References
Almagro A, Lin SH, Tsay YF. 2008. Characterization of theArabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. The Plant Cell 20 : 3289-3299.
Anstead JA, Froelich DR, Knoblauch M, Thompson GA. 2012.Arabidopsis P-Protein Filament Formation Requires Both AtSEOR1 and AtSEOR2. Plant and Cell Physiology 53 : 1033-1042.
Babst BA, Gao F, Acosta-Gamboa LM, Karve A, Schueller MJ, Lorence A. 2019. Three NPF genes in Arabidopsis are necessary for normal nitrogen cycling under low nitrogen stress. Plant Physiology and Biochemistry 143 : 1-10.
Bauby H, Divol F, Truernit E, Grandjean O, Palauqui J-C. 2007.Protophloem differentiation in early Arabidopsis thalianadevelopment. Plant and Cell Physiology 48 : 97-109.
Byrne N, Wang L-M, Belieres J-P, Angell CA. 2007. Reversible folding–unfolding, aggregation protection, and multi-year stabilization, in high concentration protein solutions, using ionic liquids. Chemical Communications : 2714-2716.
Chen K-E, Chen H-Y, Tseng C-S, Tsay Y-F. 2020. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants 6 : 1126-1135.
Chu LC, Offenborn JN, Steinhorst L, Wu XN, Xi L, Li Z, Jacquot A, Lejay L, Kudla J, Schulze WX. 2020. Plasma membrane CBL Ca2+ sensor proteins function in regulating primary root growth and nitrate uptake by affecting global phosphorylation patterns and microdomain protein distribution. New Phytologist : In press.
Cui J, Lamade E, Fourel F, Tcherkez G. 2020.δ15N values in plants are determined by both nitrate assimilation and circulation. New Phytologist 226 : 1696-1707.
Hall SM, Baker DA. 1972. The chemical composition ofRicinus phloem exudate. Planta 106 : 131-140.
Hayashi H, Chino M. 1985. Nitrate and other anions in the rice phloem sap. Plant and Cell Physiology 26 : 325-330.
Hayashi H, Chino M. 1986. Collection of pure phloem sap from wheat and its chemical composition. Plant and Cell Physiology27 : 1387-1393.
Hsu P-K, Tsay Y-F. 2013. Two phloem nitrate transporters, NRT1. 11 and NRT1. 12, are important for redistributing xylem-borne nitrate to enhance plant growth. Plant Physiology 163 : 844-856.
Iqbal A, Qiang D, Alamzeb M, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. 2020. Untangling the molecular mechanisms and functions of nitrate to improve nitrogen use efficiency.Journal of the Science of Food and Agriculture 100 : 904-914.
Jekat SB, Ernst AM, von Bohl A, Zielonka S, Twyman RM, Noll GA, Prüfer D. 2013. P-proteins in Arabidopsis are heteromeric structures involved in rapid sieve tube sealing. Frontiers in Plant Science4 : Article 225.
Jeschke WD, Pate JS. 1995. Mineral nutrition and transport in xylem and phloem of Banksia prionotes (Proteaceae), a tree with dimorphic root morphology. Journal of Experimental Botany46 : 895-905.
Kant S. 2018. Understanding nitrate uptake, signaling and remobilisation for improving plant nitrogen use efficiency.Seminars in Cell and Developmental Biology 74 : 89-96.
Kastelic M, Kalyuzhnyi YV, Hribar-Lee B, Dill KA, Vlachy V. 2015. Protein aggregation in salt solutions. Proceedings of the National Academy of Sciences 112 : 6766-6770.
Knoblauch M, Froelich DR, Pickard WF, Peters WS. 2014. SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. Journal of Experimental Botany65 : 1879-1893.
Kunz W. 2010. Specific ion effects in colloidal and biological systems. Current Opinion in Colloid & Interface Science15 : 34-39.
Lazof DB, Rufty TW, Redinbaugh MG. 1992. Localization of nitrate absorption and translocation within morphological regions of the corn root. Plant Physiology 100 : 1251-1258.
Léran S, Garg B, Boursiac Y, Corratgé-Faillie C, Brachet C, Tillard P, Gojon A, Lacombe B. 2015. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo.Scientific Reports 5 : Article 7962.
Liu K-h, Niu Y, Konishi M, Wu Y, Du H, Chung HS, Li L, Boudsocq M, McCormack M, Maekawa S. 2017. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature545 : 311-316.
Lohaus G, Hussmann M, Pennewiss K, Schneider H, Zhu JJ, Sattelmacher B. 2000. Solute balance of a maize (Zea mays L.) source leaf as affected by salt treatment with special emphasis on phloem retranslocation and ion leaching. Journal of Experimental Botany 51 : 1721-1732.
Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. 2000. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes and Development 14 : 2938-2943.
Marschner H, Kirkby EA, Engels C. 1997. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Botanica Acta 110 : 265-273.
Pate JS, Sharkey PJ, Lewis OAM. 1975. Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta 122 : 11-26.
Peel AJ, Weatherley PE. 1959. Composition of sieve-tube sap.Nature 184 : 1955-1956.
Peuke A, Gessler A, Tcherkez G. 2013. Experimental evidence for diel δ15N‐patterns in different tissues, xylem and phloem saps of castor bean (Ricinus communis L.). Plant, Cell and Environment 36 : 2219-2228.
Peuke AD. 2010. Correlations in concentrations, xylem and phloem flows, and partitioning of elements and ions in intact plants. A summary and statistical re-evaluation of modelling experiments inRicinus communis . Journal of Experimental Botany61 : 635-655.
Peuke AD, Glaab J, Kaiser WM, Jeschke WD. 1996. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. IV. Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrition and salt treatment. Journal of Experimental Botany 47 : 377-385.
Rodríguez-Celma J, Ceballos-Laita L, Grusak MA, Abadía J, López-Millán A-F. 2016. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1864 : 991-1002.
Scheible W-R, Lauerer M, Schulze E-D, Caboche M, Stitt M. 1997.Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. The Plant Journal 11 : 671-691.
Taiz L, Zeiger E, Moller I, Murphy A. 2015. Plant physiology and development . Sunderland, Massachusetts: Sinauer Associates Inc.
Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist217 : 35-53.
Tillard P, Passama L, Gojon A. 1998. Are phloem amino acids involved in the shoot to root control of NO3- uptake in Ricinus communisplants? Journal of Experimental Botany 49 : 1371-1379.
van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB. 2014. Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway. Journal of Experimental Botany 65 : 1761-1787.
van Die J, Tammes P 1975. Phloem exudationfrom Monocotyledonous axes. In: Zimmermann M, Milburn J eds. Transport in plants I. Phloem transport . Berlin: Springer, 196-222.
Vega A, O’Brien JA, Gutiérrez RA. 2019. Nitrate and hormonal signaling crosstalk for plant growth and development. Current Opinion in Plant Biology 52 : 155-163.
Wang Y-Y, Tsay Y-F. 2011. Arabidopsis nitrate transporter NRT1.9 is important in phloem nitrate transport. The Plant Cell 23 : 1945-1957.
Wilson ACC, Sternberg LdSL, Hurley KB. 2011. Aphids alter host-plant nitrogen isotope fractionation. Proceedings of the National Academy of Sciences 108 : 10220-10224.
Ziegler H 1975. Nature of transported substances. In: Zimmermann M, Milburn J eds. Transport in plants I. Phloem transport . Berlin: Springer, 59-100.