Lag time distribution
Model
Mean \(\mathrm{\log}\left(\mu_{Y_{i}}\right)=\) Standard deviation \(\mathrm{\log}\left(\sigma_{Y_{i}}\right)=\)
ΔPSIS-LOO
Standard error of ΔPSIS-LOO
\(\mathrm{\text{Normal}}\left(\mu_{Y_{i}},\sigma_{Y_{i}}\right)\mathrm{T}\left(Y_{p}-Y_{i}\right)\) 1 \(\beta_{1}\) \(\beta_{2}\) -215.0 26.4
2 \(\beta_{1}+\beta_{2}Y_{i}\) \(\beta_{3}\) -161.0 22.8
3 \(\beta_{1}+\beta_{2}Y_{i}\) \(\beta_{3}+\beta_{4}Y_{i}\) -52.3 14.0
4 \(\mathbf{\beta}_{\mathbf{1}}\mathbf{+\ }\mathbf{\beta}_{\mathbf{2}}\mathbf{P}_{\mathbf{i}}\mathbf{+\ }\mathbf{\beta}_{\mathbf{3}}\mathbf{A}_{\mathbf{i}}\mathbf{+\ }\mathbf{\beta}_{\mathbf{4}}\mathbf{Y}_{\mathbf{i}}\) \(\mathbf{\beta}_{\mathbf{5}}\mathbf{+}\mathbf{\beta}_{\mathbf{6}}\mathbf{Y}_{\mathbf{i}}\) 0 0
5 \(\beta_{1}+\ \beta_{2}P_{i}+\ \beta_{3}A_{i}+\ \beta_{4}Y_{i}\) \(\beta_{5}+\ \beta_{6}P_{i}+\ \beta_{7}A_{i}+\ \beta_{8}Y_{i}\) -1.5 1.9
\(\mathrm{\text{Weibull}}\left(k_{Y_{i}},\ \lambda_{Y_{i}}\right)\mathrm{T}\left(Y_{p}-Y_{i}\right)\) \(k_{Y_{i}}=\left(\frac{\sigma_{Y_{i}}}{\mu_{Y_{i}}}\right)^{-1.086}\) \(\lambda_{Y_{i}}=\frac{\mu_{Y_{i}}}{\Gamma\left(1+\frac{1}{k}\right)}\)
6
\(\beta_{1}\)
\(\beta_{2}\)
-116.2
21.4
7 \(\beta_{1}+\beta_{2}Y_{i}\) \(\beta_{3}\) -90.9 22.4
8 \(\beta_{1}+\beta_{2}Y_{i}\) \(\beta_{3}+\beta_{4}Y_{i}\) -79.5 19.3
9 \(\beta_{1}+\ \beta_{2}P_{i}+\ \beta_{3}A_{i}+\ \beta_{4}Y_{i}\) \(\beta_{5}+\beta_{6}Y_{i}\) -72.8 19.6
10 \(\beta_{1}+\ \beta_{2}P_{i}+\ \beta_{3}A_{i}+\ \beta_{4}Y_{i}\) \(\beta_{5}+\ \beta_{6}P_{i}+\ \beta_{7}A_{i}+\ \beta_{8}Y_{i}\) -21.6 12.7