2 → 0 as k → ∞. This yields that

lim
k→∞

∫
B l0

2

(z0)∩Ω

∣∣∣∣∣
(∫

Ω

F (y, h(wk))

|x− y|µ
dy

)
f(x, h(wk))h

′(wk)wk

−
(∫

Ω

F (y, h(w))

|x− y|µ
dy

)
f(x, h(w))h′(w)w

∣∣∣∣∣ dx = 0.

Since S is compact, we can repeat this procedure over a �nite covering of balls and hence, achieve (4.4).

Finally, the proof of (4.1) can be concluded by the similar standard arguments as in the proof of Lemma

4 in [12]. □
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