References
1. Millar GJ, Collins M. Industrial Production of Formaldehyde Using
Polycrystalline Silver Catalyst. Ind Eng Chem Res. 2017; 56(33):
9247-9265, doi:10.1021/acs.iecr.7b02388.
2. Pilato L. Phenolic Resins: A Century of Progress . (Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010).
3. Li H-J, Lausche AC, Peterson AA, et al. Using microkinetic analysis
to search for novel anhydrous formaldehyde production catalysts.Surf Sci. 2015; 641(105-111,
doi:https://doi.org/10.1016/j.susc.2015.04.028.
4. Usachev NY, Krukovskii I, Kanaev SJPC. The nonoxidative methanol
dehydrogenation to formaldehyde (A review). 2004; 44(6): 379-394.
5. Zarei M, Davarpanah A, Mokhtarian N, Farahbod FJES, Part A: Recovery,
Utilization,, Effects E. Integrated feasibility experimental
investigation of hydrodynamic, geometrical and, operational
characterization of methanol conversion to formaldehyde. 2020; 42(1):
89-103.
6. Sosna B, Korup O, Horn R. Probing local diffusion and reaction in a
porous catalyst pellet. J Catal. 2020; 381(285-294,
doi:https://doi.org/10.1016/j.jcat.2019.11.005.
7. Ajmera SK, Losey MW, Jensen KF, Schmidt MA. Microfabricated
packed-bed reactor for phosgene synthesis. AIChE J. 2001; 47(7):
1639-1647,
doi:https://doi.org/10.1002/aic.690470716.
8. Ajmera SK, Delattre C, Schmidt MA, Jensen KF. Microfabricated
Differential Reactor for Heterogeneous Gas Phase Catalyst Testing.J Catal. 2002; 209(2): 401-412, doi:10.1006/jcat.2002.3584.
9. Wehinger GD, Eppinger T, Kraume M. Evaluating Catalytic Fixed-Bed
Reactors for Dry Reforming of Methane with Detailed CFD. Chem Ing
Tech. 2015; 87(6): 734-745,
doi:https://doi.org/10.1002/cite.201400153.
10. Su S, Zaza P, Renken AJCE, Engineering‐Biotechnology TICPEP.
Catalytic dehydrogenation of methanol to water‐free formaldehyde. 1994;
17(1): 34-40.
11. Miao J, Lu J, Jiang H, et al. Continuous and complete conversion of
high concentration p-nitrophenol in a flow-through membrane reactor.AIChE J. 2019; 65(9): e16692,
doi:https://doi.org/10.1002/aic.16692.
12. Fang X, Li J, Ren B, et al. Polymeric ultrafiltration membrane with
in situ formed nano-silver within the inner pores for simultaneous
separation and catalysis. J Membr Sci. 2019; 579(190-198,
doi:https://doi.org/10.1016/j.memsci.2019.02.073.
13. Gu Y, Bacchin P, Lahitte J-F, et al. Catalytic membrane reactor for
Suzuki-Miyaura C−C cross-coupling: Explanation for its high efficiency
via modeling. AIChE J. 2017; 63(2): 698-704,
doi:https://doi.org/10.1002/aic.15379.
14. Peela NR, Mubayi A, Kunzru D. Washcoating of γ-alumina on stainless
steel microchannels. Catal Today. 2009; 147(S17-S23,
doi:https://doi.org/10.1016/j.cattod.2009.07.026.
15. Zhang X, Zhong L, Zeng G, et al. Process intensification of
honeycomb fractal micro-reactor for the direct production of lower
olefins from syngas. Chem Eng J. 2018; 351(12-21,
doi:https://doi.org/10.1016/j.cej.2018.06.078.
16. Chen Y, Mai Z, Fan S, et al. Synergistic enhanced catalysis of
micro-reactor with nano MnO2/ZIF-8 immobilized in membrane pores by
flowing synthesis. J Membr Sci. 2021; 628(119233,
doi:https://doi.org/10.1016/j.memsci.2021.119233.
17. Chen Y, Fan S, Qiu B, et al. Enhanced Catalytic Performance of a
Membrane Microreactor by Immobilizing ZIF-8-Derived Nano-Ag via Ion
Exchange. Ind Eng Chem Res. 2020; 59(44): 19553-19563,
doi:10.1021/acs.iecr.0c03707.
18. Qin Y, Jian S, Bai K, et al. Catalytic Membrane Reactor of Nano
(Ag+ZIF-8)@Poly(tetrafluoroethylene) Built by Deep-Permeation Synthesis
Fabrication. Ind Eng Chem Res. 2020; 59(21): 9890-9899,
doi:10.1021/acs.iecr.0c00862.
19. Qiu B, Fan S, Wang Y, et al. Catalytic membrane micro-reactor with
nano ZIF-8 immobilized in membrane pores for enhanced Knoevenagel
reaction of Benzaldehyde and Ethyl cyanoacetate. Chem Eng J.2020; 400(125910,
doi:https://doi.org/10.1016/j.cej.2020.125910.
20. Qiu B, Fan S, Chen Y, et al. Micromembrane absorber with
deep-permeation nanostructure assembled by flowing synthesis.AIChE J. 2021; 67(8): e17272,
doi:https://doi.org/10.1002/aic.17272.
21. Seto H, Yoneda T, Morii T, et al. Membrane reactor immobilized with
palladium-loaded polymer nanogel for continuous-flow Suzuki coupling
reaction. AIChE J. 2015; 61(2): 582-589,
doi:https://doi.org/10.1002/aic.14653.
22. Hoyt RA, Montemore MM, Sykes ECH, Kaxiras E. Anhydrous Methanol and
Ethanol Dehydrogenation at Cu(111) Step Edges. J Phys Chem A.2018; 122(38): 21952-21962, doi:10.1021/acs.jpcc.8b06730.
23. Hsiao TC, Lin SD. Effect of co-feed species on methanol conversion
over Cu/ZnO/Al2O3 and its possible mechanism. J Mol Catal A:
Chem. 2007; 277(1): 137-144,
doi:https://doi.org/10.1016/j.molcata.2007.07.035.
24. Manzoli M, Chiorino A, Boccuzzi F. Decomposition and combined
reforming of methanol to hydrogen: a FTIR and QMS study on Cu and Au
catalysts supported on ZnO and TiO2. Appl Catal B. 2005; 57(3):
201-209,
doi:https://doi.org/10.1016/j.apcatb.2004.11.002.
25. Wang N, Liu T, Shen H, et al. Ceramic tubular MOF hybrid membrane
fabricated through in situ layer‐by‐layer self‐assembly for
nanofiltration. 2016; 62(2): 538-546.
26. Pokhrel J, Bhoria N, Anastasiou S, et al. CO2 adsorption behavior of
amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide
composites under dry and wet conditions. Microporous Mesoporous
Mater. 2018; 267(53-67,
doi:https://doi.org/10.1016/j.micromeso.2018.03.012.
27. Zhang Y, Xie Z, Wang Z, et al. Unveiling the adsorption mechanism of
zeolitic imidazolate framework-8 with high efficiency for removal of
copper ions from aqueous solutions. Dalton Trans. 2016; 45(32):
12653-12660, doi:10.1039/C6DT01827K.
28. Zhou L, Li N, Owens G, Chen Z. Simultaneous removal of mixed
contaminants, copper and norfloxacin, from aqueous solution by ZIF-8.Chem Eng J. 2019; 362(628-637,
doi:https://doi.org/10.1016/j.cej.2019.01.068.
29. Zhang L, Hu YHJTJoPCC. Strong effects of higher-valent cations on
the structure of the zeolitic Zn (2-methylimidazole) 2 framework
(ZIF-8). 2011; 115(16): 7967-7971.
30. Sun S, Yang Z, Cao J, Wang Y, Xiong W. Copper-doped ZIF-8 with high
adsorption performance for removal of tetracycline from aqueous
solution. J Solid State Chem. 2020; 285(121219,
doi:https://doi.org/10.1016/j.jssc.2020.121219.
31. Kishor R, Ghoshal AK. APTES grafted ordered mesoporous silica KIT-6
for CO2 adsorption. Chem Eng J. 2015; 262(882-890,
doi:https://doi.org/10.1016/j.cej.2014.10.039.
32. Zhang L, Yang X, Jiang B, et al. Superhydrophilic and underwater
superoleophobic Ti foam with robust nanoarray structures of TiO2 for
effective oil-in-water emulsion separation. Sep Purif Technol.2020; 252(117437,
doi:https://doi.org/10.1016/j.seppur.2020.117437.
33. Xu K, Zhan C, Zhao W, et al. Tunable resistance of MOFs films via an
anion exchange strategy for advanced gas sensing. J Hazard Mater.2021; 416(125906,
doi:https://doi.org/10.1016/j.jhazmat.2021.125906.
34. Klier K. Structure and function of real catalysts. Appl Surf
Sci. 1984; 19(1): 267-297,
doi:https://doi.org/10.1016/0378-5963(84)90066-7.
35. McInroy AR, Lundie DT, Winfield JM, et al. An infrared and inelastic
neutron scattering spectroscopic investigation on the interaction of
η-alumina and methanol. 2005; 7(16): 3093-3101.
36. Yong ST, Ooi CW, Chai SP, Wu XS. Review of methanol
reforming-Cu-based catalysts, surface reaction mechanisms, and reaction
schemes. Int J Hydrog Energy. 2013; 38(22): 9541-9552,
doi:https://doi.org/10.1016/j.ijhydene.2013.03.023.
37. Said AE-AA, Goda MN. Superior catalytic performance of CaMoO4
catalyst in direct dehydrogenation of methanol into anhydrous
formaldehyde. Chem Phys Lett. 2018; 703(44-51,
doi:10.1016/j.cplett.2018.05.009.
38. Ren L-P, Dai W-L, Yang X-L, et al. Novel highly active
Ag–SiO2–Al2O3–ZnO catalyst for the production of anhydrous HCHO from
direct dehydrogenation of CH3OH. Appl Catal A. 2004; 273(1):
83-88,
doi:https://doi.org/10.1016/j.apcata.2004.06.015.
39. Said AE-AA, El-Wahab MMMA, Alian AM. Selective Oxidation of Methanol
to Formaldehyde Over Active Molybdenum Oxide Supported on Hydroxyapatite
Catalysts. Catal Letters. 2016; 146(1): 82-90,
doi:10.1007/s10562-015-1624-2.
40. Said AE-AA, El-Aal MA. Direct dehydrogenation of methanol to
anhydrous formaldehyde over Ag2O/γ-Al2O3 nanocatalysts at relatively low
temperature. Res Chem Intermed. 2017; 43(5): 3205-3217,
doi:10.1007/s11164-016-2820-4.
41. Ren L-p, Dai W-l, Cao Y, Li H, Fan K. First observation of highly
efficient dehydrogenation of methanol to anhydrous formaldehyde over
novel Ag–SiO 2 –MgO–Al 2 O 3 catalyst. ChemComm. 2003; 3(24):
3030-3031, doi:10.1039/b310316a.
42. Lu Z, Gao D, Yin H, Wang A, Liu S. Methanol dehydrogenation to
methyl formate catalyzed by SiO2-, hydroxyapatite-, and MgO-supported
copper catalysts and reaction kinetics. J Ind Eng Chem. 2015;
31(301-308,
doi:https://doi.org/10.1016/j.jiec.2015.07.002.
43. ZHANG Y, CUI Z-q, YAN S-h, LIU J-w, SHEN J-fJNGCI. Nonoxidative
methanol dehydrogenation to anhydrous formaldehyde over Zn-ZrO_2/SiO_2
catalyst. 2011; 1(
44. Zhang R, Sun Y, Peng S. In situ FTIR studies of methanol adsorption
and dehydrogenation over Cu/SiO2 catalyst. Fuel 2002; 81(11):
1619-1624,
doi:https://doi.org/10.1016/S0016-2361(02)00085-6.
45. Yang H, Chen Y, Cui X, et al. A Highly Stable Copper‐Based Catalyst
for Clarifying the Catalytic Roles of Cu0 and Cu+ Species in Methanol
Dehydrogenation. Angew Chem Int Ed. 2018; 57(7): 1836-1840,
doi:10.1002/anie.201710605.
46. Minyukova TP, Simentsova II, Khasin AV, et al. Dehydrogenation of
methanol over copper-containing catalysts. Appl Catal A. 2002;
237(1): 171-180,
doi:https://doi.org/10.1016/S0926-860X(02)00328-9.