References
Castanheira, N., Dourado, A.C., Kruz, S., Alves, P.I.L., Delgado-Rodríguez, A.I., Pais, I., Semedo, J., Scotti-Campos, P., Sánchez, C., Borges, N., Carvalho, G., M.T. Barreto, C., Fareleira, P., 2016. Plant growth-promoting Burkholderia species isolated from annual ryegrass in Portuguese soils. J. Appl. Microb. 120(3): 724-739. DOI: https://doi.org/10.1111/jam.13025
Ciccarelli, F.D., Doerks, T., Mering, V., Christopher, Creevey, J., Snel, B., Bork, P., 2006. Toward automatic reconstruction of a highly resolved tree of life. Sci. 311(5765): 1283-1287. DOI: DOI: 10.1126/science.1123061
Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., 2006. The Prokaryotes || introduction to the Proteobacteria. Prokaryotes. 5:3-37. DOI: 10.1007/0-387-30745-1_1
Ferreira, D.S., Pallone, J.A.L., Poppi, R.J., 2015. Direct analysis of the main chemical constituents in Chenopodium quinoa grain using Fourier transform near-infrared spectroscopy. Food Control 48: 91-95. DOI: 10.1016/j.foodcont.2014.04.016
Fiehn, O., Kopka, J., Dörmannet, P., Altmann, T., Trethewey, R.N., Willmitzer, L., 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18(11): 1157-61. DOI: 10.1038/81137.
Fierer, N., Jackson, R.B., 2006. The diversity and biogeography of soil bacterial communities. PNAS 103(3): 626-631. DOI: https://doi.org/10.1073/pnas.0507535103
Fontecave, M., Atta, M., Mulliez, E., 2004. S-adenosylmethionine: nothing goes to waste. Trends Biochem. Sci.. 29(5): 243-249. DOI: https://doi.org/10.1016/j.tibs.2004.03.007
Fujimoto, T., Tomitaka, Y., Abe, H., Tsuda, S., Futai, K., Mizukubo, T., 2011. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate. J. Plant Physiol. 168(10): 1084-1097. DOI: https://doi.org/10.1016/j.jplph.2010.12.002
Goehring, N., Verburg, P., Saito, L., Jeong, J., Meki, N., 2019. Improving modeling of quinoa growth under saline conditions using the enhanced agricultural policy environmental extender model. Agronomy-Basel 9(10): 592. DOI: https://doi.org/10.3390/agronomy9100592
Gong, B., Wang, X.F., Wei, M., Yang, F.J., Li, Y., Shi, Q.H., 2016. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell Tiss. Org. 124:377-391. DOI: 10.1007/s11240-015-0901-5
Hall, R., 2011. Plant metabolomics in a nutshell: potential and future challenges. J. Biology of Plant Metabolomics. pp. 1-24
Hartmann, A., Schmid, M., Tuinen, D.V., Berg, G., Hartmann, A., Schmid, M., Tuinen, D.V., Berg, G., 2008. Plant-driven selection of microbes. Plant and Soil 321:235-257. DOI: 10.1007/s11104-008-9814-y
Haspel, J.A., Chettimada, S., Shaik, R.S., Chu, J.H., Raby, B.A., Cernadas, M., Carey, V., Process, V., Hunninghake, G.M., Ifedigbo, E., A.Lederer, J., Englert, J., Pelton, A., Coronata, A., E.Fredenburgh, L., M.K.Choi, A., 2014. Circadian rhythm reprogramming during lung inflammation. Nat. Commun. 5(1):4753. DOI:10.1038/ncomms5753
Heischmann, S., Quinn, K., Cruickshank-Quinn, C., Liang, L.P., Reisdorph, R., Reisdorph, N., Patel, C., 2016. Exploratory Metabolomics Profiling in the Kainic Acid Rat Model Reveals Depletion of 25-Hydroxyvitamin D3 during Epileptogenesis. Sci. Rep-UK. 6:31424. DOI:10.1038/srep31424
Herbert, S.J., 2009. Temporal and spatial dynamics of bacterial community in the rhizosphere of soybean genotypes grown in a black soil. Pedosphere. 19(06): 808-816. DOI:10.1016/S1002-0160(09)60176-4
Hinojosa, L., Leguizamo, A., Carpio, C., Muoz, D., Murphy, K., 2021. Quinoa in Ecuador: Recent Advances under Global Expansion. Plants 10(2): 298. DOI: https://doi.org/10.3390/plants10020298
Iglesias-Puig, E., Monedero, V., Haros, M., 2015. Bread with whole quinoa flour and bifidobacterial phytases increases dietary mineral intake and bioavailability. LWT- Food Sci. Tech. 60(1): 71-77. DOI: 10.1016/j.lwt.2014.09.045
Jacobsen, S.E., Mujica, A., Jensen, C.R., 2003. The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors. Food Rev. Int. 19(1-2): 99-109. DOI: 10.1081/FRI-120018872
Kozioł, M.J., 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 5(1): 35-68. DOI: 10.1016/0889-1575(92)90006-6
Lambers, H., Mougel, C., Jaillard, B., Hinsinger, P., 2009. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 321:83-115. DOI 10.1007/s11104-009-0042-x
Lan P., Li, W., Wen, T.N., Shiau, J.Y., Wu, Y.C., Lin, W., Schmidt, W., 2011. ITRAQ protein profile analysis of arabidopsis roots reveals new aspects critical for iron homeostasis. J. Plant Physiol. 155(2): 821-834. DOI: https://doi.org/10.1104/pp.110.169508
Li, N., Shao, T.Y., Zhou Y.J., Cao Y.C., Hu H.Y., Sun Q.K., Long X.H., Yue Y., Gao X.M., Rengel Z., 2020. Effects of planting Melia azedarach L. on soil properties and microbial community in saline-alkali soil. Land Degrad. Dev. 32(10): 2951-2961. DOI:https://doi.org/10.1002/ldr.3936
Liphschitz, N., Waisel, Y., 1982. Adaptation of plants to saline environments: salt excretion and glandular structure. A, In: Sen D N, Rajpurohit K S. Contributions to the Ecology of Halophytes. Springer Netherlands. pp.197-214.
Liu, X., Li, X.T., Jing, X., Wang, S.S., Gong, B., Wei, M., Shi, Q.H., 2018. Effect of S-adenosylmethionine on Growth and Physiological Metabolism of Cucumber Cutting Seedlings. Acta Horticulturae Sinica. 45(08): 1513-1522. (Chinese)DOI: 10.16420/j.issn.0513-353x.2018-0022
Liu, Y., Kong, Z., Liu, J., Zhang, P., Qin, P., 2020. Non-targeted metabolomics of quinoa seed filling period based on liquid chromatography-mass spectrometry. Food Res. Inter. 137: 109743. DOI: 10.1016/j.foodres.2020.109743
Llanesa, A., Andradea, A., Alemano, S., Luna, V., 2018. Metabolomic approach to understand plant adaptations to water and salt stress. Plant Metabolites and Regulation Under Environmental Stress. pp. 133-144. DOI: https://doi.org/10.1016/B978-0-12-812689-9.00006-6
Lueders, T., Kindler, R., Miltner, A., Friedrich, M.W., Kaestner, M., 2006. Identification of bacterial micropredators distinctively active in a soil microbial food web. Appl. Environ. Microb. 72(8): 5342. DOI: https://doi.org/10.1128/AEM.00400-06
Marschner, P., Timonen, S., 2005. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. App. Soil Eco. 28(1): 23-36. DOI: 10.1016/j.apsoil.2004.06.007
MAYNE, M.B., COLEMAN, J.R., Blumwald, E., 1996. Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) seedlings. Plant Cell Environ. 19(8): 958-966. DOI: https://doi.org/10.1111/j.1365-3040.1996.tb00460.x
Ogungbenle, H. N., 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. Int. J. Food Sci. Nutr. 54(2): 153-158.
Owiti, J., Grossmann, J., Gehrig, P., Dessimoz, C., Laloi, C., Maria B.H., Gruissem, W., Vanderschuren, H., 2011. ITRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J. 67(1): 145-156. DOI: https://doi.org/10.1111/j.1365-313X.2011.04582.x
Pan, T.T., Li, W.H., Chen, Y.P., 2011. The Influence of salt stress on the accumulation of Na+ and K+ in Tamarix Hispida. Procedia Environ. Sci. 10(Part B):1445-1451. DOI:10.1016/j.proenv.2011.09.231
Razzaghi, F., Ahmadi, S.H., Jacobsen, S.E., Jensen, C.R., Andersen, M.N., 2012. Effects of salinity and soil–drying on radiation use efficiency, water productivity and yield of quinoa (Chenopodium quinoa Willd.). J. Agron. Crop Sci. 198(3): 173-184. DOI: 10.1111/j.1439-037X.2011.00496.x
Repo-Carrasco, R., Espinoza, C., Jacobsen, S.E., 2003. Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaiwa (Chenopodium pallidicaule). Food Rev. Int. 19(1-2): 179-189. DOI: 10.1081/FRI-120018884
Rodrigue,s J.L.M., Pellizari, V.H., Mueller, R., Baek, K., Jesus, E.D.C., Paula, F.S., Mirza, B., Hamaoui, G.S., Tsai, S.M., Feigl, B., 2013. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. P. Natl. Acad. Sci. USA 110(3): 988-993. DOI: 10.1073/pnas.1220608110
Segata, N., Izard, J., Waldron, L., Gevers, D., 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6): R60. DOI: 10.1186/gb-2011-12-6-r60
Shao, T.Y., Zhao, J.J., Zhu, T.S., Chen, M.X, Wu, Y.W., Long, X.H., Gao, X.M., 2018. Relationship between rhizosphere soil properties and blossom-end rot of tomatoes in coastal saline-alkali land. J. Appl. Soil Ecol. 127: 96- 101.
Song, J., Yan, Y., Wang, X., Li, X., Li, W., 2020. Characterization of fatty acids, amino acids and organic acids in three colored quinoas based on untargeted and targeted metabolomics. LWT- Food Sci. Tech. 140(1): 110690. DOI: 10.1016/j.lwt.2020.110690
Sosa-Zuniga, V., Brito, V., Fuentes, F., Steinfort, U., 2017. Phenological growth stages of quinoa (Chenopodium quinoa) based on the BBCH scale. Ann. Appl. Biol. 171(1): 117-124. DOI: https://doi.org/10.1111/aab.12358
Sreekumar, A., Poisson, L.M., Rajendiran, T.M., Khan, A.P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R.J., Li, Y., 2009. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nat. 457(7231):910-914. DOI:10.1038/nature07762
Vandamme, P., Henry, D., Coenye, T., Nzula S., Vancanneyt M., J. LiPuma J., P.Speert D., R.W. Govan, J., Mahenthiralingam E., 2002. Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS immunology and Medical Microbiology. 33(2): 143-149. DOI: https://doi.org/10.1111/j.1574-695X.2002.tb00584.x
Vishnivetskaya, T.A., Mosher, J.J., Palumbo, A.V., Yang, Z.K., Poda,r M., Brown, S.D., Brooks, S.C., Gu, B., Southworth, G.R., Drake, M.M., 2011. Mercury and other heavy metals influence bacterial community structure in contaminated tennessee streams. Appl. Environ. Microb. 77(1): 302-311. DOI: 10.1128/AEM.01715-10
Wang, J., Sun, B., Cao, R.T., 2019. Bioactive Factors and Processing Technology for Cereal Foods. pp. 207-216. DOI:10.1007/978-981-13-6167-8_15
Want, E.J., Masson, P., Michopoulos, F., Wilson, I.D., Theodoridis, G., Plumb, R.S., Shockcor, J., Loftus, N., Holmes, E., Nicholson, J.K., 2013. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8(1): 17-32. DOI: 10.1038/nprot.2012.135
Wright, K.H., Pike, O.A., Fairbanks, D.J., Huber, C.S., 2002. Composition of atriplex hortensis, sweet and Bitter Chenopodium quinoa Seeds. Food Sci. 67(4): 1383-1385. DOI: 10.1111/j.1365-2621.2002.tb10294.x
Zelles, L., 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biol. fertil. Soils. 29(2): 111-129. DOI:10.1007/s003740050533
Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y., Kanagawa, T., Kurane R., 2000. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Inter. J. Syst. Evol. Microb. 50(2): 743-749. DOI: https://doi.org/10.1099/00207713-50-2-743
Zhang, Z., Tang, C., Rengel, Z., 2005. Salt dynamics in rhizosphere of Puccinellia ciliata Bor. in a loamy soil. Pedosphere 15 (6):784-791
Zhao, X.L., Cheng, H.T., Lu, G.H., Jia, Q.Y., 2006. Advances in soil microbial biomass. Meteor Environ. 22: 68–72.
Zurita-Silva, A., Fuentes, F., Zamora, P., Jacobsen, S.E., Schwember, A.R., 2014. Breeding quinoa (Chenopodium quinoa Willd.): potential and perspectives. Mol. Breeding 34(1): 13-30.
Tables and figures captions
Table 1 Quinoa growth indicators as influenced by different planting densities
low density (row spacing 40 × 25 cm); H-high density (row spacing 20 × 7.5 cm). The data are means ± standard errors (n=3). Different lowercase letters in a row denote significant differences.
Table 2 Comparison of the estimated operational taxonomic unit (OTU), Chao1 richness and Shannon diversity indices of the rhizosphere and non-rhizosphere soils in different quinoa planting density treatments.
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDN= High-density treatment, non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil. Means (n = 3). Different letters in a column indicate significant (p ≤0.05) differences among the four treatments.
Table 3 KEGG enrichment results in the low-density vs high-density treatments
Fig. 1 Soil salinity (a) and organic matter (b) in the rhizosphere and non-rhizosphere soil as influenced by quinoa planting density.
Different lower-case letters represent significant differences (p≤ 0.05). Means ± SE (n=3). LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDN= High-density treatment, non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 2 Correlation between growth indicators of quinoa and the rhizosphere soil organic matter and salinity.
The color gradient denotes Pearson’s correlation coefficients.
Fig. 3 Venn diagram of the bacterial OTUs
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDN= High-density treatment, non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 4 Comparison of relative abundance of bacterial phyla
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDN= High-density treatment, non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 5 LDA Effect Size (LEfSe)
The LDA scores distribution histograms (a) showing taxa with significantly different abundance. The differences are mapped to cladograms (taxonomic trees) (b). LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDR= High-density treatment, rhizosphere soil. In the cladograms, the taxa associated with small circles and the shading in the color of a specific soil played an important part in the structure of the microbial community in that soil (significantly different from other soils). The diameter of the small circle represents relative abundance of the taxa. The taxa without a significant difference are colored yellow.
Fig. 6 Redundancy analysis of soil chemical properties and relative abundance of bacterial taxa. The blue arrows represent environmental factors (soil properties), and the red arrows represent the top ten bacterial phyla in terms of relative abundance.
LDN= Low-density treatment, non-rhizosphere soil; LDR= Low-density treatment, rhizosphere soil; HDN= High-density treatment, non-rhizosphere soil; HDR= High-density treatment, rhizosphere soil.
Fig. 7 PLS-DA score plot (a), Volcano map of differential metabolites (b) and KEGG Enrichment scatterplot (c). L = low-density treatment, H = high-density treatment.
Table 1 Quinoa growth indicators as influenced by different planting densities