References
1. Naphthalene indoor limit values in Germany:
https://www.eggbi.eu/forschung-und-lehre/zudiesemthema/naphthalin/
(accessed: 27 October 2020)
2. Benzo[a]pyrene indoor limit values in Germany:
https://www.lfu.bayern.de/analytik_stoffe/doc/infoblatt_benzoapyren.pdf
(accessed: 27 October 2020)
3. Liu LB, Lin JM, Tang N, Hayakawa K, Maeda T. Development of
analytical methods for polycyclic aromatic hydrocarbons (PAHs) in
airborne particulates: A review. J Env Sci 2007;19:1-11.
4. DIN EN ISO 16000-12 Indoor air: Sampling strategy for polychlorinated
biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs),
polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic
hydrocarbons (PAHs)
5. David F, Ochiai N, Sandra P. Two decades of stir bar sorptive
extraction: A retrospective and future outlook. TRAC-Trend Anal Chem
2019;112:102-111.
6. Matsiko J, Li H, Wang P, Sun H, Zheng S, Wang D, Zhang W, Hao Y, Li
Y, Zhang Q, Jiang G. Stir bar sorptive extraction and thermal desorption
- gas chromatography/mass spectrometry for determining phosphorus flame
retardants in air samples. Anal Methods 2018;10:1918–1927.
7. Cacho JJ, Campillo N, Vinas P, Hernandez-Cordoba M. Evaluation of
three headspace sorptive extraction coatings for the determination of
volatile terpenes in honey using gas chromatography-mass-spectrometry. J
Chromatogr A 2015;1399:18-24.
8. Lee J, Shibamoto T, Ha J, Jang HW. Identification of volatile markers
for the detection of adulterants in red ginseng (Panax ginseng) juice
using headspace stir-bar sorptive extraction coupled with gas
chromatography and mass spectrometry. J Sep Sci 2018;41:2903-2912.
9. Cacho JJ, Campillo N, Alsite M, Vinas P, Hernandez-Cordoba M.
Headspace sorptive extraction for the detection of combustion
accelerants in fire debris. Forensic Sci Int 2014;238:26-32.
10. Gallidabino M, Romolo FS, Weyermann C. Time since discharge of 9 mm
cartridges by headspace analysis, part 1: Comprehensive optimisation and
validation of a headspace sorptive extraction (HSSE) method. Forensic
Sci Int 2017;272:159–170.
11. Kolahgar B, Hoffmann A, Heiden AC. Application of stir bar sorptive
extraction to the determination of polycyclic aromatic hydrocarbons in
aqueous samples. J. Chromatogr A 2002;963:225-230.
12. Niehus B, Popp P, Bauer C, Peklo G, Zwanziger HW. Comparison of stir
bar sorptive extraction and solid phase extraction as enrichment
techniques in combination with column liquid chromatography for the
determination of polycyclic aromatic hydrocarbons in water samples. Int
J Env Anal Chem 2002;82:669-676.
13. Garcia-Falcon MS, Cancho-Grande B, Simal-Gandara J. Stirring bar
sorptive extraction in the determination of PAHs in drinking waters.
Water Res 2004;38:1679-1684.
14. Roy G, Vuillemin R, Guyomarch J. On-site determination of
polynuclear aromatic hydrocarbons in seawater by stir bar sorptive
extraction (SBSE) and thermal desorption GC-MS. Talanta 2005;66:540-546.
15. Krueger O, Christoph G, Kalbe U, Berger W. Comparison of stir bar
sorptive extraction (SBSE) and liquid-liquid extraction (LLE) for the
analysis of polycyclic aromatic hydrocarbons (PAH) in complex aqueous
matrices. Talanta 2011;85:1428-1434.
16. Barco-Bonilla N, Romero-Gonzalez R, Plaza-Bolanos P,
Fernandez-Moreno JL, Frenich AG, Vidal JLM. Comprehensive analysis of
polycyclic aromatic hydrocarbons in wastewater using stir bar sorptive
extraction and gas chromatography coupled to tandem mass spectrometry.
Anal Chim Acta 2011;693:62-71.
17. Krueger O, Olberg S, Senz R, Simon FG. Comparison of Stir Bar
Sorptive Extraction (SBSE) and Solid Phase Microextraction (SPME) for
the Analysis of Polycyclic Aromatic Hydrocarbons (PAH) in Complex
Aqueous Soil Leachates. Water Air Soil Poll 2015;226:397.
18. Foan L, Ricoul F, Vignoud S. A novel microfluidic device for fast
extraction of polycyclic aromatic hydrocarbons (PAHs) from environmental
waters - comparison with stir-bar sorptive extraction (SBSE). Int J Env
Anal Chem 2015;95:1171-1185.
19. Li XM, Zhang QH, Wang P, Li YM, Jiang GB. Determination of
Polycyclic Aromatic Hydrocarbons in Air by Stir Bar Sorptive
Extraction-Thermal Desorption-Gas Chromatography Tandem Mass
Spectrometry. Chin J Anal Chem, 2011;39:1641-1646.
20. ISO 11843-2:2000-05 - Capability of detection - Part 2: Methodology
in the linear calibration case.
21. DINTEST: University of Heidelberg, Germany, 2001.
22. Certified reference material BAM-U013c – Polycyclic aromatic
hydrocarbons in soil, (2018).
https://www.webshop.bam.de/show_blob_data.php?filename=pdf%2Fcertificates%2Fbam_u013c_e.pdf
(accessed: 28.10.2020)
23. Valentyne A, Crawford K, Cook T, Mathewson PD. Polycyclic aromatic
hydrocarbon contamination and source profiling in watersheds serving
three small Wisconsin, USA cities. Sci tot Env 2018;627:1453-1463.
24. Achten C, Andersson JT. Overview of Polycyclic Aromatic Compounds
(PAC). Polycycl Aromat Comp 2015;35:177–186.
25. WHO (World Health Organisation): Selected non-heterocyclic
polycyclic aromatic hydrocarbons. IPCS–Environmental Health Criteria
202, WHO, Genf, CH, 1998.
http://www.inchem.org/documents/ehc/ehc/ehc202.htm#SectionNumber:1.2
(accessed: 28.10.2020)
26. Harrison RM, Smith DJT, Luhana L. Source Apportionment of
Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban
Location in Birmingham, U.K. Environ Sci Technol 1996;30:825–832.
Table 1: Content of PAH congeners
in the jute fabric (means and standard deviations, n=3) and respective
vapor pressures at 25 °C