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Abstract 8 

 9 

Over the past few decades, the rapid democratization of high-throughput sequencing and 10 

the growing emphasis on open science practices have resulted in an explosion in the amount 11 

of publicly available sequencing data. This opens new opportunities for combining datasets to 12 

achieve unprecedented sample sizes, spatial coverage, or temporal replication in population 13 

genomic studies. However, a common concern is that non-biological differences between 14 

datasets may generate batch effects that can confound real biological patterns. Despite 15 

general awareness about the risk of batch effects, few studies have examined empirically how 16 

they manifest in real datasets, and it remains unclear what factors cause batch effects and 17 

how to best detect and mitigate their impact bioinformatically. In this paper, we compare two 18 

batches of low-coverage whole genome sequencing (lcWGS) data generated from the same 19 

populations of Atlantic cod (Gadus morhua). First, we show that with a “batch-effect-naive” 20 

bioinformatic pipeline, batch effects severely biased our genetic diversity estimates, 21 

population structure inference, and selection scan. We then demonstrate that these batch 22 

effects resulted from multiple technical differences between our datasets, including the 23 

sequencing instrument model/chemistry, read type, read length, DNA degradation level, and 24 

sequencing depth, but their impact can be detected and substantially mitigated with simple 25 



bioinformatic approaches. We conclude that combining datasets remains a powerful approach 26 

as long as batch effects are explicitly accounted for. We focus on lcWGS data in this paper, 27 

which may be particularly vulnerable to certain causes of batch effects, but many of our 28 

conclusions also apply to other sequencing strategies.   29 



Introduction 30 

 31 

The field of population genomics has been strongly influenced by two major advances 32 

over the past decades. First, high-throughput sequencing technology has rapidly evolved, 33 

steadily lowering the cost of DNA sequencing (Costello et al., 2018; Elango, Banaganapalli, 34 

& Shaik, 2019; Slatko, Gardner, & Ausubel, 2018). Second, the importance of reproducibility 35 

and reusability has increasingly been recognized by researchers, journals, and funding 36 

agencies alike, making data sharing an integral part of modern science (Gewin, 2016; 37 

Lowndes et al., 2017; Wilkinson et al., 2016). As a combined result of these shifts, a plethora 38 

of sequencing datasets from previous population genomic studies across the tree of life are 39 

now publicly available (Benson et al., 2013; Field et al., 2009; Kaye, Heeney, Hawkins, de 40 

Vries, & Boddington, 2009; Perez-Riverol et al., 2019). 41 

This availability of pre-existing data brings new and exciting opportunities for combining 42 

datasets to achieve unprecedented resolution in empirical population genomic studies, e.g. 43 

with larger sample sizes, greater geographic coverage, or incorporation of temporal 44 

replication or time series analysis (see De‐Kayne et al., 2021 for a recent review). As 45 

population genomics increasingly moves towards re-sequencing of entire genomes rather 46 

than specific sets of markers, the potential for combining datasets across studies should 47 

further grow. Yet, sequencing technology has evolved and diversified so quickly over the 48 

past decades that most datasets are likely to differ in various aspects, such as the library 49 

preparation method, sequencing platform, read type, and read length. In addition, DNA 50 

quality and depth of sequencing will often vary among different batches of data. These 51 

technical differences among datasets may create batch effects that can confound real 52 

biological patterns (Leek et al., 2010). 53 



Typically, the best way to limit these technical artefacts is to keep data generation as 54 

consistent as possible across batches of samples (e.g., adhering to the same sequencing 55 

platform, read type, and read length) and/or to randomize samples from different groups (e.g., 56 

populations or time points) across different sequencing batches. However, neither of these 57 

options may be available when we combine pre-existing datasets (De‐Kayne et al., 2021). 58 

When we supplement pre-existing datasets with new data, full randomization of samples is 59 

also not possible since we do not have control over which samples are included in pre-60 

existing datasets. With sequencing platforms being gradually phased out (e.g., Illumina’s 61 

recent discontinuation of the HiSeq platform), even generating new data with the same 62 

configurations as in pre-existing datasets may not be an option (De‐Kayne et al., 2021; Leigh, 63 

Lischer, Grossen, & Keller, 2018). Furthermore, in addition to sequencing configuration, 64 

factors such as DNA degradation can also lead to batch effects that cannot be controlled by 65 

experimental design alone. We therefore need post-hoc bioinformatic approaches to detect 66 

potential batch effects in our data and mitigate their impact.  67 

Although most researchers are aware of the potential risk of batch effects in sequencing 68 

data, only a few studies have explicitly discussed the causes and consequences of such issues, 69 

and even fewer have explored bioinformatic approaches to address them with real data. For 70 

example, Bálint et al. (2018) demonstrated that variation in DNA extraction and PCR 71 

protocols may lead to batch effects in eDNA studies, but they did not suggest any 72 

bioinformatic solutions to mitigate their impact. O’Leary et al. (2018) illustrated that 73 

differences in library preparation protocol and sequencing coverage may lead to batch effects 74 

with restriction site‐associated sequencing (RAD-seq) data, but it is unclear whether their 75 

recommend mitigation methods would be applicable when samples are not randomly 76 

assigned to different batches. Leigh et al. (2018) provided one of the most thorough analyses 77 

of batch effects to date, demonstrating that differences in read lengths in time-series RAD-78 



seq data can lead to false signals of allele frequency shifts, but that stringent SNP filters, 79 

indel alignment, read trimming, as well as a species-specific reference genome can be 80 

effective remedies. Similarly, Kofler et al. (2016) examined how differences in read length 81 

and insert size could affect mapping performance with Pool-seq data, and they showed that 82 

intersecting results from two different mapping tools is an effective approach to reducing 83 

batch effects when working with datasets with differing read length and insert size. Most 84 

recently, De‐Kayne et al. (2021) provided a broader conceptual overview of different causes 85 

of batch effects in sequencing data and best practices to address them, particularly 86 

highlighting important consequences of the shift from a four-channel to a two-channel 87 

sequencing chemistry on Illumina platforms. However, it is still unclear how such impact 88 

manifests in real data (but see Arora et al., 2019 for an example) and how effective their 89 

recommended mitigation methods are in practice. 90 

In this paper, we present an empirical case study of batch effects in low-coverage whole 91 

genome sequencing (lcWGS) data. Whole genome sequencing is arguably the sequencing 92 

method that harbors the greatest potential for reusing and integrating datasets, since the 93 

ability to combine across studies does not hinge on selection of the same restriction enzymes 94 

(as in RAD-seq) or markers (as in SNP chips or microsatellites) (De‐Kayne et al., 2021). In 95 

particular, as a powerful and cost-effective approach to obtain whole-genome data, lcWGS is 96 

becoming increasingly popular in the field of molecular ecology  (Lou, Jacobs, Wilder, & 97 

Therkildsen, 2021), but its sensitivity to batch effects has not yet been examined. Here, we 98 

show how combining lcWGS datasets that differ in multiple ways can result in severe batch 99 

effects in downstream population genomic inference, and we highlight strategies for 100 

detecting and mitigating such impact using simple bioinformatic approaches. Although 101 

lcWGS data may be especially susceptible to certain causes of batch effects investigated in 102 

this paper because of the higher level of uncertainty in this data type, many of our 103 



conclusions should also apply to other types of sequencing data, including high-coverage 104 

sequencing. 105 

 106 

Materials and Methods 107 

 108 

The data presented here originate from a lcWGS study of population structure and 109 

adaptive divergence in Atlantic cod (Gadus morhua) in Greenlandic waters (Lou et al. in 110 

prep). DNA was extracted from fin clips or gill tissue with the Qiagen DNeasy Blood & 111 

Tissue Kit and libraries were prepared with the protocol described in Therkildsen & Palumbi 112 

(2017). There was substantial variation in the preservation level of tissue samples from this 113 

difficult-to-sample locality. For a subset of our samples, the DNA was relatively well-114 

preserved so we could prepare libraries with a sufficient insert size to make full use of cost-115 

effective paired-end sequencing. For another subset of samples, however, the DNA was so 116 

degraded that the average insert size we could achieve in our libraries was only 100-150bp, 117 

and accordingly, paired-end sequencing would lead to substantial redundancy among the 118 

overlapping read-ends and adapter read-through (resulting in loss of  >50% of the data). 119 

Naively unaware of how severely it would affect our analysis downstream, we decided to 120 

split our samples into two different batches for sequencing: one batch with single-end 125bp 121 

read (for short-insert libraries; we will refer to this as “HiSeq-125SE”) and the other batch 122 

with paired-end 150bp reads (which was more cost-effective for libraries with longer inserts; 123 

we will refer to this as “NextSeq-150PE”). As the names imply, the two batches of data were 124 

sequenced on different Illumina platforms, so they differ in their sequencing chemistry 125 

(HiSeq 2500 with a four-color chemistry vs. NextSeq 500 with a two-color chemistry), and 126 

they were also sequenced to different average depth of coverage per sample (0.8x vs. 0.3x, 127 

see overview in Table 1).  128 



To assign different samples to the two sequencing batches, we used gel electrophoresis to 129 

visually assess the level of degradation in all DNA extracts. We categorized samples with 130 

strong low-molecular-weight smears on a gel as “degraded” and sequenced these in the 131 

HiSeq-125SE batch. The majority of the remaining samples (well-preserved) were assigned 132 

to the NextSeq-150PE batch, but to fill up lane capacity, a subset of the well-preserved 133 

samples were sequenced in the HiSeq-125SE batch. 134 

A total of 388 individuals were sequenced in these two batches, but we base our analysis 135 

here on a subset of 163 individuals from 9 populations for which individuals were split 136 

between the sequencing batches. For 3 of the 9 populations, the samples were split strictly 137 

based on their degradation level (i.e. the degraded samples were all sequenced in the HiSeq-138 

125SE batch and the well-preserved samples were sequenced in NextSeq-150PE batch). For 139 

the other 6 populations, all samples were well-preserved and were randomly split between the 140 

two batches (sample sizes and depths of coverage in Figure S1). Since we do not expect there 141 

to be systematic biological differences between individuals from the same population, we 142 

have multiple independent sets of comparable samples split between batches, which allows us 143 

to assess the effectiveness of our bioinformatic mitigation strategies, both for well-preserved 144 

and degraded samples.  145 

A detailed description of our entire data analysis pipeline is included in the 146 

supplementary materials, and all scripts used in this paper are available on GitHub 147 

(https://github.com/therkildsen-lab/batch-effect). Briefly, we first processed all samples with 148 

a standard bioinformatic pipeline for lcWGS data without explicitly taking the differences 149 

between the two sequencing batches into account (i.e., a “batch-effect-naive” pipeline). For 150 

data filtering and mapping, we used Trimmomatic-0.39 (Bolger, Lohse, & Usadel, 2014) to 151 

clip adapters, fastp-0.19.7 (Chen, Zhou, Chen, & Gu, 2018) to perform poly-G trimming, 152 

bowtie2-2.3.5.1 (Langmead & Salzberg, 2012) to align reads to the gadMor3 reference 153 



genome (NCBI accession ID: GCF_902167405.1, Wellcome Sanger Institute, 2019), 154 

samtools-1.11 (Li et al., 2009) to sort the resulting bam files, the MarkDuplicates module in 155 

Picard Tools-2.9.0 (http://broadinstitute.github.io/picard/) to remove duplicated reads, the 156 

clipOverlap module in BamUtil-1.0.14 (Jun, Wing, Abecasis, & Kang, 2015) to clip 157 

overlapping read pairs, and GATK-3.7 (McKenna et al., 2010) to realign reads around indels. 158 

We then used ANGSD-0.931 (Korneliussen, Albrechtsen, & Nielsen, 2014) to compute 159 

genotype likelihoods and estimate individual heterozygosity across the entire genome in all 160 

samples, taking both variable and invariable sites into account.  161 

After processing all samples with this “batch-effect-naive” bioinformatic pipeline, we 162 

noticed systematic differences in our estimates of individual heterozygosity between the two 163 

batches of data (Figure 1A “before”). To identify what aspects of the data were driving these 164 

differences and assess whether there were ways to mitigate them, we separately examined the 165 

impact of each of the following potential sources of technical artefacts: poly-G tails, base 166 

quality score miscalibration, reference bias in read alignment, DNA degradation level, and 167 

sequencing depth. In the following sections, we describe in turn our approach to assessing 168 

and mitigating the effects of each of these sources. Many of these efforts are simply based on 169 

modifying part of our “batch-effect-naive” pipeline outlined above (e.g. using the sliding-170 

window trimming functionality in fastp to more effectively remove poly-G tails, or applying 171 

more stringent filtering in ANGSD when estimating heterozygosity to alleviate the impact of 172 

base quality score miscalibration). In other cases, we also used ANGSD for SNP calling, 173 

principal component analysis (PCA), and FST estimation, and ngsLD-1.1.0 (Fox, Wright, 174 

Fumagalli, & Vieira, 2019) for LD estimation and removal of strongly linked SNPs (i.e. LD 175 

pruning). Finally, to examine the effect of varying depth of sequencing coverage, we used 176 

simulated data in addition to the empirical cod datasets. We used SLiM-3.3 (Haller & 177 

Messer, 2019) to simulate populations distributed in a two-dimensional space, and ART-178 



MountRainier (Huang, Li, Myers, & Marth, 2012) to simulate the lcWGS process to create 179 

comparable datasets with varying sequencing depth (more details in the supplementary 180 

material).  181 

 182 

Results and Discussion 183 

 184 

Across the two sequencing batches, we generated a total of 61.5 Gb raw sequencing data 185 

for the 163 samples. The systematic biases in population genomic inferences that we 186 

discovered pertain to estimates of genetic diversity, population structure, and selection scan. 187 

For example, the NextSeq-150PE samples consistently have substantially higher estimates of 188 

heterozygosity than HiSeq-125SE samples from the same population (Figure 1A “before”); 189 

samples from the same population but different batches cluster separately in a PCA (Figure 190 

1B “before”); and when pooling all populations together, a large number of loci exhibit 191 

highly elevated levels of genetic differentiation (compared to the genome-wide mean) 192 

between the HiSeq-125SE and NextSeq-150PE batches, which is not expected because they 193 

are composed of samples from the same populations (Figure 1C “before”).  194 

Based on our bioinformatic analysis, we found that all the potential sources of technical 195 

artefact that we investigated (poly-G tails, base quality score miscalibration, reference bias, 196 

DNA degradation level, and varying sequencing depth) contributed to the batch effects 197 

observed in our data. We summarize these different causes of batch effects in Table 2, and in 198 

the following sections discuss each issue separately in detail. 199 

 200 

Presence/absence of poly-G tails 201 

 202 



A key factor that can cause batch effects when compiling data generated on different 203 

sequencing platforms is variation in their sequencing chemistry. Across Illumina platforms, 204 

an important change is the shift from a four-channel system (used e.g. on HiSeq instruments) 205 

where each DNA base is detected with a different fluorescent dye, to a two-channel 206 

chemistry, that uses the combinations of two different dyes. With the two-channel system 207 

(implemented on newer platforms like NextSeq and NovaSeq), G is called when there is little 208 

to no fluorescence signal. Accordingly, the absence of a signal can result from a true G base 209 

in the DNA template, but any low-intensity fluorescence signal (regardless of the true base) 210 

may also lead to a G call, which becomes problematic. Since the intensity of the fluorescence 211 

signal tends to decrease with sequencing cycles, false calls of G tend to be enriched at the end 212 

of reads, forming poly-G tails (De‐Kayne et al. 2021). Although one might expect that reads 213 

with poly-G tails would fail to map to the reference genome and therefore would not cause 214 

problems downstream (especially with global alignment settings), we found that many of 215 

these reads can in fact map to the reference genome with high confidence (i.e. with mapping 216 

quality scores higher than 20, see Figure S2, also see Arora et al., 2019). Making the problem 217 

worse, these erroneous G calls are sometimes associated with high base quality scores 218 

(Figure 2A), so they can survive per-base quality trimming, and can also pass base quality 219 

filters in data analysis tools downstream. In our case, we found that poly-G tails were the 220 

main culprit behind the inflated heterozygosity estimates of the samples in the NextSeq-221 

150PE batch (see comparison between Figure 1A “before” and Figure S3).  222 

Poly-G trimming, as implemented in the program fastp (Chen et al., 2018), has been 223 

proposed as a possible solution to this problem (De‐Kayne et al. 2021). However, we found 224 

that calls of other bases are often interspersed within poly-G tails, and fastp only allows a 225 

maximum of five non-G bases in a poly-G tail. As a result, longer poly-G tails cannot be 226 

completely removed by this functionality (Figure 2). In fact, although we included a poly-G 227 



trimming step in our “batch-effect-naive” pipeline, the enrichment of G bases at the end of 228 

reads in our NextSeq-150PE data remained strong (Figure 2). 229 

Instead, we found a sliding-window quality trimming approach more effective for 230 

removing poly-G tails. This is based on the observation that going from the start to the end of 231 

a read, there tends to be a region in which base quality starts to decrease significantly before 232 

a poly-G section appears (Figure 2A, https://sequencing.qcfail.com/articles/illumina-2-233 

colour-chemistry-can-overcall-high-confidence-g-bases/). Therefore, we can move a sliding 234 

window from the start to the end of a read; once the average base quality drops below a 235 

threshold, we cut the window along with the remaining sequence after it. This approach is 236 

implemented in fastp as the cut_right option, and in Trimmomatic as the 237 

SLIDINGWINDOW option. Because a drop in base quality is often not immediately followed 238 

by a poly-G tail, sliding-window base quality trimming may result in greater data loss than 239 

necessary, but we found it to be much more effective at removing poly-G tails than targeted 240 

poly-G trimming with existing tools (Figure 2A). Indeed, after applying this method (with 241 

window size of 4 and average base quality threshold of 20), G bases are no longer enriched at 242 

the end of reads in our samples sequenced in the NextSeq-150PE batch (Figure 2B), and the 243 

initial disparity in heterozygosity estimates between the two batches is significantly reduced 244 

(Figure S3). We therefore use the sliding-window-trimmed NextSeq-150PE data in all 245 

subsequent analyses so that poly-G tails will not be a confounding factor. 246 

 247 

Difference in levels of base quality score miscalibration 248 

 249 

In an ideal scenario, a base quality score should accurately reflect the probability of the 250 

base call being correct. In practice, however, these scores are often incorrectly calibrated 251 

(Callahan et al., 2016; Ni & Stoneking, 2016), which can lead to batch effects if the levels of 252 



such biases differ across sequencing runs. For example, overestimated base qualities in one 253 

batch of data may result in inflated estimates of genetic diversity because sequencing errors 254 

are more likely to be interpreted as true variants. Such inflated estimates can lead to 255 

erroneous conclusions about relative levels of diversity when compared to estimates 256 

generated from other sequencing batches with more accurate quality scores. Base quality 257 

score miscalibration can be particularly problematic for low-coverage data, because the 258 

estimated probability of a base call being correct is central to the underlying probabilistic 259 

analysis framework based on genotype likelihoods rather than called genotypes 260 

(Korneliussen et al., 2014; Lou et al., 2021; Nielsen, Korneliussen, Albrechtsen, Li, & Wang, 261 

2012). 262 

A simple way to diagnose base quality score miscalibration is to compare diversity 263 

estimates (e.g., individual heterozygosity) obtained with a relaxed and a stringent base quality 264 

filter. If base quality scores are accurate, there should not be systematic differences between 265 

these estimates. However, if base quality scores are miscalibrated, sequencing errors cannot 266 

be accurately accounted for and can cause greater biases when they are more prevalent (i.e. 267 

when a relaxed filter is used). Therefore, if systematic differences are observed between 268 

diversity estimates obtained with different filters in one batch of data but not in others, base 269 

score quality miscalibration could be causing batch effects. In this case, using a more 270 

stringent base quality threshold for diversity estimates in all batches can provide more 271 

comparable results. In our data, we found that heterozygosity estimates consistently 272 

decreased in NextSeq-150PE samples after a more stringent base quality filter of 33 is 273 

applied (as opposed to 20), suggesting that the base quality scores in the NextSeq-150PE 274 

batch are overestimated (Figure 3). In contrast, heterozygosity estimates from HiSeq-125SE 275 

samples slightly increased after the filter, suggesting that their base quality scores are 276 

somewhat underestimated (Figure 3). As a result, within the same population, individuals in 277 



the NextSeq-150PE batch tend to have higher heterozygosity estimates than their 278 

counterparts in the HiSeq-125PE batch when a relaxed base quality filter is applied (Figure 279 

S3), but this difference is greatly reduced with a more stringent base quality filter (Figure 1A 280 

“after), suggesting that this bioinformatic filtering is an effective mitigation strategy. 281 

Using more stringent base quality thresholds is a logistically simple approach, but it has 282 

the downside of potentially wasting large amounts of data. In comparison, base quality score 283 

recalibration is a more robust, yet computationally involved, method to counteract base 284 

quality score miscalibration. However, some of the most widely used recalibration methods 285 

(e.g. as implemented in GATK and ANGSD) require a database of known variable sites, 286 

which is not readily available for most non-model species. Methods that do not rely on such 287 

databases are also available (e.g. Chung & Chen, 2017; Kousathanas et al., 2017; Ni & 288 

Stoneking, 2016; Orr, 2020; Zook, Samarov, McDaniel, Sen, & Salit, 2012), but their 289 

effectiveness has not been extensively tested especially with low-coverage data.  290 

  291 

Difference in levels of reference bias / alignment error 292 

 293 

When the read type and/or read length differ between batches, batch effects can arise 294 

from systematic differences in reference bias and alignment error. Specifically, compared to 295 

longer paired-end reads, shorter single-end reads carrying bases that are different from the 296 

reference are less likely to be aligned to the reference genome (either correctly or incorrectly) 297 

with high confidence, and therefore tend to receive low mapping quality scores. Also, shorter 298 

single-end reads are more prone to alignment errors caused by insertions and deletions 299 

(indels), leading to erroneous identification of SNPs in genomic regions adjacent to indels 300 

(Leigh et al., 2018).  301 



We did not find indel-related alignment errors to be a cause of batch effects in our data, 302 

presumably because we had a species-specific genome and performed indel realignment. 303 

However, this issue has been discussed in detail in Leigh et al. (2018), so here we just 304 

summarize their recommendations in Table 1 and focus our analyses on reference bias. After 305 

removing poly-G tails from the NextSeq-150PE samples, we estimated FST between the two 306 

batches of data and found that although the background level of FST is very low, allele 307 

frequencies at a large number of SNPs are strongly differentiated between the two batches 308 

(Figure 1C “before”). This is not expected since they are composed of samples from the same 309 

populations. Therefore, we closely examined the read alignment at several of these outlier 310 

SNPs with the Integrative Genomics Viewer (Robinson et al., 2011). We show a typical 311 

example in Figure 4A, where the FST outlier SNP appears to have similar allele frequencies in 312 

the two batches before a mapping quality filter is imposed. With a minimum mapping quality 313 

filter of 20, the allele frequency at this SNP remains unchanged in the NextSeq-150PE batch. 314 

However, in the HiSeq-125SE batch, reads with the non-reference allele (A) are entirely 315 

removed by the mapping quality filter. As a result, the filtered data (erroneously) suggest a 316 

strong differentiation between the batches. 317 

The strong reference bias in the HiSeq-125SE batch as exemplified in Figure 4A is not a 318 

singular case. We calculated the proportion of mapped reads surviving a mapping quality 319 

filter of 20 in the HiSeq-125SE batch at all SNPs, and found that this proportion is 320 

significantly lower in FST outlier SNPs (those with FST > 0.3 between the two batches, Figure 321 

1C “before") compared to all other SNPs (t-test, p=2e-322, Figure 4B). In other words, FST 322 

outliers are enriched at sites that have large numbers of reads filtered out due to the mapping 323 

quality filter in the HiSeq-125SE batch of data.  324 

Based on this pattern, a simple mitigation strategy is to locate the sites that have a high 325 

proportion of low-mapping-score reads mapping to them (e.g. >10%) in a batch of data with 326 



single-end reads and/or shorter reads, and exclude them from further analyses. With this 327 

method, we were able to eliminate the majority of the most conspicuous FST outliers between 328 

the two batches (Figure 1C “after”). When different batches are composed of samples from 329 

the same populations (as in our case), another effective approach could be to remove the 330 

private alleles (those that are absent in one batch of data and are at intermediate frequency in 331 

the other batch) from certain analyses (e.g. genome-wide PCA, Figure 1B “after”). Similarly, 332 

calling SNPs with only one batch of data has been proposed as a potential strategy (De‐333 

Kayne et al., 2021), but in our data, this approach resulted in strong ascertainment bias 334 

(Figure S4).  335 

Alternatively, Günther & Nettelblad, (2019) recommended a second round of read 336 

alignment with a modified reference genome, where a randomly chosen third base replaces 337 

the original base at each variable site identified in the first round of alignment. As suggested 338 

by Kofler et al. (2016), using different alignment tools and intersecting their results may be 339 

yet another promising mitigation method, since every tool has its own unique biases, which 340 

can be minimized by considering results from another tool. However, both of these 341 

approaches are computationally intensive and are not tested in this study.  342 

 343 

Difference in levels of DNA degradation 344 

 345 

Elevated levels of DNA degradation in one batch of data can also contribute substantially 346 

to batch effects. This is particularly relevant for temporal studies as older samples are likely 347 

to be more degraded, although other factors such as DNA preservation methods can also 348 

introduce variation in DNA degradation levels between batches of samples from the same 349 

time point (which is the case in our datasets where 34 samples from 3 populations were 350 

poorly-preserved and were sequenced in the HiSeq-125PE batch).  351 



A major consequence of DNA degradation is deamination of cytosines (i.e., transition of 352 

C bases into U bases), causing enrichment of C-to-T and G-to-A substitutions in more 353 

degraded batches of data. Similar to base quality score miscalibration, these errors will also 354 

inflate diversity estimates, as degradation patterns will be regarded as true variants. Indeed, in 355 

our data, the degraded samples tend to have higher heterozygosity estimates than well-356 

preserved samples from the same population, after batch effects caused by poly-G tails and 357 

base quality miscalibration are accounted for (Figure 5A “before”). In addition, we found that 358 

samples with different degradation levels also cluster separately on a PCA (Figure 5B 359 

“before”), although in this case, the effect of DNA degradation is potentially confounded 360 

with that of reference bias, and both are likely to play a role. 361 

DNA degradation levels can often be assessed by visualizing the fragment length 362 

distribution of the extracted DNA on an agarose gel, but a simple bioinformatic method to 363 

detect degradation directly from sequencing data is to calculate the frequencies of different 364 

base substitutions among the private alleles in each batch of data. Degraded samples should 365 

show enrichment of C-to-T and G-to-A substitutions among its private alleles, which is 366 

indeed the case for our HiSeq-125SE batch (which has 34 degraded samples) (Figure 5C). An 367 

alternative method is to compare the change in diversity estimates after excluding all C-to-T 368 

and G-to-A transitions (e.g., the -noTrans 1 option in ANGSD). Ignoring a subset of 369 

variant types certainly results in decreases in diversity indices in all samples, but if some 370 

samples are more strongly impacted, it means that DNA degradation levels are uneven 371 

among samples (Figure 5D). In this case, the diversity estimates excluding transitions will be 372 

more comparable between batches and less biased in a relative sense (Figure 5A “after”). 373 

Similar to the case of reference bias, when different batches are comprised of individuals 374 

from the same populations, it could also be effective to exclude all private alleles in both 375 

batches of data from certain analyses  (e.g., genome-wide PCA, Figure 5B “after”).   376 



More robust, yet more computationally involved, methods to correct for batch effects 377 

caused by DNA degradation include base quality score recalibration for degraded DNA (e.g., 378 

mapDamage) (Jónsson, Ginolhac, Schubert, Johnson, & Orlando, 2013), or using genotype 379 

likelihood models that explicitly incorporate DNA damage (e.g., ATLAS) (Link et al., 2017). 380 

 381 

Difference in sequencing depth 382 

 383 

When datasets with different levels of sequencing depth are combined, the dataset with 384 

lower depth is likely to generate less accurate population genetic parameter estimates (Lou et 385 

al., 2021). For certain types of analysis, difference in sequencing depth between batches may 386 

also lead to systematic biases. For example, some PCA methods are unsuitable with 387 

extremely low-coverage data (Lou et al., 2021), and when extremely low-coverage and 388 

higher-coverage data are combined, clustering patterns can become driven by read depth. 389 

Here, to better illustrate the effect of sequencing depth without other factors interfering, we 390 

first used simulated data instead of our empirical data. In Figure 6, we simulated nine 391 

populations on a three-by-three grid, each connected to its neighbors by gene flow (this is the 392 

same model used in Section 4.2 in Lou et al., 2021). We then simulated two batches of 393 

sequencing data generation from variable numbers of samples in each population. The only 394 

difference between the two batches of simulated data is their sequencing depth (either 0.125 395 

or 4x, see supplementary material for details about the simulations). At low sample size (5 or 396 

10 per population), PCAs generated from PCAngsd-0.98 (Meisner & Albrechtsen, 2018) and 397 

the -doCov 1 option in ANGSD tend to group samples with the same read depth together 398 

along one of the top PC axes, creating false patterns of clustering (Figure 6). In comparison, 399 

the PCoA generated from the -doIBS 2 option in ANGSD is less prone to such biases 400 

(Figure 6). We observed a similar pattern in our empirical data, where the PCA generated 401 



from the -doCov 1 option in ANGSD does not show obvious signs of batch effects when 402 

other causes of batch effects are controlled despite the difference in sequencing depth 403 

between the two batches (Figure 1B “after”, 4B “after”). In contrast, PCA generated from 404 

PCAngsd still has individuals from different batches clustering separately (Figure S5).  405 

Therefore, when dealing with batches of data with different sequencing depths, we 406 

recommend using methods that are known to be less sensitive to read depth when possible. 407 

Downsampling the batch of data with higher coverage and comparing the results generated 408 

from before and after downsampling is another effective strategy to detect and mitigate such 409 

batch effects.  410 

 411 

Practical Considerations 412 

 413 

In this paper, we provide an example of how batch effects can manifest when sequencing 414 

datasets generated on different platforms are combined, and we showcase several simple 415 

bioinformatic approaches to identify the potential causes of batch effects and mitigate their 416 

impact. Researchers may wonder whether these mitigation measures should always be 417 

implemented when different datasets are combined. We argue that this will depend on the 418 

experimental design of each project. Specifically, if samples (or a subset of samples) are 419 

randomly assigned to batches as in the case of our project, researchers can follow their 420 

standard pipeline, but check for evidence of batch effects on all their results. For example, 421 

they could color PCA plots by batches to examine if individuals from the different batches 422 

tend to cluster separately, and they could verify whether heterozygosity estimated from one 423 

batch of data is consistently higher/lower than other batches when biological factors are 424 

controlled for (e.g. Figure 1A “before”, 1B “before”). If batch effects are observed in such 425 

results, they can go through our list of potential causes and use the relevant filters to evaluate 426 



and mitigate the impact (Table 1). We also emphasize that a complete randomization is not 427 

always necessary. Particularly, when new data is generated to supplement existing datasets, it 428 

would be very helpful to sequence just a few individuals that are comparable to individuals 429 

included in the existing datasets (e.g. these can be exactly the same individuals, or individuals 430 

from the same populations at the same time points). In downstream analyses, comparisons of 431 

these individuals among different batches could be used to detect potential artefacts. This 432 

also highlights the importance of tissue banks in ensuring reusability of sequencing data (De‐433 

Kayne et al., 2021).       434 

However, if samples are not randomly assigned and if true biological signals may be 435 

confounded with batch effects, it may no longer be possible to determine the presence / 436 

absence of batch effects using standard analyses such as PCA or heterozygosity estimation. 437 

In such cases, we would recommend researchers to take a subset of data from each batch, and 438 

perform some of the tests that we have mentioned in this paper (e.g., comparing 439 

heterozygosity estimates before and after applying a stringent base quality filter, calculating 440 

the frequencies of different base substitutions in private alleles in each batch of data, etc.) as 441 

a means to determine the presence/absence of batch effects.  442 

We focused our investigation on lcWGS data in this paper. Compared with other 443 

sequencing strategies, lcWGS has its unique challenges due to low data redundancy, reliance 444 

on accurate base quality scores, and the difficulty in dealing with low-frequency SNPs (Lou 445 

et al., 2021). Therefore, batch effects caused by poly-G tails, base quality score 446 

miscalibration, and DNA degradation are likely to be more problematic for low-coverage 447 

data. However, it is not difficult to imagine that all these issues can sometimes affect high-448 

coverage data as well, especially when the analysis in question depends on accurate genotype 449 

calling at low-frequency SNPs (e.g., estimations of individual heterozygosity, site frequency 450 

spectrum, Watterson’s theta, etc.). The reference bias / alignment error issue can be just as 451 



problematic for high-coverage data as it is for low-coverage data or pooled data (Kofler et al., 452 

2016; Leigh et al., 2018). Disparities in sequencing depth is unlikely to become an issue if 453 

depth is higher than 20x in all batches. Otherwise, genotype calling in the batch with lower 454 

coverage (even at medium coverage, e.g., 5x-20x) is likely to be more inaccurate, and may 455 

therefore cause batch effects (Warmuth & Ellegren, 2019). In these cases, genotype-456 

likelihood-based inference may be preferable to genotype calling. 457 

 458 

Conclusion 459 

 460 

As we have illustrated in this paper, batch effects can be a pervasive source of bias in 461 

various types of population genomic inference from combined lcWGS datasets. This is 462 

further complicated by the fact that multiple factors can introduce batch effects and their 463 

signals can be confounded. Accordingly, when possible (e.g., if new datasets are generated), 464 

we should try to limit the extent of batch effects through experimental design. However, we 465 

have also shown that, when treated meticulously, different causes of batch effects can be 466 

disentangled, and their impact can be mitigated with simple bioinformatic filtering. 467 

Therefore, we conclude that combining datasets remains to be a promising approach, as long 468 

as batch effects are explicitly accounted for. 469 

 470 
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 472 
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Tables and Figures 
 
 
Table 1. Summary of the key differences between our two sequencing batches. 
 

Sequencing 
batch 

Sequencing 
platform 

Sequencing 
chemistry 

Read 
type 

Read 
length 
(in bp) 

DNA degradation 
level 

Average 
depth of 

coverage per 
sample* 

Sample 
size 

HiSeq-
125SE 

HiSeq 
2500 four-color single 

end 125 

34 samples in 3 
populations are 

degraded; all others 
are well-preserved 

0.8x 88 

NextSeq-
150PE 

NextSeq 
500 two-color paired 

end 150 well-preserved 0.3x 75 

 * After deduplication, overlap clipping, removal of reads with low mapping scores and poly-G trimming. See 
Figure S1 for sample size in each population and the depth of coverage in each sample.



Table 2. A summary of possible causes of batch effects in population genomic studies with low-coverage whole genome sequencing data, and 
methods to detect and mitigate their impact. 
 

Cause Identification Mitigation 

Presence/absence 

of poly-G tails 
• Examine the base composition at each read 

position in raw fastq files (e.g., with FastQC) 

(Figure 2B) 

• Trim off ends of reads with low base quality within sliding windows (e.g., 

the cut_right option in fastp, or the SLIDINGWINDOW option in 

Trimmomatic).  (Figure 1A “after”, 2) 

Difference in levels 

of miscalibration in 

base quality scores 

• Compare diversity estimates (e.g., individual 

heterozygosity) using a relaxed vs stringent 

base quality threshold within each batch 

(Figure 3) 

• Use a more stringent base quality threshold in all batches (Figure 1A 

“after”, 3) 

• Use base quality score recalibration (e.g., the SOAPsnp genotype 

likelihood model) (Korneliussen et al., 2014) 

Difference in levels 

of reference bias / 

alignment error 

• Spot check read alignments at outlier loci 

(Figure 4A) 

• Check for enrichment of outlier loci in 

genomic regions that have a high number of 

low-mapping-score reads mapped to them 

(Figure 4B) 

• Compare results using different alignment 

tools 

• Perform indel realignment (e.g., the IndelRealigner tool in GATK3) (Leigh 

et al., 2018; McKenna et al., 2010) or use a haplotype-based variant 

discovery software (e.g. FreeBayes or HaplotypeCaller of GATK) 

• Use a species-specific reference genome (Leigh et al., 2018) 

• Trim all reads to the same length (Leigh et al., 2018) 

• Exclude genomic regions that have a high proportion of low-mapping-

score reads mapped to them (Figure 1C “after”) 

• Exclude private alleles of each batch from certain analyses (Figure 1B 

“after”, 5B “after”) 

• Change variable sites in the reference genome to a randomly chosen third 

base and redo read alignment (Günther & Nettelblad, 2019) 

• Use different alignment tools and intersect their results (Kofler et al., 

2016) 



Difference in levels 

of DNA 

degradation 

• Examine the fragment size distribution in DNA 

extracts with gel electrophoresis 

• Compare the frequencies of different types of 

base substitutions among the private alleles in 

each batch (Figure 5C) 

• Compare the drop in diversity estimates (e.g., 

individual heterozygosity) after excluding all 

transitions between different batches of data 

(Figure 5D) 

• Exclude transitions from certain analyses (Figure 5A “after”) 

• Exclude private alleles of each batch from certain analyses (Figure 5B 

“after”) 

• Recalibrate base quality scores for degradated DNA (e.g., mapDamage) 

(Jónsson et al., 2013) 

• Use genotype likelihood models that take post-mortem damage into 

account (e.g., ATLAS)  (Link et al., 2017) 

 

Difference in 

sequencing depths 
• Color individual by batch or sequencing depth 

in a PCA to spot non-random clustering 

(Figure 6) 

• Examine whether down-sampling of high-

coverage individuals systematically changes 

the results 

• Use methods that are known to be less sensitive to differences in 

sequencing depth (Figure 6)  

• Down-sample data to achieve similar coverage across all individuals 

 

 



 

 
 
Figure 1. Examples of how batch effects are manifested in our data before correction, and 
how they were mitigated after our correction. (A) Individual heterozygosity estimated from 
each sample, grouped by populations on the y-axis and colored by batches, before and after 
batch effect correction (i.e., using sliding-window quality trimming in addition to poly-G 
trimming, and applying a more stringent base quality filter), in three representative 
populations where no samples suffered from DNA degradation. (B) Genome-wide PCA with 
all samples using an LD-pruned SNP list, colored by batches, before and after batch effect 
correction (i.e., excluding SNPs that are invariable in one batch of samples but are at 
intermediate frequencies in the other batch), in the same three populations as in (A). Grey 
points represent samples from other populations. Two outlier points are removed from these 
plots to better illustrate the broader pattern in the data. Sliding-window quality trimming is 
performed in both “before” and “after”. (C) FST between two batches of samples, before and 
after batch effect correction (i.e., excluding SNPs that have a high number of low-mapping-
score reads mapped to them). Sliding window quality trimming is performed in both “before” 
and “after”.  
  



 

 
 
Figure 2. Sliding-window quality trimming (cut_right option in fastp) is more effective at 
removing poly-G tails in data generated by two-color-chemistry sequencing platforms than 
poly-G trimming (trim_poly_g option in fastp). (A) An example of how poly-G 
trimming and sliding-window trimming affect a typical read with a poly-G tail. Base quality 
score is shown on the y axis and fastp cut sites are indicated by vertical lines. (B) Base 
composition at each read position in three randomly chosen samples, before trimming, after 
poly-G trimming, and after sliding-window trimming. In both (A) and (B), poly-G trimming 
is shown to remove part of the G enrichment towards the ends of reads, whereas sliding-
window trimming removes the poly-G tails entirely. 
  



 

 
 
Figure 3. Comparing individual heterozygosity estimates obtained with relaxed vs. stringent 
base quality filter is a simple way to detect batch effects caused by base quality 
miscalibration. Individual heterozygosity estimates in two batches of data before and after 
applying a more stringent base quality filter (from 20 to 33) are shown on the y axis. Samples 
in the NextSeq-150PE batch (left) have significantly lower heterozygosity estimates after a 
more stringent filter is applied (paired samples t-test, p=6e-8) and therefore are likely to have 
overestimated base quality scores. In contrast, samples in the HiSeq-125SE batch tend to 
have slightly higher heterozygosity estimates after this filter is applied (paired samples t-test, 
p=0.008), suggesting that their base quality scores are somewhat underestimated.  
  



 

 
 
Figure 4. Batch effects caused by different levels of reference bias can be detected and 
mitigated by adjusting the mapping quality filter. (A) Screenshot from the Integrative 
Genomics Viewer showing read alignment from NextSeq-150PE batch (top) vs. HiSeq-
125SE batch (bottom), and with (right) vs. without (left) a minimum mapping quality of 20. 
Reads with the non-reference allele are all removed after imposing the mapping quality filter 
in the HiSeq-125SE batch, leading to a false signal of allele frequency divergence between 
the batches. (B) Distribution of the proportion of HiSeq-125SE reads failing a minimum 
mapping quality filter of 20 in FST outliers and all other SNPs. FST outliers are enriched in 
genomic regions where higher proportions of reads are filtered out. This proportion can thus 
be used as a filter to remove the regions most affected by reference bias and mitigate the false 
signals of allele frequency divergence between batches.  
  



 

 
 
Figure 5. Batch effects caused by difference in DNA degradation level and strategies to 
detect and mitigate them. (A) Individual heterozygosity estimated from each sample, colored 
by batches, before and after batch effect correction (i.e., excluding all transitions), in three 
populations for which samples were split into batches based on their degradation level. 
Sliding-window quality trimming and a more stringent base quality filter are applied in both 
“before” and “after”. (B) Genome-wide PCA with all samples using an LD-pruned SNP list, 
colored by batches, before and after batch effect correction (i.e., excluding SNPs that are 
invariable in one batch but are at intermediate frequencies in the other batch), in the same 
three populations as in (A). Grey points represent the rest of samples. Two outlier points are 
removed from these plots to better illustrate the broader pattern in the data. Sliding-window 
quality trimming is performed in both “before” and “after”. (C) Using the frequencies of 
different base substitutions in private alleles to detect DNA degradation. There is an 



enrichment of C-to-T and G-to-A substitutions in the HiSeq-125SE batch, suggesting higher 
levels of DNA degradation in this batch. Reference alleles are assumed to be the wild-type 
alleles in this figure. (D) Using the change in individual heterozygosity estimates after 
filtering out transitions to detect DNA degradation. As expected, heterozygosity estimates in 
all samples are negatively affected, but the degraded samples in the HiSeq-125SE batch 
(right) are shown here to be more negatively affected than well-preserved samples in either 
batch, suggesting that their heterozygosity estimates are inflated when transitions are 
included (one-way ANOVA, p=8e-7).  
  



 

 
 
Figure 6. Some software programs are less sensitive to batch effects caused by different 
sequencing depths than others. (A) PCA generated from PCAngsd. (B) PCA generated from 
the -doCov 1 option in ANGSD. (C) PCoA generated from the -doIBD 2 option in 
ANGSD. A total of nine populations are simulated, and the sample size per population 
increases from left to right (as noted in panel headers). Green points mark individuals that are 
sequenced at 0.125x, whereas dark blue points mark individuals that are sequenced at 4x. 
 


