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Supplementary Methods 
 
“Batch-effect-naive” bioinformatic pipeline 
 

To convert raw fastq files into bam format, we first trimmed adapters from sequencing 
reads using Trimmomatic-0.39 (NextSeq-150PE: PE -phred33 
'ILLUMINACLIP:'$ADAPTERS':2:30:10:1:true', HiSeq-125SE: SE -phred33 
'ILLUMINACLIP:'$ADAPTERS':2:30:10'). We then used fastp-0.19.7 to trim poly-G 
tails with the NextSeq-150PE batch of data only (--trim_poly_g -Q -L -A), with the 
default setting on minimum poly-G length threshold (--poly_g_min_len 10). We mapped 
reads to the gadMor3 reference genome using bowtie2-2.3.5.1 (-q --phred33 -- very-
sensitive -I 0 -X 1500 –fr for NextSeq-150PE and -q --phred33 -- very-
sensitive for HiSeq-125SE). We used samtools-1.11 to convert the resulting sam files to 
bam format and sorted them (view -buS and sort), Picard tools-2.9.0 to remove duplicated 
reads (MarkDuplicates VALIDATION_STRINGENCY=SILENT 
REMOVE_DUPLICATES=true), and BamUtil-1.0.14 to clip overlapping read pairs 
(clipOverlap) with the NextSeq-150PE batch of data only. Lastly, we performed indel 
realignment with GATK-3.7 (-T RealignerTargetCreator followed by -T 
IndelRealigner --consensusDeterminationModel USE_READ, with default 
options). Lastly, we counted the number of bases with mapping quality higher than 20 in the 
indel-realigned bam files using Samtools, and calculated per-sample sequencing depth (Table 
1, Figure S1).  

 
To estimate individual heterozygosity, we first estimated sample allele frequency (SAF) 

likelihoods with ANGSD-0.931 across the entire genome (including the non-variable sites) 
for each of the 163 samples included in this paper (-doSaf 1 -GL 1 -doCounts 1 -
setMinDepth 2 -setMaxDepth 10 -minQ 20 -minmapq 30). We then used the 
realSFS module in ANGSD-0.931 to estimate genome-wide site frequency spectrum (SFS) 
for each individual, from which individual heterozygosity can be calculated (Figure 1A 
“before”).  
 
 
Presence/absence of poly-G tails 

 
Instead of only applying the poly-G tail trimming functionality in fastp-0.19.7 as we did 

in the “batch-effect-naïve” pipeline, we also used the sliding window quality trimming 



functionality in fastp-0.19.7 (--cut_right --trim_poly_g -L -A) to further eliminate poly-G 
tails in the adapter trimmed fastq files in the NextSeq-150PE batch. Default window length 
(--cut_right_window_size 4) and mean base quality threshold (--
cut_right_mean_quality 20) were used. We randomly selected a single read with poly-
G tails to demonstrate the effectiveness of poly-G tail removal with and without the sliding 
window quality trimming functionality (Figure 2A). In addition, we randomly selected three 
samples, and used FastQC-0.11.8 to calculate the base composition of each read position for 
each individual, before poly-G removal, after poly-G trimming, and after poly-G trimming + 
sliding window quality trimming (Figure 2B). These FastQC results were then summarized 
and visualized using custom R scripts: https://github.com/therkildsen-lab/batch-
effect/blob/main/markdown/polyg.md We also used FastQC-0.11.8 to calculate the base 
composition of each read position after poly-G trimming, read alignment, and quality control 
in order to demonstrate the poly-G tails can persist after read alignment (Figure S2) 

 
As we found that poly-G tails cannot be completely removed with the poly-G tail 

trimming functionality fastp-0.19.7 alone, we applied sliding window quality trimming to all 
of our adapter trimmed fastq files in the NextSeq-150PE batch, remapped them to the 
reference genome, and repeated our deduplication, overlap clipping, and indel-realignment 
procedure. All following analyses are based on these files from which poly-G tails are 
removed. We also estimated heterozygosity from these bam files without correction for other 
causes of batch effect in order to demonstrate the strong impact poly-G tail has on 
heterozygosity estimation (Figure 1A “before” vs. Figure S3). 
 

After the poly-G issue is resolved, we used ANGSD to identify SNPs in the data (-GL 1 
-doGlf 2 -doMaf 1 -doMajorMinor 1 -doCounts 1 -doDepth 1 -dumpCounts 
1 -doIBS 1 -makematrix 1 -doCov 1 -P 32 -SNP_pval 1e-6 -setMinDepth 
46 -setMaxDepth 184 -minInd 20 -minQ 20 -minMaf 0.05 -minMapQ 20). 
This generated a total of 5,204,764 SNPs.  

 
We then estimated the sample allele frequency (SAF) likelihoods and the minor allele 

frequencies (MAF) in each batch of data (pooling all populations together) at this set of SNPs 
(-dosaf 1 -GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 3 -doCounts 1 -
doDepth 1 -setMinDepth 20 -setMaxDepth 184 -minInd 20 -minQ 20 -
minMapQ 20 -sites $SNP_LIST). The MAFs estimated in this step were used later to 
extract a list of private alleles in each batch of data (alleles with frequencies between 10% 
and 90% in one batch but smaller than 1% or larger than 99% in the other batch) (custom R 
script: https://github.com/therkildsen-lab/batch-
effect/blob/main/markdown/degradation.md#extract-private-alleles-and-examine-proportion-
of-base-substitutions). This step also generates the read count at each SNP location with a 
minimum mapping quality of 20. To generate the read count without a mapping quality filter, 
we used -doCounts 1 -doDepth 1 -dumpCounts 1 -setMinDepth 2 -minInd 2 
-minQ 20. These read counts were later used to identify region affect by reference bias 
(Figure 4). Lastly, using the SAF likelihoods as input, we ran the realSFS module in ANGSD 
to estimate a genome-wide two-dimensional SFS, which we used as a prior to estimate per-
SNP FST between the two batches (Figure 1C “before”). 

 
To perform PCA, we first need a list of LD-pruned SNPs. Due to computational 

limitations in LD estimation, we kept 1 SNP in every 5 SNPs in our SNP list, and also 
filtered out the SNPs within four large inversions known to be polymorphic in Atlantic cod. 
We then used ngsLD-1.1.0 to estimate pairwise LD between SNPs from genotype likelihoods  



(--n_ind 163 --n_sites 944554 --probs --rnd_sample 1 --max_kb_dist 
10) and to perform LD pruning (--max_kb_dist 10 --min_weight 0.5). After LD 
pruning, we obtained a “batch-effect-naïve” SNP list with 715,468 unlinked SNPs. With this 
set of unlinked SNPs, we performed PCA using ANGSD (-GL 1 -doGlf 2 -doMaf 1 -
doMajorMinor 3 -doCounts 1 -doDepth 1 -dumpCounts 1 -setMinDepth 2 -
setMaxDepth 661 -minInd 2 -minQ 20 -minMapQ 20 -minMaf 0.05 -doIBS 2 
-makematrix 1 -doCov 1 -sites $LD_PRUNED_SNP_LIST). Eigendecomposition 
was then performed on the resulting covariance matrix using custom R scripts 
(https://github.com/therkildsen-lab/batch-effect/blob/main/markdown/figures.md) (Figure 1B 
“before”).  
 
Difference in levels of base quality score miscalibration 

 
To detect base quality score miscalibration in the data, we estimated heterozygosity using 

ANGSD-0.931 from the poly-G -free bam files (-doSaf 1 -GL 1 -doCounts 1 -
setMinDepth 2 -setMaxDepth 10 -minmapq 30) with either a relaxed (-minQ 20, 
Figure S3) or a stringent base quality filter (-minQ 33, Figure 1A “after”). If base quality is 
not biased, we expect to see no systematic differences in heterozygosity estimates between 
the two base quality filter settings. We visualized the change in heterozygosity estimates after 
applying the more stringent base quality filter in both batches, and used the paired samples t-
test to evaluate whether this change is significantly different from zero in either batch (Figure 
3), using custom R scripts (https://github.com/therkildsen-lab/batch-
effect/blob/main/markdown/base_quality.md#figure-3). To mitigate the batch effects caused 
by base quality score miscalibration in individual heterozygosity (Figure S3), we used the 
estimates generated with a more stringent base quality filter, resulting in Figure 1A “after” 
and Figure 5A “before”. 

 
Difference in levels of reference bias / alignment error 

 
To detect reference bias / alignment error in the data, we first used the Integrative 

Genomics Viewer to spot check read alignment at randomly selected Fst outliers between the 
two batches of data (Figure 1C), either with or without a minimum mapping quality filter of 
20. The position LG23:6170006 is shown in Figure 4A, but other outlier loci exhibited 
similar patterns (e.g., LG07:9272785, LG16:25656225, LG17:19229736) where a position 
appears to be polymorphic in the HiSeq-125SE batch without the mapping quality filter but 
appears to be fixed for the reference allele when such filter is applied.  

 
For each SNP, we then calculated the proportion of reads with mapping quality lower 

than 20, and tested the difference in this value between FST outliers and all other SNPs (two-
sample t-test, Figure 4B). 
 

To mitigate the batch effects caused by reference bias in FST (Figure 1C “before”), we 
filtered out all SNPs with more than 10% of reads having mapping quality scores lower than 
20, resulting in Figure 1C “after”. To mitigate the batch effects caused by reference bias in 
PCA, we filtered out all private alleles in either batch of the data, and performed PCA with 
the same setting as Figure 1B “before”, resulting in Figure 1B “after” and  Figure 5B “after” 
(see https://github.com/therkildsen-lab/batch-
effect/blob/main/markdown/degradation.md#come-up-with-a-new-snp-list). Lastly, we also 



ran PCA after filtering out the private SNPs in either one of the two batches to illustrate the 
extent of ascertainment bias this approach causes (Figure S4).  
 
 
Difference in levels of DNA degradation 

  
To detect DNA degradation in the data, we first estimated heterozygosity using ANGSD 

from the poly-G -free bam files (-doSaf 1 -GL 1 -doCounts 1 -setMinDepth 2 -
setMaxDepth 10 -minmapq 30) with a stringent base quality filter (-minQ 33) to 
control for the base quality bias issue, and either including (-noTrans 0) or excluding 
transitions (-noTrans 1) in the data. If all samples are similarly degraded, we expect to see 
no systematic differences in the change of heterozygosity estimates after excluding the 
transitions. We visualized the change in heterozygosity estimates after excluding the 
transitions in well-preserved samples in both batches and degraded samples (as identified 
with gel electrophoresis) in the HiSeq-125SE batch, and used the ANOVA test to evaluate 
whether this change is significantly different between the three groups of samples (Figure 
5D), using custom R scripts: https://github.com/therkildsen-lab/batch-
effect/blob/main/markdown/degradation.md#estimate-heterozygositing-without-transitions). 

 
In addition, we used custom R scripts to visualize the proportion of different base 

substitutions in private alleles in each batch: https://github.com/therkildsen-lab/batch-
effect/blob/main/markdown/sfs.md (Figure 5C). We expect to see an enrichment of C-to-T 
and G-to-A substitutions in the batch of data that is has degraded samples (i.e. HiSeq-125SE).  
 

To mitigate the batch effects caused by DNA degradation in individual heterozygosity 
(Figure 5A “before”, we used the heterozygosity estimates generated excluding transitions , 
resulting in Figure 5A “after”. To mitigate the batch effects caused by DNA degradation (and 
reference bias) in PCA (Figure 5B “before”), we filtered out all private alleles in either batch 
of the data before performing PCA, resulting in Figure 5B “after”. 
 
 
Difference in sequencing depth 

 
To demonstrate that difference in sequencing depth can cause batch effect, we first used 

simulated data. The simulation pipeline is based on the ones that were used for Lou et al. (in 
revision), and associated scripts are available on GitHub: https://github.com/therkildsen-
lab/lcwgs-simulation). In SLiM3, we randomly created a starting sequence on a 30Mbp 
chromosome, created nine populations, each with population size (N) of 500. These nine 
populations are distributed on a three-by-three grid, with a constant bidirectional migration 
rate (m) equal to 0.002 connecting each pair of adjacent populations. We scaled up the neutral 
mutation rate (μ) to 2x10-7 per bp per generation, and recombination rate (r) to 50cM/Mbp. 
We ran the simulation for 10,000 generations, resulting in a metapopulation that has achieved 
mutation-drift-migration equilibrium. This metapopulation consists of nine populations, each 
with population genetic parameters resembling a diploid animal population with effective 
population size (Ne) on the order of 104. We used ART-MountRainier to simulate the 
sequencing process, and subsampled the bam files to create different per-population sample 
sizes (5, 10, 20, 40, 60, 80). For each sample size, we gave half of the samples in each 
population a coverage of 0.125x, and gave the other half of samples a coverage of 4x. We 
called SNPs and estimated genotype likelihoods with the nine populations combined using -



GL 1 -doGlf 2 -doMaf 1 -doMajorMinor 5 -doCounts 1 -doDepth 1 -
dumpCounts 1 -doIBS 2 -makematrix 1 -doCov 1 -P 6 -SNP_pval 1e-6 -
rmTriallelic 1e-6 -setMinDepth 2 -minInd 1 -minMaf 0.05 -minQ 20 in 
ANGSD-0.931. This step outputs a covariance matrix (-doCov 1) and a distance matrix -
doIBS 2) among individuals, and in addition to these, we also used PCAngsd-0.98 to 
generate another covariance matrix using the estimated genotype likelihoods from ANGSD 
(-minMaf 0.05 -iter 200 -maf_iter 200). Using the eigen() function and the 
cmdscale() function in R, we conducted principal component analysis (PCA) and principal 
coordinate analysis (PCoA) with these covariances matrices and distance matrix, 
respectively, and plotted the samples on the first two principal components / principal 
coordinates (Figure 6). 

 
In addition, we evaluated the performance of PCAngsd-0.98 in comparison with that of 

ANGSD-0.931with our empirical data. Using the same SNP list with which Figure 1B “after” 
was generated (i.e., private alleles in both batches of data were filtered out), we ran 
PCAngsd-0.98 with the default setting (Figure S5). We found that although batch effect is not 
observed when ANGSD is used, the PCA generated by PCAngsd still exhibit batch effect 
after reference bias and DNA degradation are controlled for. Therefore, it is likely that this 
batch effect is caused by differences in sequencing coverage, to which PCAngsd is more 
susceptible.  
  



Supplementary Figures 
 
 
 
 
 
 
 
 
 
 

 
 
Figure S1. An overview of samples included in this study. (A) Sample size and (B) depth of 
coverage in different sequencing batches, grouped by population and colored by DNA 
degradation level. Note that we refer to ITV2011 as “pop 1”,  KNG2011 as “pop 2”, 
QQL2011 as “pop 3” in Figure 1, S3, S4, S5. They are chosen for these plots because all their 
samples well-preserved (so that DNA degradation does not become a confounding factor), 
and because of their (relatively) larger sample size and higher coverage in both sequencing 
batches. Also note that we refer to ATP2011 as “pop 4”, NAR2008 as “pop 5”, UUM2010 as  
“pop 6” in Figure 5. These are the three populations for which samples are split to different 
batches based on their DNA degradation levels.  
 
 
 
 
  



 
 
 
 
 
 
 

 
Figure S2. Persistence of poly-G tails after read alignment and quality check (i.e. minimum 
mapping quality filter of 20, deduplication, overlapping read end clipping) in three randomly 
chosen samples in the NextSeq-150PE batch if only poly-G trimming is performed.  
 
  



 
 
 
 
 
 
 
 

 
Figure S3. Heterozygosity estimates with sliding window trimming but not with stringent 
base quality filtering. Comparing this figure with Figure 1A, we conclude that poly-G tail is a 
more important factor than base quality score miscalibration in causing batch effects in 
heterozygosity estimation; nonetheless, sliding window trimming alone is not sufficient to 
resolve the issue, since batch effects are still strong in this figure, presumably caused by base 
quality score miscalibration.  
 
 
 
  



 
 
 
 
 

 
Figure S4. Calling SNPs with only one batch of data does not resolve batch effect but instead 
causes strong ascertainment bias. Samples from the batch with which SNPs are called appear 
at more extreme positions on a PCA plot due to the ascertainment bias. 
 
  



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S5. PCA result from PCAngsd after excluding SNPs that are invariable in one batch 
of samples but are at intermediate frequencies in the other batch, and excluding SNPs that 
have a high number of low-mapping-score reads mapped to them (i.e., same data as in Figure 
1B “After”, but PCAngsd was used to generate the covariance matrix for this figure instead 
of ANGSD). This might reflect the higher susceptibility of PCAngsd to batch effect caused 
by sequencing coverage difference.  
 
 


