REFERENCES
Adams, R. A. and Hayes, M. A. (2008) ‘Water availability and successful lactation by bats as related to climate change in arid regions of western North America’, Journal of Animal Ecology , 77(6), pp. 1115–1121. doi: 10.1111/j.1365-2656.2008.01447.x.
Araújo, M. B. and Guisan, A. (2006) ‘Five (or so) challenges for species distribution modelling’, Journal of Biogeography , 33(10), pp. 1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x.
Baldwin, R. A. (2009) ‘Use of maximum entropy modeling in wildlife research’, Entropy , 11(4), pp. 854–866. doi: 10.3390/e11040854.
Banks-Leite, C. et al. (2014) ‘Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science’, Journal of Applied Ecology , pp. 849–859. doi: 10.1111/1365-2664.12272.
Barry, S. and Elith, J. (2006) ‘Error and uncertainty in habitat models’, Journal of Applied Ecology , 43(3), pp. 413–423. doi: 10.1111/j.1365-2664.2006.01136.x.
Barve, N. et al. (2011) ‘The crucial role of the accessible area in ecological niche modeling and species distribution modeling’,Ecological Modelling , 222(11), pp. 1810–1819. doi: 10.1016/j.ecolmodel.2011.02.011.
Bausch, D. G. and Schwarz, L. (2014) ‘Outbreak of Ebola Virus Disease in Guinea: Where Ecology Meets Economy’, PLoS Neglected Tropical Diseases , 8(7), p. e3056. doi: 10.1371/journal.pntd.0003056.
Beaumont, L. J., Hughes, L. and Pitman, A. J. (2008) ‘Why is the choice of future climate scenarios for species distribution modelling important?’, Ecology Letters , 11(11), pp. 1135–1146. doi: 10.1111/j.1461-0248.2008.01231.x.
Benedict, M. Q. et al. (2007) ‘Spread of The Tiger: Global Risk of Invasion by The Mosquito Aedes albopictus’, Vector-Borne and Zoonotic Diseases , 7(1), pp. 76–85. doi: 10.1089/vbz.2006.0562.
Boyce, M. S. et al. (2002) ‘Evaluating resource selection functions’, Ecological Modelling , 157(2–3), pp. 281–300. doi: 10.1016/S0304-3800(02)00200-4.
Bradie, J. and Leung, B. (2017) ‘A quantitative synthesis of the importance of variables used in MaxEnt species distribution models’,Journal of Biogeography , 44(6), pp. 1344–1361. doi: 10.1111/jbi.12894.
Busby, J. W. et al. (2012) ‘Locating Climate Insecurity: Where Are the Most Vulnerable Places in Africa?’, in Scheffran, J. et al. (eds) Climate Change, Human Security and Violent Conflict: Challenges for Societal Stability . Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 463–511. doi: 10.1007/978-3-642-28626-1_23.
Chaves, J. et al. (2008) ‘Land management impacts on runoff sources in small Amazon watersheds’, Hydrological Processes , 22(12), pp. 1766–1775. doi: 10.1002/hyp.6803.
Chen, G. et al. (2013) ‘Imperfect detection is the rule rather than the exception in plant distribution studies’, Journal of Ecology , 101(1), pp. 183–191. doi: 10.1111/1365-2745.12021.
Chew, R. M. and White, H. E. (1960) ‘Evaporative water losses of the pallid bat’, Journal of Mammalogy , 41(4), pp. 452–458. doi: 10.2307/1377532.
Cruz-Cárdenas, G. et al. (2014) ‘Potential species distribution modeling and the use of principal component analysis as predictor variables.’, Revista Mexicana de Biodiversidad , 85(1), pp. 189–199. doi: 10.7550/rmb.36723.
Daszak, P., Cunningham, A. A. and Hyatt, A. D. (2000) ‘Emerging infectious diseases of wildlife - Threats to biodiversity and human health’, Science , 287(5452), pp. 443–449. doi: 10.1126/science.287.5452.443.
Dicko, A. H. et al. (2014) ‘Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal’, Proceedings of the National Academy of Sciences of the United States of America , 111(28), pp. 10149–10154. doi: 10.1073/pnas.1407773111.
Dindé, A. O. et al. (2017) ‘Response to the Ebola-related bushmeat consumption ban in rural Côte d’Ivoire’, Agriculture and Food Security , 6(28), pp. 1–9. doi: 10.1186/s40066-017-0105-9.
Dorazio, R. M. (2012) ‘Predicting the Geographic Distribution of a Species from Presence-Only Data Subject to Detection Errors’,Biometrics , 68(4), pp. 1303–1312. doi: 10.1111/j.1541-0420.2012.01779.x.
Dormann, C. F. (2007) ‘Effects of incorporating spatial autocorrelation into the analysis of species distribution data’, Global Ecology and Biogeography , 16(2), pp. 129–138. doi: 10.1111/j.1466-8238.2006.00279.x.
Elith, J. et al. (2006) ‘Novel methods improve prediction of species’ distributions from occurrence data’, Ecography , 29(2), pp. 129–151. doi: 10.1111/j.2006.0906-7590.04596.x.
Elith, J. et al. (2011) ‘A statistical explanation of MaxEnt for ecologists’, Diversity and Distributions , 17(1), pp. 43–57. doi: 10.1111/j.1472-4642.2010.00725.x.
Elith, J., Burgman, M. A. and Regan, H. M. (2002) ‘Mapping epistemic uncertainties and vague concepts in predictions of species distribution’, Ecological Modelling , 157(2–3), pp. 313–329. doi: 10.1016/S0304-3800(02)00202-8.
Elith, J., Kearney, M. and Phillips, S. (2010) ‘The art of modelling range-shifting species’, Methods in Ecology and Evolution , 1(4), pp. 330–342. doi: 10.1111/j.2041-210X.2010.00036.x.
Elith, J. and Leathwick, J. R. (2009) ‘Species Distribution Models: Ecological Explanation and Prediction Across Space and Time’,Annual Review of Ecology, Evolution, and Systematics , 40(1), pp. 677–697. doi: 10.1146/annurev.ecolsys.110308.120159.
Fandohan, B. et al. (2013) ‘Impact des changements climatiques sur la répartition géographique des aires favorables à la culture et à la conservation des fruitiers sous-utilisés: Cas du tamarinier au Bénin’, Biotechnology, Agronomy and Society and Environment , 17(3), pp. 450–462. doi: 10.1179/146531207225022302.
Feldmann, H. and Geisbert, T. W. (2011) ‘Ebola haemorrhagic fever’,The Lancet , 377(9768), pp. 849–862. doi: 10.1016/S0140-6736(10)60667-8.
Fick, S. E. and Hijmans, R. J. (2017) ‘WorldClim 2: new 1km spatial resolution climate surfaces for global land areas’, International Journal of Climatology , 37(12), pp. 4302–4315.
Fiorillo, G., Bocchini, P. and Buceta, J. (2018) ‘A Predictive Spatial Distribution Framework for Filovirus-Infected Bats’, Scientific Reports , 8(1), pp. 1–13. doi: 10.1038/s41598-018-26074-4.
Franklin, J. et al. (2009) ‘Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California’, Diversity and Distributions , 15(1), pp. 167–177. doi: 10.1111/j.1472-4642.2008.00536.x.
Groseth, A., Feldmann, H. and Strong, J. E. (2007) ‘The ecology of Ebola virus’, Trends in Microbiology , 15(9), pp. 408–416. doi: 10.1016/j.tim.2007.08.001.
Gu, W. and Swihart, R. K. (2004) ‘Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models’,Biological Conservation , 116(2), pp. 195–203. doi: 10.1016/S0006-3207(03)00190-3.
Guélat, J. and Kéry, M. (2018) ‘Effects of spatial autocorrelation and imperfect detection on species distribution models’, Methods in Ecology and Evolution , 9(6), pp. 1614–1625. doi: 10.1111/2041-210X.12983.
Guillera-Arroita, G. (2017) ‘Modelling of species distributions, range dynamics and communities under imperfect detection: advances, challenges and opportunities’, Ecography , 40(2), pp. 281–295. doi: 10.1111/ecog.02445.
Guisan, A. and Thuiller, W. (2005) ‘Predicting species distribution: Offering more than simple habitat models’, Ecology Letters , 8(9), pp. 993–1009. doi: 10.1111/j.1461-0248.2005.00792.x.
Hayman, D. T. S. et al. (2010) ‘Long-term survival of an urban fruit bat seropositive for ebola and lagos bat viruses’, PLoS ONE , 5(8), p. e11978. doi: 10.1371/journal.pone.0011978.
Hernández, P. A. et al. (2006) ‘The effect of sample size and species characteristics on performance of different species distribution modeling methods’, Ecography , 29(5), pp. 773–785. doi: DOI 10.1111/j.0906-7590.2006.04700.x.
Hortal, J. et al. (2008) ‘Historical bias in biodiversity inventories affects the observed environmental niche of the species’,Oikos , 117(6), pp. 847–858. doi: 10.1111/j.0030-1299.2008.16434.x.
Hutchinson, G. E. (1957) ‘Concluding remarks’, Cold Spring Harbor Symposia on Quantitative Biology , 22, pp. 415–427. doi: 10.1101/SQB.1957.022.01.039.
Jarnevich, C. S. et al. (2015) ‘Caveats for correlative species distribution modeling’, Ecological Informatics , 29(1), pp. 6–15. doi: 10.1016/j.ecoinf.2015.06.007.
Jennings, A. P. et al. (2013) ‘Predicted distributions and conservation status of two threatened Southeast Asian small carnivores: The banded civet and Hose ’s civet’, Mammalia , 77(3), pp. 261–271. doi: 10.1515/mammalia-2012-0110.
Johnson, C. J. and Gillingham, M. P. (2008) ‘Sensitivity of species-distribution models to error, bias, and model design: An application to resource selection functions for woodland caribou’,Ecological Modelling , 213(2), pp. 143–155. doi: 10.1016/j.ecolmodel.2007.11.013.
Jones, K. E. et al. (2008) ‘Global trends in emerging infectious diseases’, Nature , 451, pp. 990–993. doi: 10.1038/nature06536.
Kadmon, R., Farber, O. and Danin, A. (2003) ‘A systematic analysis of factors affecting the performance of climatic envelope models’,Ecological Applications , 13(3), pp. 853–867. doi: 10.1890/1051-0761(2003)013[0853:ASAOFA]2.0.CO;2.
Kadmon, R., Farber, O. and Danin, A. (2004) ‘Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models’,Ecological Applications , 14(2), pp. 401–413. doi: 10.1890/02-5364.
Knut, S.-N. (1997) Animal physiology. Adaptation and Environment . 5th ed. Cambridge University Press.
Lahoz-Monfort, J. J., Guillera-Arroita, G. and Wintle, B. A. (2014) ‘Imperfect detection impacts the performance of species distribution models’, Global Ecology and Biogeography , 23(4), pp. 504–515. doi: 10.1111/geb.12138.
Leroy, E. M. et al. (2004) ‘Multiple Ebola Virus Transmission Events and Rapid Decline of Central African Wildlife’, Science , 303(5656), pp. 387–390. doi: 10.1126/science.1092528.
Leroy, E. M. et al. (2005) ‘Fruit bats as reservoirs of Ebola virus’, Nature , 438(7068), pp. 575–576. doi: 10.1038/438575a.
Leroy, J. L. et al. (2007) ‘Current priorities in health research funding and lack of impact on the number of child deaths per year’,American Journal of Public Health , 97(2), pp. 219–223. doi: 10.2105/AJPH.2005.083287.
Lindsay, S. W. et al. (2010) ‘Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modelling approaches’, Malaria Journal , 9(1), p. 70. doi: 10.1186/1475-2875-9-70.
Lobo, J. M., Jiménez-valverde, A. and Real, R. (2008) ‘AUC: A misleading measure of the performance of predictive distribution models’,Global Ecology and Biogeography , 17(2), pp. 145–151. doi: 10.1111/j.1466-8238.2007.00358.x.
Maganga, G. D. et al. (2014) ‘Ebola Virus Disease in the Democratic Republic of Congo’, New England Journal of Medicine , 371(22), pp. 2083–2091. doi: 10.1056/NEJMoa1411099.
Martinez-Meyer, E. (2005) ‘Climate Change and Biodiversity: Some Considerations in Forecasting Shifts in Species’ Potential Distributions’, Biodiversity Informatics , 2, pp. 42–55. doi: 10.17161/bi.v2i0.8.
Martínez-Meyer, E., Peterson, A. T. and Hargrove, W. W. (2004) ‘Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity’, Global Ecology and Biogeography , 13(4), pp. 305–314. doi: 10.1111/j.1466-822X.2004.00107.x.
McInerny, G. J. and Etienne, R. S. (2013) “‘Niche” or “distribution” modelling? A response to Warren’, Trends in Ecology and Evolution , 28(4), pp. 191–192. doi: 10.1016/j.tree.2013.01.007.
McPherson, J. and Jetz, W. (2007) ‘Effects of species’ ecology on the accuracy of distribution models’, Ecography , 30(1), pp. 135–151. doi: 10.1111/j.2006.0906-7590.04823.x.
Newson, S. E. et al. (2009) ‘Indicators of the impact of climate change on migratory species’, Endangered Species Research , 7, pp. 101–113. doi: 10.3354/esr00162.
Nyakarahuka, L. et al. (2017) ‘Ecological Niche Modeling for Filoviruses: A Risk Map for Ebola and Marburg Virus Disease Outbreaks in Uganda’, PLOS Currents Outbreaks , 9. doi: 10.1371/currents.outbreaks.07992a87522e1f229c7cb023270a2af1.
Olival, K. J. and Hayman, D. T. S. (2014) ‘Filoviruses in bats: Current knowledge and future directions’, Viruses , 6(4), pp. 1759–1788. doi: 10.3390/v6041759.
Omoleke, S. A., Mohammed, I. and Saidu, Y. (2016) ‘Ebola viral disease in West Africa: A threat to global health, economy and political stability’, Journal of Public Health in Africa , 7(1), pp. 27–40. doi: 10.4081/jphia.2016.534.
Osborne, P. E. and Leitão, P. J. (2009) ‘Effects of species and habitat positional errors on the performance and interpretation of species distribution models’, Diversity and Distributions , 15(4), pp. 671–681. doi: 10.1111/j.1472-4642.2009.00572.x.
Osterholm, M. T., Moore, K. A. and Gostin, L. O. (2015) ‘Public health in the age of ebola in west africa’, JAMA Internal Medicine , 175(1), pp. 7–8. doi: 10.1001/jamainternmed.2014.6235.
Papeş, M. and Gaubert, P. (2007) ‘Modelling ecological niches from low numbers of occurrences: Assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents’,Diversity and Distributions , 13(6), pp. 890–902. doi: 10.1111/j.1472-4642.2007.00392.x.
Pautasso, M. et al. (2010) ‘Plant health and global change - Some implications for landscape management’, Biological Reviews . doi: 10.1111/j.1469-185X.2010.00123.x.
Pearce, J., Ferrier, S. and Scotts, D. (2001) ‘An evaluation of the predictive performance of distributional models for flora and fauna in north-east New South Wales’, Journal of Environmental Management , 62(2), pp. 171–184. doi: 10.1006/jema.2001.0425.
Perkins, S. E. et al. (2007) ‘Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions’,Journal of Climate , 20(17), pp. 4356–4376. doi: 10.1175/JCLI4253.1.
Peterson, A. T. (2003) ‘Predicting the Geography of Species’ Invasions via Ecological Niche Modeling’, The Quarterly Review of Biology , 78(4), pp. 419–433. doi: 10.1086/378926.
Peterson, A. T., Carroll, D. S., et al. (2004) ‘Potential mammalian filovirus reservoirs’, Emerging Infectious Diseases , 10(12), pp. 2073–2081. doi: 10.3201/eid1012.040346.
Peterson, A. T. (2006) ‘Ecologic niche modeling and spatial patterns of disease transmission’, Emerging Infectious Diseases , 12(12), p. Ecologic niche modeling and spatial patterns of di. doi: 10.3201/eid1212.060373.
Peterson, A. T. et al. (2007) ‘Mammal Taxa Constituting Potential Coevolved Reservoirs of Filoviruses’, Journal of Mammalogy , 88(6), pp. 1544–1554. doi: 10.1037/0022-3514.45.5.1096.
Peterson, A. T., Bauer, J. T. and Mills, J. N. (2004) ‘Ecologic and Geographic Distribution of Filovirus Disease’, Emerging Infectious Diseases , 10(1), pp. 40–47. doi: 10.3201/eid1001.030125.
Phillips, S. (2017) ‘maxnet: Fitting “Maxent” Species Distribution Models with “glmnet”’, R Package , p. version 0.1.
Phillips, S. J. et al. (2009) ‘Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data’, Ecological Applications , 19(1), pp. 181–197. doi: 10.1890/07-2153.1.
Phillips, S. J. et al. (2017) ‘Opening the black box: an open-source release of Maxent’, Ecography , 40(7), pp. 887–893. doi: 10.1111/ecog.03049.
Phillips, S. J., Anderson, R. P. and Schapire, R. E. (2006) ‘Maximum entropy modeling of species geographic distributions’, Ecological Modelling , 190(3–4), pp. 231–259. doi: 10.1016/j.ecolmodel.2005.03.026.
Phillips, S. J. and Dudík, M. (2008) ‘Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation’,Ecography , 31(2), pp. 161–175. doi: 10.1111/j.0906-7590.2008.5203.x.
Pigott, D. M. et al. (2014) ‘Mapping the zoonotic niche of Ebola virus disease in Africa’, eLife , 3, p. e04395. doi: 10.7554/eLife.04395.
Pourrut, X. et al. (2009) ‘Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus’,BMC Infectious Diseases , 9(159). doi: 10.1186/1471-2334-9-159.
R Development Core Team (2018) ‘R statistical software’, R: A Language and Environment for Statistical Computing . Vienna, Austria: R Foundation for Statistical Computing.
Rainho, A., Augusto, A. M. and Palmeirim, J. M. (2010) ‘Influence of vegetation clutter on the capacity of ground foraging bats to capture prey’, Journal of Applied Ecology , 47(4), pp. 850–858. doi: 10.1111/j.1365-2664.2010.01820.x.
Reddy, S. and Dávalos, L. M. (2003) ‘Geographical sampling bias and its implications for conservation priorities in Africa’, Journal of Biogeography , 30(11), pp. 1719–1727. doi: 10.1046/j.1365-2699.2003.00946.x.
Report of a WHO/International Study Team (1978) ‘Ebola haemorrhagic fever in Sudan, 1976’, Bulletin of the World Health Organization , 56(2), pp. 247–270. doi: 1978;56(2):247-270.
Robinson, R. A. et al. (2009) ‘Travelling through a warming world: Climate change and migratory species’, Endangered Species Research , 7(2), pp. 87–99. doi: 10.3354/esr00095.
Royle, J. A., Nichols, J. D. and Kéry, M. (2005) ‘Modelling occurrence and abundance of species when detection is imperfect’, Oikos , 110(2), pp. 353–359. doi: 10.1111/j.0030-1299.2005.13534.x.
Russo, D., Cistrone, L. and Jones, G. (2012) ‘Sensory Ecology of Water Detection by Bats: A Field Experiment’, PLoS ONE , 7(10), p. e48144. doi: 10.1371/journal.pone.0048144.
Segurado, P., Araújo, M. B. and Kunin, W. E. (2006) ‘Consequences of spatial autocorrelation for niche-based models’, Journal of Applied Ecology , 43(3), pp. 433–444. doi: 10.1111/j.1365-2664.2006.01162.x.
Soberón, J. (2007) ‘Grinnellian and Eltonian niches and geographic distributions of species’, Ecology Letters , 10(12), pp. 1115–1123. doi: 10.1111/j.1461-0248.2007.01107.x.
Stephens, P. A. et al. (2015) ‘Management by proxy? The use of indices in applied ecology’, Journal of Applied Ecology , 52(1), pp. 1–6. doi: 10.1111/1365-2664.12383.
Stigall, A. L. (2012) ‘Using ecological niche modelling to evaluate niche stability in deep time’, Journal of Biogeography , 39(4), pp. 772–781. doi: 10.1111/j.1365-2699.2011.02651.x.
Thomas, D. W. and Cloutier, D. (1992) ‘Evaporative Water Loss by Hibernating Little Brown Bats, Myotis lucifugus’, Physiological Zoology , 65, pp. 443–456. doi: 10.1086/physzool.65.2.30158262.
Thorn, J. S. et al. (2009) ‘Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus)’, Diversity and Distributions , 15(2), pp. 289–298. doi: 10.1111/j.1472-4642.2008.00535.x.
Tsoar, A. et al. (2007) ‘A comparative evaluation of presence-only methods for modelling species distribution’,Diversity and Distributions , 13(4), pp. 397–405. doi: 10.1111/j.1472-4642.2007.00346.x.
Warren, C. C. et al. (2013) ‘Detection heterogeneity and abundance estimation in populations of Golden-cheeked Warblers’,The Auk , 130(4), pp. 677–688. doi: 10.1525/auk.2013.13022.
Warren, D. L. and Seifert, S. N. (2011) ‘Ecological niche modeling in Maxent : the importance of model complexity and the performance of model selection criteria C ommunications’, Ecological Applications , 21(2), pp. 335–342. doi: 10.1890/10-1171.1.
Warton, D. I. and Shepherd, L. C. (2010) ‘Poisson point process models solve the “pseudo-absence problem” for presence-only data in ecology’,Annals of Applied Statistics , 4(3), pp. 1383–1402. doi: 10.1214/10-AOAS331.
Wolfe, N. D. et al. (2005) ‘Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence’, Emerging Infectious Diseases , 11(12), pp. 1822–1827. doi: 10.3201/eid1112.040789.
Wolfe, N. D., Dunavan, C. P. and Diamond, J. (2007) ‘Origins of major human infectious diseases’, Nature , 447(7142), pp. 279–283. doi: 10.1038/nature05775.
Yackulic, C. B. et al. (2013) ‘Presence-only modelling using MAXENT: When can we trust the inferences?’, Methods in Ecology and Evolution , 4(3), pp. 236–243. doi: 10.1111/2041-210x.12004.
Yoccoz, N. G., Nichols, J. D. and Boulinier, T. (2001) ‘Monitoring of biological diversity in space and time’, Trends in Ecology & Evolution , 16(8), pp. 446–453. doi: http://dx.doi.org/10.1016/S0169-5347(01)02205-4.