References
Ackermann, R.R. & Cheverud, J.M. 2004. Morphological integration in
primate evolution. Phenotypic Integr. Stud. Ecol. Evol. complex
phenotypes 302 : 319. Págs.
Adams, D.C. & Otárola-Castillo, E. 2013. Geomorph: An r package for the
collection and analysis of geometric morphometric shape data.Methods Ecol. Evol. 4 : 393–399. Wiley Online Library.
Adams, D.C., Rohlf, F.J. & Slice, D.E. 2004. Geometric morphometrics:
ten years of progress following the ‘revolution.’ Ital. J. Zool.71 : 5–16. Taylor & Francis.
Betti, L., Balloux, F., Hanihara, T. & Manica, A. 2010. The relative
role of drift and selection in shaping the human skull. Am. J.
Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 141 :
76–82. Wiley Online Library.
Brandon, R.N. 2005. The difference between selection and drift: A reply
to Millstein. Biol. Philos. 20 : 153–170. Springer.
Brandon, R.N. & Carson, S. 1996. The indeterministic character of
evolutionary theory: no” no hidden variables proof” but no room for
determinism either. Philos. Sci. 63 : 315–337.
University of Chicago Press.
Chen, S.-F., Jones, G. & Rossiter, S.J. 2009. Determinants of
echolocation call frequency variation in the Formosan lesser horseshoe
bat (Rhinolophus monoceros). Proc. R. Soc. B Biol. Sci.276 : 3901–3909. The Royal Society.
Cheverud, J.M. 1996. Quantitative genetic analysis of cranial morphology
in the cotton-top (Saguinus oedipus) and saddle-back (S. fuscicollis)
tamarins. J. Evol. Biol. 9 : 5–42. Wiley Online Library.
Cheverud, J.M. 1982. Relationships among ontogenetic, static, and
evolutionary allometry. Am. J. Phys. Anthropol. 59 :
139–149. Wiley Online Library.
Cleuren, J., Aerts, P. & Vree, F. de. 1995. Bite and joint force
analysis in Caiman crocodilius. Belgian J. Zool.
Curtis, N., Jones, M.E.H., Lappin, A.K., O’Higgins, P., Evans, S.E. &
Fagan, M.J. 2010. Comparison between in vivo and theoretical bite
performance: using multi-body modelling to predict muscle and bite
forces in a reptile skull. J. Biomech. 43 : 2804–2809.
Elsevier.
Davies, K.T.J., Bates, P.J.J., Maryanto, I., Cotton, J.A. & Rossiter,
S.J. 2013. The Evolution of Bat Vestibular Systems in the Face of
Potential Antagonistic Selection Pressures for Flight and Echolocation.PLoS One 8 : 8–10.
Davis, J.L., Santana, S.E., Dumont, E.R. & Grosse, I.R. 2010.
Predicting bite force in mammals: two-dimensional versus
three-dimensional lever models. J. Exp. Biol. 213 :
1844–1851. The Company of Biologists Ltd.
Dool, S.E., Puechmaille, S.J., Foley, N.M., Allegrini, B., Bastian, A.,
Mutumi, G.L., et al. 2016. Nuclear introns outperform
mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons
from horseshoe bats (Rhinolophidae: Chiroptera). Mol. Phylogenet.
Evol. 97 .
Evin, A., Baylac, M., Ruedi, M., Mucedda, M. & Pons, J.-M. 2008.
Taxonomy, skull diversity and evolution in a species complex of Myotis
(Chiroptera: Vespertilionidae): a geometric morphometric appraisal.Biol. J. Linn. Soc. 95 : 529–538. Oxford University
Press.
Freeman, P.W. & Lemen, C.A. 2008. Measuring bite force in small mammals
with a piezo-resistive sensor. J. Mammal. 89 : 513–517.
American Society of Mammalogists.
Hansell, M. 2000. Bird nests and construction behaviour .
Cambridge University Press.
Hartley, D.J. & Suthers, R.A. 1988. The acoustics of the vocal tract in
the horseshoe bat, R hinolophushildebrandt i. J. Acoust. Soc. Am.84 : 1201–1213. Acoustical Society of America.
Hedrick, B.P., Mutumi, G.L., Munteanu, V.D., Sadier, A., Davies, K.T.J.,
Rossiter, S.J., et al. 2019. Morphological Diversification under
High Integration in a Hyper Diverse Mammal Clade. J. Mamm. Evol.1–13. Springer.
Herrel, A. & Holanova, V. 2008. Cranial morphology and bite force in
Chamaeleolis lizards–adaptations to molluscivory? Zoology111 : 467–475. Elsevier.
Hoffman, J.W. & De Beer, F.C. 2012. Characteristics of the micro-focus
X-ray tomography facility (MIXRAD) at Necsa in South Africa. In:18th World Conference on Nondestructive Testing , pp. 16–20.
Huyghe, K., Vanhooydonck, B., Scheers, H., Molina-Borja, M. & Van
Damme, R. 2005. Morphology, performance and fighting capacity in male
lizards, Gallotia galloti. Funct. Ecol. 800–807. JSTOR.
Jacobs, D.S., Babiker, H., Bastian, A., Kearney, T., van Eeden, R. &
Bishop, J.M. 2013. Phenotypic convergence in genetically distinct
lineages of a Rhinolophus species complex (Mammalia, Chiroptera).PLoS One 8 : e82614. Public Library of Science.
Jacobs, D.S., Barclay, R.M.R. & Walker, M.H. 2007. The allometry of
echolocation call frequencies of insectivorous bats: why do some species
deviate from the pattern? Oecologia 152 : 583–594.
Springer.
Jacobs, D.S. & Bastian, A. 2018. High duty cycle echolocation may
constrain the evolution of diversity within horseshoe bats (family:
Rhinolophidae). Diversity 10 : 85. Multidisciplinary
Digital Publishing Institute.
Jacobs, D.S., Bastian, A. & Bam, L. 2014. The influence of feeding on
the evolution of sensory signals: a comparative test of an evolutionary
trade-off between masticatory and sensory functions of skulls in
southern African Horseshoe bats (Rhinolophidae). J. Evol. Biol.27 : 2829–2840. Wiley Online Library.
Jakobsen, L., Brinkløv, S. & Surlykke, A. 2013. Intensity and
directionality of bat echolocation signals. Front. Physiol.4 : 89. Frontiers.
Jojić, V., Budinski, I., Blagojević, J. & Vujošević, M. 2015.
Mandibular and cranial modularity in the greater horseshoe bat
Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae). Hystrix26 .
Jones, G. 1996. Does echolocation constrain the evolution of body size
in bats? In: Symposia of the Zoological Society of London , pp.
111–128.
Jones, G. 1999. Scaling of echolocation call parameters in bats.J. Exp. Biol. 202 : 3359–3367. The Company of Biologists
Ltd.
Klingenberg, C.P. 2005. Developmental constraints, modules, and
evolvability. In: Variation , pp. 219–247. Elsevier.
Klingenberg, C.P. 2011. MorphoJ: an integrated software package for
geometric morphometrics. Mol. Ecol. Resour. 11 :
353–357. Wiley Online Library.
Klingenberg, C.P. 2008. Morphological integration and developmental
modularity. Annu. Rev. Ecol. Evol. Syst. 39 : 115–132.
Annual Reviews.
Klingenberg, C.P. 2009. Morphometric integration and modularity in
configurations of landmarks: Tools for evaluating a priori hypotheses.Evol. Dev. 11 : 405–421.
Lande, R. 1976. Natural selection and random genetic drift in phenotypic
evolution. Evolution (N. Y). 314–334. JSTOR.
Lande, R. 1979. Quantitative genetic analysis of multivariate evolution,
applied to brain: body size allometry. Evolution (N. Y).402–416. JSTOR.
Lawrence, B.D. & Simmons, J.A. 1982. Measurements of atmospheric
attenuation at ultrasonic frequencies and the significance for
echolocation by bats. J. Acoust. Soc. Am. 71 : 585–590.
Acoustical Society of America.
Luo, J., Koselj, K., Zseb\Hok, S., Siemers, B.M. &
Goerlitz, H.R. 2014. Global warming alters sound transmission:
differential impact on the prey detection ability of echolocating bats.J. R. Soc. Interface 11 : 20130961. The Royal Society.
Marroig, G. & Cheverud, J.M. 2004. Did natural selection or genetic
drift produce the cranial diversification of neotropical monkeys?Am. Nat. 163 : 417–428. The University of Chicago Press.
Melo, D. & Marroig, G. 2015. Directional selection can drive the
evolution of modularity in complex traits. Proc. Natl. Acad. Sci.112 : 470–475. National Acad Sciences.
Millstein, R.L. 2002. Are random drift and natural selection
conceptually distinct? Biol. Philos. 17 : 33–53.
Springer.
Millstein, R.L. 2008. Distinguishing drift and selection
empirically:“the great snail debate” of the 1950s. J. Hist.
Biol. 41 : 339–367. Springer.
Mutumi, G.L., Jacobs, D.S. & Winker, H. 2016. Sensory drive mediated by
climatic gradients partially explains divergence in acoustic signals in
two horseshoe bat species, rhinolophus swinnyi and rhinolophus
simulator. PLoS One 11 .
Mutumi, G.L., Jacobs, D.S. & Winker, H. 2017. The relative contribution
of drift and selection to phenotypic divergence: A test case using the
horseshoe bats Rhinolophus simulator and Rhinolophus swinnyi.Ecol. Evol. 7 .
Neuweiler, G. 2003. Evolutionary aspects of bat echolocation. J.
Comp. Physiol. A 189 : 245–256. Springer.
Odendaal, L.J., Jacobs, D.S. & Bishop, J.M. 2014. Sensory trait
variation in an echolocating bat suggests roles for both selection and
plasticity. BMC Evol. Biol. 14 : 60. Springer.
Oelschläger, H.A. 1990. Evolutionary morphology and acoustics in the
dolphin skull. In: Sensory abilities of cetaceans , pp. 137–162.
Springer.
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell,
G.V.N., Underwood, E.C., et al. 2001. Terrestrial Ecoregions of
the World: A New Map of Life on EarthA new global map of terrestrial
ecoregions provides an innovative tool for conserving biodiversity.Bioscience 51 : 933–938. Oxford University Press.
Pedersen, S.C. 1998. Morphometric analysis of the chiropteran skull with
regard to mode of echolocation. J. Mammal. 79 : 91–103.
American Society of Mammalogists 810 East 10th Street, PO Box 1897,
Lawrence~….
Rogers Ackermann, R. & Cheverud, J.M. 2002. Discerning evolutionary
processes in patterns of tamarin (genus Saguinus) craniofacial
variation. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys.
Anthropol. 117 : 260–271. Wiley Online Library.
Rosenberger, A.L. & Strasser, E. 1985. Toothcomb origins: support for
the grooming hypothesis. Primates 26 : 73–84. Springer.
Ross, C.F. & Kirk, E.C. 2007. Evolution of eye size and shape in
primates. J. Hum. Evol. 52 : 294–313. Elsevier.
Santana, S.E. & Dumont, E.R. 2011. Do roost-excavating bats have
stronger skulls? Biol. J. Linn. Soc. 102 : 1–10. Oxford
University Press.
Santana, S.E., Grosse, I.R. & Dumont, E.R. 2012. Dietary hardness,
loading behavior, and the evolution of skull form in bats.Evolution (N. Y). 66 : 2587–2598. Wiley Online Library.
Santana, S.E. & Lofgren, S.E. 2013. Does nasal echolocation influence
the modularity of the mammal skull? J. Evol. Biol. 26 :
2520–2526. Wiley Online Library.
Schnitzler, H.-U., Moss, C.F. & Denzinger, A. 2003. From spatial
orientation to food acquisition in echolocating bats. Trends Ecol.
Evol. 18 : 386–394. Elsevier.
Smith, H.F. 2011. The role of genetic drift in shaping modern human
cranial evolution: a test using microevolutionary modeling. Int.
J. Evol. Biol. 2011 . Hindawi.
Sun, H., Chen, W., Wang, J., Zhang, L., Rossiter, S.J. & Mao, X. 2020.
Echolocation call frequency variation in horseshoe bats: molecular basis
revealed by comparative transcriptomics. Proc. R. Soc. B287 : 20200875. The Royal Society.
Sun, K., Luo, L., Kimball, R.T., Wei, X., Jin, L., Jiang, T., et
al. 2013. Geographic variation in the acoustic traits of greater
horseshoe bats: testing the importance of drift and ecological selection
in evolutionary processes. PLoS One 8 : e70368. Public
Library of Science.
Wagner, G.P. 1996. Homologues, natural kinds and the evolution of
modularity. Am. Zool. 36 : 36–43. Oxford University
Press UK.
Weaver, T.D., Roseman, C.C. & Stringer, C.B. 2007. Were neandertal and
modern human cranial differences produced by natural selection or
genetic drift? J. Hum. Evol. 53 : 135–145. Elsevier.
Westneat, M.W. 2005. Skull biomechanics and suction feeding in fishes.Fish Physiol. 23 : 29–75. Elsevier.
Zuri, I., Kaffe, I., Dayan, D. & Terkel, J. 1999. Incisor adaptation to
fossorial life in the blind mole-rax Spalax ehrenbergi. J.
Mammal. 80 : 734–741. American Society of Mammalogists 810
East 10th Street, PO Box 1897, Lawrence~….