References
[1] Alder NN, Sperry JS, Pockman WT. Root and stem xylem embolism,
stomatal conductance, and leaf turgor in Acer grandidentatum populations
along a soil moisture gradient. Oecologia 1996;105:293-301. doi:
https://doi.org/10.1007/BF00328731.
[2] Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F,
Poorter L. Amazonian rainforest tree mortality driven by climate and
functional traits. Nature Climate Change 2019;9:384-388. doi:
https://doi.org/10.1038/s41558-019-0458-0.
[3] Aritsara ANA, Razakandraibe VM, Ramananantoandro T, Gleason SM,
Cao KF. Increasing axial parenchyma fraction in the Malagasy Magnoliids
facilitated the co-optimisation of hydraulic efficiency and safety.New Phytologist 2021;229:1467-1480. doi:
https://doi.org/10.1111/nph.16969.
[4] Aritsara ANA, Wang S, Li BN, Jiang X, Qie YD, Tan FS, et
al . Divergent leaf and fine root “pressure-volume relationships”
across habitats with varying water availability. Plant Physiology2022. doi: https://doi.org/10.1093/plphys/kiac403.
[5] Bourbia I, Pritzkow C, Brodribb TJ. Herb and conifer roots show
similar high sensitivity to water deficit. Plant Physiology2021;186:1908-1918. doi: https://doi.org/10.1093/plphys/kiab207.
[6] Braak CJF. Canonical correspondence analysis: a new eigenvector
technique for multivariate direct gradient analysis. Ecology1986;67:1167-1179. doi: https://doi.org/10.2307/1938672
[7] Brodribb TJ, Powers J, Cochard H, Choat B. Hanging by a thread?
Forests and drought. Science 2020; 368:261-266. doi:
https://doi.org/10.1126/science.aat7631.
[8] Brodribb TJ, Pittermann J, Coomes DA. Elegance versus speed:
examining the competition between conifer and angiosperm trees.International Journal of Plant Sciences 2012;173:673-694. doi:
https://doi.org/10.1086/666005.
[9] Carminati A, Javaux M. Soil rather than xylem vulnerability
controls stomatal response to drought. Trends in Plant Science2020;25:868-880. doi: https://doi.org/10.1016/j.tplants.2020.04.003.
[10] Chin AR, Guzmán-Delgado
P, Sillett SC, Kerhoulas LP, Ambrose AR, McElrone AR, et al .
Tracheid buckling buys time, foliar water uptake pays it back:
Coordination of leaf structure and function in tall redwood trees.Plant, Cell & Environment 2022; 45:2607-2616. doi:
https://doi.org/10.1111/pce.14381.
[11] Choat B, Ball M, Luly J, Holtum J. Pit membrane porosity and
water stress-induced cavitation in four co-existing dry rainforest tree
species. Plant Physiology 2003;131:41-48. doi:
https://doi.org/10.1104/pp.014100.
[12] Choat B, Brodribb TJ, Brodersen CR, Duursma RA, López R, Medlyn
BE. Triggers of tree mortality under drought. Nature2018;558:531-539. doi: https://doi.org/10.1038/s41586-018-0240-x.
[13] Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R,et al . Global convergence in the vulnerability of forests to
drought. Nature 2012;491:752-755. doi:
https://doi.org/10.1038/nature11688.
[14] Cochard H, Barigah ST, Kleinhentz M, Eshel A. Is xylem
cavitation resistance a relevant criterion for screening drought
resistance among Prunus species? Journal of Plant Physiology2008;165:976-982. doi: https://doi.org/10.1016/j.jplph.2007.07.020.
[15] Cuneo IF, Knipfer T, Brodersen CR, McElrone AJ. Mechanical
failure of fine root cortical cells initiates plant hydraulic decline
during drought. Plant Physiology 2016;172:1669-1678. doi:
https://doi.org/10.1104/pp.16.00923.
[16] Cuneo IF, Barrios-Masias F, Knipfer T, Uretsky J, Reyes C,
Lenain P, et al . Differences in grapevine rootstock sensitivity
and recovery from drought are linked to fine root cortical lacunae and
root tip function. New Phytologist 2021;229:272-283. doi:
https://doi.org/10.1111/nph.16542.
[17] Delacre M, Lakens D, Leys C. Why psychologists should by
default use Welch’s t-test instead of Student’s t-test.International Review of Social Psychology 2017;30:92-101. doi:
http://doi.org/10.5334/irsp.82.
[18] Ennajeh M, Simões F Khemira, H, Cochard H. How reliable is the
double-ended pressure sleeve technique for assessing xylem vulnerability
to cavitation in woody angiosperms? Physiologia Plantarum2011;142:205-210. doi: https://doi.org/10.1111/j.1399-3054.2011.01470.x.
[19] Ewers FW, Fisher JB. Techniques for measuring vessel lengths
and diameters in stems of woody plants. American Journal of
Botany 1989;76:645-656. doi: https://doi.org/10.2307/2444412.
[20] Fontes CG, Pinto-Ledezma
J, Jacobsen AL, Pratt RB, Cavender-Bares J. Adaptive variation among
oaks in wood anatomical properties is shaped by climate of origin and
shows limited plasticity across environments. Functional Ecology2022;36:326-340. doi: https://doi.org/10.1111/1365-2435.13964.
[21] Gao J, Yang B, Peng X, Rossi S. Tracheid development under a
drought event producing intra-annual density fluctuations in the
semi-arid China. Agricultural and Forest Meteorology2021;308:108572. doi: https://doi.org/10.1016/j.agrformet.2021.108572.
[22] Gleason SM, Westoby M, Jansen S, Choat B, Hacke UG, Pratt RB,et al . Weak tradeoff between xylem safety and xylem-specific
hydraulic efficiency across the world’s woody plant species. New
Phytologist 2016;209:123-136. doi: https://doi.org/10.1111/nph.13646.
[23] Hacke UG, Sperry JS. Functional and ecological xylem anatomy:
Perspectives in plant ecology, evolution and systematics.Perspectives in Plant Ecology, Evolution and Systematics2001;4:97-115. doi: https://doi.org/10.1078/1433-8319-00017.
[24] Hacke UG, Jansen S. Embolism resistance of three boreal conifer
species varies with pit structure. New Phytologist2009;182:675-686. doi: https://doi.org/10.1111/j.1469-8137.2009.02783.x.
[25] Hacke UG, Spicer R, Schreiber SG, Plavcová L. An
ecophysiological and developmental perspective on variation in vessel
diameter. Plant, Cell & Environment 2017;40:831-845. doi:
https://doi.org/10.1111/pce.12777.
[26] Hajek P, Link RM, Nock CA, Bauhus J, Gebauer T, Gessler A,et al . Mutually inclusive mechanisms of drought-induced tree
mortality. Global Change Biology 2022;28:3365-3378. doi:
https://doi.org/10.1101/2020.12.17.423038.
[27] Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M,
Dimitrakopoulos PG et al . Plant diversity and productivity
experiments in European grasslands. Science 1999;286:1123-1127.
doi: https://doi.org/10.1126/science.286.5442.1123.
[28] Hijmans RJ, van Etten J, Sumner M, Cheng J, Bevan A, Bivand R,
Busetto L, Canty M, Forrest D, Ghosh A, et al . RASTER: geographic
data analysis and modeling. R package version 3.1-5 2015.
[29] Jackson RB, Sperry JS, Dawson TE. Root water uptake and
transport: using physiological processes in global predictions.Trends in Plant Science 2000;5:482-488. doi:
https://doi.org/10.1016/S1360-1385(00)01766-0.
[30] Jacobsen AL, Pratt RB, Venturas MD, Hacke UG. Large volume
vessels are vulnerable to water-stress-induced embolism in stems of
poplar. IAWA Journal 2019;40:4-S4. doi:
https://doi.org/10.1163/22941932-40190233.
[31] Johnson DM, Domec JC, Carter Berry Z, Schwantes AM, McCulloh
KA, Woodruff DR et al . Co‐occurring woody species have diverse
hydraulic strategies and mortality rates during an extreme drought.Plant, Cell & Environment 2018;41:576-588. doi:
https://doi.org/10.1111/pce.13121.
[32] Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E,
Warren JM. A test of the hydraulic vulnerability segmentation hypothesis
in angiosperm and conifer tree species. Tree Physiology2016;36:983-993. doi: https://doi.org/10.1093/treephys/tpw031.
[33] Klein T, Hartmann H. Climate change drives tree mortality.Science 2018;362:758-758. doi:
https://doi.org/10.1126/science.aav6508.
[34] Klepsch M, Zhang Y,
Kotowska MM, Lamarque LJ, Nolf M, Schuldt B, et al . Is xylem of
angiosperm leaves less resistant to embolism than branches? Insights
from microCT, hydraulics, and anatomy. Journal of Experimental
Botany 2018; 66:5611-5623. doi: https://doi.org/10.1093/jxb/ery321.
[35] Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree
height. Nature 2004;428:851-854. doi:
https://doi.org/10.1038/nature02417.
[36] Lai J, Zou Y, Zhang J, Peres-Neto PR. Generalizing hierarchical
and variation partitioning in multiple regression and canonical analyses
using the rdacca. hp R package. Methods in Ecology and Evolution2022;13:782-788. doi: https://doi.org/10.1111/2041-210X.13800.
[37] Lamarque LJ, Corso D, Torres-Ruiz JM, Badel E, Brodribb TJ,
Burlett R, et al . An inconvenient truth about xylem resistance to
embolism in the model species for refilling Laurus nobilis L.Annals of Forest Science 2018;75:1-15. doi:
https://doi.org/10.1007/s13595-018-0768-9.
[38] Lemaire C, Quilichini Y,
Brunel-Michac N, Santini J, Berti L, Cartailler J, et al .
Plasticity of the xylem vulnerability to embolism in Populus tremula x
alba relies on pit quantity properties rather than on pit structure.Tree Physiology 2021;41:1384-1399. doi:
https://doi.org/10.1093/treephys/tpab018.
[39] Lens F, Gleason SM, Bortolami G, Brodersen C., Delzon S, Jansen
S. Functional xylem characteristics associated with drought-induced
embolism in angiosperms. New Phytologist 2022. doi:
https://doi.org/10.1111/nph.18447.
[40] Levionnois S, Jansen S,
Wandji RT, Beauchêne J, Ziegler C, Coste S, et al . Linking
drought-induced xylem embolism resistance to wood anatomical traits in
Neotropical trees. New Phytologist 2021;229:1453-1466. doi:
https://doi.org/10.1111/nph.16942.
[41] Li RH, Zhu SD, Chen H, John R, Zhou GY, Zhang, DQ, et
al . Are functional traits a good predictor of global change impacts on
tree species abundance dynamics in a subtropical forest? Ecology
letters 2015;18:1181-1189. doi: https://doi.org/10.1111/ele.12497.
[42] Li S, Lens F, Espino S, Karimi Z, Klepsch M, Schenk HJ,et al . Intervessel pit membrane thickness as a key determinant of
embolism resistance in angiosperm xylem. IAWA journal2016;37:152-171. doi: https://doi.org/10.1163/22941932-20160128.
[43] Liu H, Ye Q, Gleason SM, He PC, Yin DY. Weak tradeoff between
xylem hydraulic efficiency and safety: climatic seasonality matters.New Phytologist 2021;229:1440-1452. doi:
https://doi.org/10.1111/nph.16940.
[44] MacFarlane DW, Kane B. Neighbour effects on tree architecture:
functional trade-offs balancing crown competitiveness with wind
resistance. Functional Ecology 2017;31:1624-1636. doi:
https://doi.org/10.1111/1365-2435.12865.
[45] Mrad A, Domec JC, Huang
CW, Lens F, Katul G. A network model links wood anatomy to xylem tissue
hydraulic behaviour and vulnerability to cavitation. Plant, cell
& environment 2018;41:2718-2730. doi:
https://doi.org/10.1111/pce.13415.
[46] Pammenter NV, Van der Willigen C. A mathematical and
statistical analysis of the curves illustrating vulnerability of xylem
to cavitation. Tree Physiology 1998;18:589-593. doi:
https://doi.org/10.1093/treephys/18.8-9.589.
[47] Peters JM, Gauthey A, Lopez R, Carins-Murphy MR, Brodribb TJ,
Choat B. Non-invasive imaging reveals convergence in root and stem
vulnerability to cavitation across five tree species. Journal of
Experimental Botany 2020;71:6623-6637. doi:
https://doi.org/10.1093/jxb/eraa381.
[48] Pfautsch S, Harbusch M, Wesolowski A, Smith R, Macfarlane C,
Tjoelker MG, et al . Climate determines vascular traits in the
ecologically diverse genus Eucalyptus. Ecology Letters2016;19:240-248. doi: https://doi.org/10.1111/ele.12559.
[49] Rodriguez-Dominguez CM,
Carins Murphy MR, Lucani C, Brodribb TJ. Mapping xylem failure in
disparate organs of whole plants reveals extreme resistance in olive
roots. New Phytologist 2018;218:1025-1035. doi:
https://doi.org/10.1111/nph.15079.
[50] Rodriguez-Dominguez CM,
Brodribb TJ. Declining root water transport drives stomatal closure in
olive under moderate water stress. New Phytologist2020;225:126-134. doi: https://doi.org/10.1111/nph.16177.
[51] Rodríguez-Ramírez EC,
Vázquez-García JA, García-González I, Alcántara-Ayala O, Luna-Vega I.
Drought effects on the plasticity in vessel traits of two endemic
Magnolia species in the tropical montane cloud forests of eastern
Mexico. Journal of Plant Ecology 2020;13:331-340. doi:
https://doi.org/10.1093/jpe/rtaa019.
[52] Schenk HJ, Espino S, Goedhart CM, Nordenstahl M, Cabrera HIM,
Jones CS. Hydraulic integration and shrub growth form linked across
continental aridity gradients. Proceedings of the National Academy
of Sciences, USA 2008;105:11248-11253. doi:
https://doi.org/10.1073/pnas.0804294105.
[53] Sperry JS, Saliendra NZ. Intra‐and inter‐plant variation in
xylem cavitation in Betula occidentalis. Plant, Cell &
Environment 1994;17:1233-1241. doi:
https://doi.org/10.1111/j.1365-3040.1994.tb02021.x.
[54] Trueba S, Pouteau R, Lens F, Feild TS, Isnard S, Olson ME,et al . Vulnerability to xylem embolism as a major correlate of
the environmental distribution of rain forest species on a tropical
island. Plant, Cell & Environment 2017;40:277-289. doi:
https://doi.org/10.1111/pce.12859.
[55] Tyree MT, Davis SD, Cochard H. Biophysical perspectives of
xylem evolution: is there a tradeoff of hydraulic efficiency for
vulnerability to dysfunction? IAWA journal 1994;15:335-360. doi:
https://doi.org/10.1163/22941932-90001369.
[56] Tyree MT, Ewers FW. The hydraulic architecture of trees and
other woody plants. New Phytologist 1991;119:345-360. doi:
https://doi.org/10.1111/j.1469-8137.1991.tb00035.x.
[57] Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and
embolism. Annual Review of Plant Biology 1989;40:19-36. doi:
https://doi.org/10.1146/annurev.pp.40.060189.000315.
[58] Tyree MT, Zimmermann MH. Hydraulic architecture of whole plants
and plant performance. Xylem structure and the ascent of sap,Springer, Berlin, Heidelberg 2002;175-214.
https://link.springer.com/book/10.1007/978-3-662-04931-0.
[59] Volaire F. A unified framework of plant adaptive strategies to
drought: crossing scales and disciplines. Global change biology2018;24:2929-2938. doi: https://doi.org/10.1111/gcb.14062.
[60] Wang L, Dai Y, Zhang J, Meng P, Wan X. Xylem structure and
hydraulic characteristics of deep roots, shallow roots and branches of
walnut under seasonal drought. BMC Plant Biology 2022;22:1-14.
doi: https://doi.org/10.1186/s12870-022-03815-2.
[61] Wang Z, Ding X, Li Y, Xie J. The compensation effect between
safety and efficiency in xylem and role in photosynthesis of
gymnosperms. Physiologia Plantarum 2022;174:e13617. doi:
https://doi.org/10.1111/ppl.13617.
[62] Yao GQ, Nie ZF, Zeng YY, Waseem M, Hasan MM, Tian XQ, et
al . A clear trade-off between leaf hydraulic efficiency and safety in
an aridland shrub during regrowth. Plant, Cell & Environment2021;44:3347-3357. doi: https://doi.org/10.1111/pce.14156.
[63] Zhao H, Jiang Z, Ma J, Cai J. What causes the differences in
cavitation resistance of two shrubs? Wood anatomical explanations and
reliability testing of vulnerability curves. Physiologia
plantarum 2020;169:156-168. doi: https://doi.org/10.1111/ppl.13059.
[64] Zhou GY, Wei XH, Wu YP, Liu SG, Yu HH, Yan JH et al .
Quantifying the hydrological responses to climate change in an intact
forested small watershed in Southern China. Global Change Biology2011;17:3736-3746. doi:
https://doi.org/10.1111/j.1365-2486.2011.02499.x.
[65] Zhu SD, Liu H, Xu QY, Cao KF, Ye Q. Are leaves more vulnerable
to cavitation than branches? Functional Ecology2016;30:1740-1744. doi: https://doi.org/10.1111/1365-2435.12656.
[66] Zhu SD, Song JJ, L RH, Ye Q. Plant hydraulics and
photosynthesis of 34 woody species from different successional stages of
subtropical forests. Plant, Cell & Environment 2013;36:879-891.
doi: https://doi.org/10.1111/pce.12024.