References
1 Altenbach H, Oechsner A. Cellular and Porous Materials in
Structures and Processes . Vol 521. 1st ed. (Altenbach H, Öchsner A,
eds.). Vienna: Springer-Verlag Wien; 2010.
2 Lorna J. Gibson MFA. Cellular Solids: Structure and Properties .
Second. Cambridge University Press; 1997.
3 Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE. The
effect of stem stiffness on femoral bone resorption after canine
porous-coated total hip arthroplasty. Clin Orthop Relat Res .
1990: 196–213.
4 Huiskes R, Weinans H, Van Rietbergen B. The relationship between
stress shielding and bone resorption around total hip stems and the
effects of flexible materials. Clin Orthop Relat Res . 1992:
124–134.
5 Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY. Metallic powder-bed based
3D printing of cellular scaffolds for orthopaedic implants: A
state-of-the-art review on manufacturing, topological design, mechanical
properties and biocompatibility. Mater Sci Eng C . 2017;76:
1328–1343.
6 Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ. Highly
porous titanium scaffolds for orthopaedic applications. J Biomed
Mater Res - Part B Appl Biomater . 2010;95: 53–61.
7 Murr LE, Gaytan SM, Medina F, et al. Characterization of Ti-6Al-4V
open cellular foams fabricated by additive manufacturing using electron
beam melting. Mater Sci Eng A . 2010;527: 1861–1868.
8 Mark Long, Rack HJ. Titanium alloys in total joint replacement - a
materials science perspective. Biomaterials . 1998;19: 1621–1639.
9 Singh, R., Lee, P.D., Dashwood, R.J., Lindley, T.C. Titanium foams for
biomedical applications: a review. Mater Technol . 2010;25:
127–136.
10 Weißmann V, Drescher P, Bader R, Seitz H, Hansmann H, Laufer N.
Comparison of single Ti6Al4V struts made using selective laser melting
and electron beam melting subject to part orientation. Metals
(Basel) . 2017;7.
11 Zhang S, Wei Q, Cheng L, Li S, Shi Y. Effects of scan line spacing on
pore characteristics and mechanical properties of porous Ti6Al4V
implants fabricated by selective laser melting. Mater Des .
2014;63: 185–193.
12 Qiu C, Yue S, Adkins NJE, et al. Influence of processing conditions
on strut structure and compressive properties of cellular lattice
structures fabricated by selective laser melting. Mater Sci Eng
A . 2015;628: 188–197.
13 Sufiiarov VS, Popovich AA, Borisov E V., Polozov IA, Masaylo D V.,
Orlov A V. The Effect of Layer Thickness at Selective Laser Melting.Procedia Eng . 2017;174: 126–134.
14 Kasperovich G, Haubrich J, Gussone J, Requena G. Correlation between
porosity and processing parameters in TiAl6V4 produced by selective
laser melting. Mater Des . 2016;105: 160–170.
15 Delroisse P, Jacques PJ, Maire E, Rigo O, Simar A. Effect of strut
orientation on the microstructure heterogeneities in AlSi10Mg lattices
processed by selective laser melting. Scr Mater . 2017;141:
32–35.
16 Ghouse S, Babu S, Van Arkel RJ, Nai K, Hooper PA, Jeffers JRT. The
influence of laser parameters and scanning strategies on the mechanical
properties of a stochastic porous material. Mater Des . 2017;131:
498–508.
17 Wauthle R, Vrancken B, Beynaerts B, et al. Effects of build
orientation and heat treatment on the microstructure and mechanical
properties of selective laser melted Ti6Al4V lattice structures.Addit Manuf . 2015;5: 77–84.
18 Benedetti M, Torresani E, Leoni M, et al. The effect of
post-sintering treatments on the fatigue and biological behavior of
Ti-6Al-4V ELI parts made by selective laser melting. J Mech Behav
Biomed Mater . 2017;71: 295–306.
19 Pattanayak DK, Fukuda A, Matsushita T, et al. Bioactive Ti metal
analogous to human cancellous bone: Fabrication by selective laser
melting and chemical treatments. Acta Biomater . 2011;7:
1398–1406.
20 Van Hooreweder B, Apers Y, Lietaert K, Kruth JP. Improving the
fatigue performance of porous metallic biomaterials produced by
Selective Laser Melting. Acta Biomater . 2017;47: 193–202.
21 Zhang M, Yang Y, Wang D, Xiao Z, Song C, Weng C. Effect of heat
treatment on the microstructure and mechanical properties of Ti6Al4V
gradient structures manufactured by selective laser melting. Mater
Sci Eng A . 2018;736: 288–297.
22 Cheng XY, Li SJ, Murr LE, et al. Compression deformation behavior of
Ti-6Al-4V alloy with cellular structures fabricated by electron beam
melting. J Mech Behav Biomed Mater . 2012;16: 153–162.
23 Amerinatanzi A, Shayesteh Moghaddam N, Ibrahim H, Elahinia M. The
Effect of Porosity Type on the Mechanical Performance of Porous NiTi
Bone Implants. 2016: V002T06A018.
24 Xiao L, Song W, Wang C, et al. Mechanical properties of open-cell
rhombic dodecahedron titanium alloy lattice structure manufactured using
electron beam melting under dynamic loading. Int J Impact Eng .
2017;100: 75–89.
25 Ying S, Sun C, Fai K, Wei J. Materials & Design Compressive
properties of functionally graded lattice structures manufactured by
selective laser melting. Mater Des . 2017;131: 112–120.
26 Wei K, Yang Q, Ling B, Xie H, Qu Z, Fang D. Mechanical responses of
titanium 3D kagome lattice structure manufactured by selective laser
melting. Extrem Mech Lett . 2018;23: 41–48.
27 Yánez A, Cuadrado A, Martel O, Afonso H, Monopoli D. Gyroid porous
titanium structures: A versatile solution to be used as scaffolds in
bone defect reconstruction. Mater Des . 2018;140: 21–29.
28 Zaharin HA, Rani AMA, Azam FI, et al. Effect of unit cell type and
pore size on porosity and mechanical behavior of additively manufactured
Ti6Al4V scaffolds. Materials (Basel) . 2018;11.
29 Ahmadi SM, Yavari SA, Wauthle R, et al. Additively manufactured
open-cell porous biomaterials made from six different space-filling unit
cells: The mechanical and morphological properties. Materials
(Basel) . 2015;8: 1871–1896.
30 Kadkhodapour J, Montazerian H, Darabi AC, et al. Failure mechanisms
of additively manufactured porous biomaterials: Effects of porosity and
type of unit cell. J Mech Behav Biomed Mater . 2015;50: 180–191.
31 Amin Yavari S, Ahmadi SM, Wauthle R, et al. Relationship between unit
cell type and porosity and the fatigue behavior of selective laser
melted meta-biomaterials. J Mech Behav Biomed Mater . 2015;43:
91–100.
32 Parthasarathy J, Starly B, Raman S, Christensen A. Mechanical
evaluation of porous titanium (Ti6Al4V) structures with electron beam
melting (EBM). J Mech Behav Biomed Mater . 2010;3: 249–259.
33 Li SJ, Xu QS, Wang Z, et al. Influence of cell shape on mechanical
properties of Ti-6Al-4V meshes fabricated by electron beam melting
method. Acta Biomater . 2014;10: 4537–4547.
34 Ashby MF. The properties of foams and lattices. Philos Trans R
Soc A Math Phys Eng Sci . 2006;364: 15–30.
35 Amin Yavari S, Wauthle R, Van Der Stok J, et al. Fatigue behavior of
porous biomaterials manufactured using selective laser melting.Mater Sci Eng C . 2013;33: 4849–4858.
36 Zhao S, Li SJ, Hou WT, Hao YL, Yang R, Misra RDK. The influence of
cell morphology on the compressive fatigue behavior of Ti-6Al-4V meshes
fabricated by electron beam melting. J Mech Behav Biomed Mater .
2016;59: 251–264.
37 Ahmadi SM, Hedayati R, Li Y, et al. Fatigue performance of additively
manufactured meta-biomaterials: The effects of topology and material
type. Acta Biomater . 2018;65: 292–304.
38 Ghouse S, Babu S, Nai K, Hooper PA, Jeffers JRT. The influence of
laser parameters, scanning strategies and material on the fatigue
strength of a stochastic porous structure. Addit Manuf . 2018;22:
290–301.
39 du Plessis A. Effects of process parameters on porosity in laser
powder bed fusion revealed by X-ray tomography. Addit Manuf .
2019;30: 100871.
40 du Plessis A, Razavi SMJ, Berto F. The effects of microporosity in
struts of gyroid lattice structures produced by laser powder bed fusion.Mater Des . 2020;194: 108899.
41 Kelly CN, Francovich J, Julmi S, et al. Fatigue behavior of As-built
selective laser melted titanium scaffolds with sheet-based gyroid
microarchitecture for bone tissue engineering. Acta Biomater .
2019;94: 610–626.
42 Wu MW, Chen JK, Lin BH, Chiang PH, Tsai MK. Compressive fatigue
properties of additive-manufactured Ti-6Al-4V cellular material with
different porosities. Mater Sci Eng A . 2020;790: 139695.
43 de Krijger J, Rans C, Van Hooreweder B, Lietaert K, Pouran B, Zadpoor
AA. Effects of applied stress ratio on the fatigue behavior of
additively manufactured porous biomaterials under compressive loading.J Mech Behav Biomed Mater . 2017;70: 7–16.
44 Yuan W, Hou W, Li S, et al. Heat treatment enhancing the compressive
fatigue properties of open-cellular Ti-6Al-4V alloy prototypes
fabricated by electron beam melting. J Mater Sci Technol .
2018;34: 1127–1131.
45 Ren D, Li S, Wang H, et al. Fatigue behavior of Ti-6Al-4V cellular
structures fabricated by additive manufacturing technique. J Mater
Sci Technol . 2019;35: 285–294.
46 Liu YJ, Wang HL, Li SJ, et al. Compressive and fatigue behavior of
beta-type titanium porous structures fabricated by electron beam
melting. Acta Mater . 2017;126: 58–66.
47 Benedetti M, Klarin J, Johansson F, et al. Study of the compression
behaviour of Ti6Al4V trabecular structures produced by additive laser
manufacturing. Materials (Basel) . 2019;12.
48 Cepeda-Jiménez CM, Potenza F, Magalini E, Luchin V, Molinari A,
Pérez-Prado MT. Effect of energy density on the microstructure and
texture evolution of Ti-6Al-4V manufactured by laser powder bed fusion.Mater Charact . 2020;163: 110238.
49 ISO 13314. ISO 13314 Mechanical testing of metals, ductility testing,
compression test for porous and cellular metals. Ref number ISO .
2011;13314: 1–7.
50 Amin Yavari S, Ahmadi SM, Wauthle R, et al. Relationship between unit
cell type and porosity and the fatigue behavior of selective laser
melted meta-biomaterials. J Mech Behav Biomed Mater . 2015;43:
91–100.
51 Thijs L, Verhaeghe F, Craeghs T, Humbeeck J Van, Kruth JP. A study of
the microstructural evolution during selective laser melting of
Ti-6Al-4V. Acta Mater . 2010;58: 3303–3312.
52 Gümrük R, Mines RAW. Compressive behaviour of stainless steel
micro-lattice structures. Int J Mech Sci . 2013;68: 125–139.
53 Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M. Deformation
and failure behaviour of Ti-6Al-4V lattice structures manufactured by
selective laser melting (SLM). Int J Adv Manuf Technol . 2016;84:
1391–1411.
54 Liu X, Sekizawa K, Suzuki A, Takata N, Kobashi M, Yamada T.
Compressive properties of Al-Si alloy lattice structures with three
different unit cells fabricated via laser powder bed fusion.Materials (Basel) . 2020;13: 1–16.
55 Peng C, Tran P, Nguyen-Xuan H, Ferreira AJM. Mechanical performance
and fatigue life prediction of lattice structures: Parametric
computational approach. Compos Struct . 2020;235: 111821.
56 Boniotti L, Beretta S, Patriarca L, Rigoni L, Foletti S. Experimental
and numerical investigation on compressive fatigue strength of lattice
structures of AlSi7Mg manufactured by SLM. Int J Fatigue .
2019;128: 105181.
57 Hrabe NW, Heinl P, Flinn B, Körner C, Bordia RK.
Compression-compression fatigue of selective electron beam melted
cellular titanium (Ti-6Al-4V). J Biomed Mater Res - Part B Appl
Biomater . 2011;99 B: 313–320.
58 Razavi SMJ, Van Hooreweder B, Berto F. Effect of build thickness and
geometry on quasi-static and fatigue behavior of Ti-6Al-4V produced by
Electron Beam Melting. Addit Manuf . 2020;36: 101426.
59 Dallago M, Fontanari V, Torresani E, et al. Fatigue and biological
properties of Ti-6Al-4V ELI cellular structures with variously arranged
cubic cells made by selective laser melting. J Mech Behav Biomed
Mater . 2018;78: 381–394.