References
Andrade, P., Pinho, C., Pérez i de Lanuza, G., Afonso, S., Brejcha, J.,
Rubin, C.-J. et al. (2019). Regulatory changes in pterin and
carotenoid genes underlie balanced color polymorphisms in the wall
lizard. Proc. Natl. Acad. Sci. U. S. A. , 116, 5633–5642.
Bagnara, J.T. & Hadley, M.E. (1973). Chromatophores and color
change: The Comparative Physiology of Animal Pigmentation .
Prentice-Hall, Englewood Cliffs, NJ.
Bagnara, J.T. & Matsumoto, J. (2006). Comparative anatomy and
physiology of pigment cells in nonmammalian tissues. In: The
Pigmentary System: Physiology and Pathophysiology (eds. Nordlund, JJ,
Boissy, RE, Hearing, VJ, King, RA & Ortonne, J-P). Oxford University
Press New York.
Belbin, L. (2011). The Atlas of Livings Australia’s Spatial Portal.
(eds. Jones, MB & Gries, C) Santa Barbara, CA, pp. 39-43.
Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchene, S., Fourment,
M., Gavryushkina, A. et al. (2019). BEAST 2.5: An advanced
software platform for Bayesian evolutionary analysis. PLoS Comput.
Biol. , 15.
Braasch, I., Schartl, M. & Volff, J.-N. (2007). Evolution of pigment
synthesis pathways by gene and genome duplication in fish. BMC
Evol. Biol. , 7, 74.
Bracher, A., Eisenreich, W., Schramek, N., Ritz, H., Götze, E.,
Herrmann, A. et al. (1998). Biosynthesis of pteridines. J.
Biol, Chem. , 273, 28132–28141.
Chen, I.P., Stuart-Fox, D., Hugall, A.F. & Symonds, M.R.E. (2012).
Sexual selection and the evolution of complex color patterns in dragon
lizards. Evolution , 66, 3605–3614.
Chen, I.P., Symonds, M.R.E., Melville, J. & Stuart-Fox, D. (2013).
Factors shaping the evolution of colour patterns in Australian agamid
lizards (Agamidae): a comparative study. Biol. J. Linn. Soc.
Lond. , 109, 101–112.
Cogger, H.G. (2018). Reptiles and Amphibians of Australia . 7th
edition edn. CSIRO Publishing.
Craig, J.K. & Foote, C.J. (2001). Countergradient variation and
secondary sexual color: phenotypic convergence promotes genetic
divergence in carotenoid use between sympatric anadromous and
nananadromous morphs of sockeye salmon (Oncorhynchus nerka ).Evolution , 55, 380–391.
Dalrymple, R.L., Flores-Moreno, H., Kemp, D.J., White, T.E., Laffan,
S.W., Hemmings, F.A. et al. (2018). Abiotic and biotic predictors
of macroecological patterns in bird and butterfly coloration.Ecol. Monogr. , 88, 204–224.
Deere, K.A., Grether, G.F., Sun, A.D. & Sinsheimer, J.S. (2012). Female
mate preference explains countergradient variation in the sexual
coloration of guppies (Poecilia reticulata). Proc. R. Soc. Lond. B
Biol. Sci. , 279, 1684–1690.
Fitze, P.S., Cote, J., San-Jose, L.M., Meylan, S., Isaksson, C.,
Andersson, S. et al. (2009). Carotenoid-based colours reflect the
stress response in the common lizard. PLoS ONE , 4, e5111.
Friedman, N.R., McGraw, K.J. & Omland, K.E. (2014a). Evolution of
carotenoid pigmentation in caciques and meadowlarks (Icteridae):
repeated gains of red plumage coloration by carotenoid C4-oxygentation.Evolution , 68, 791–801.
Friedman, N.R., McGraw, K.J. & Omland, K.E. (2014b). History and
mechanisms of carotenoid plumage evolution in the New World orioles
(Icterus). Comp. Biochem. Physiol. B , 172, 1-8.
Grether, G.F., Cummings, M.E. & Hudon, J. (2005). Countergradient
variation in the sexual coloration of guppies (Poecilia reticulata):
Drosopterin synthesis balances carotenoid availability.Evolution , 59, 175–188.
Grether, G.F., Hudon, J. & Millie, D.F. (1999). Carotenoid limitation
of sexual coloration along an environmental gradient in guppies.Proc. R. Soc. Lond. B Biol. Sci. , 266, 1317–1322.
Grether, G.F., Kolluru, G.R. & Nersissian, K. (2004). Individual colour
patches as multicomponent signals. Biol. Rev. , 79, 583–610.
Hadfield, J.D. (2010). MCMC methods for multi-response Generalized
Linear Mixed Models: the MCMCglmm R package. J. Stat. Softw. , 33,
1–22.
Hadfield, J.D. & Owens, I.P.F. (2006). Strong environmental
determination of a carotenoid-based plumage trait is not mediated by
carotenoid availability. J. Evol. Biol. , 19, 1104–1114.
Haisten, D.C., Paranjpe, D., Loveridge, S. & Sinervo, B. (2015). The
cellular basis of polymorphic coloration in common side-blotched
lizards, Uta stansburiana . Herpetologica , 71, 125–135.
Heath, J.J., Cipollini, D.F. & Stireman, J.O. (2013). The role of
carotenoids and their derivatives in mediating interactions between
insects and their environment. Arthropod Plant Interact. , 7,
1–20.
Kemp, D.J., Herberstein, M.E. & Grether, G.F. (2012). Unraveling the
true complexity of costly color signaling. Behav. Ecol. , 23,
233–236.
Kikuchi, D.W. & Pfennig, D.W. (2012). A Batesian mimic and its model
share color production mechanisms. Curr. Zool. , 58, 658–667.
Kikuchi, D.W., Seymoure, B.M. & Pfennig, D.W. (2014). Mimicry’s
palette: widespread use of conserved pigments in the aposematic signals
of snakes. Evol. Dev. , 16, 61–67.
Koch, R.E. & Hill, G.E. (2018). Do carotenoid-based ornaments entail
resource trade-offs? An evaluation of theory and data. Funct.
Ecol. , 1–13.
Ligon, R.A. & McCartney, K.L. (2016). Biochemical regulation of pigment
motility in vertebrate chromatophores: a review of physiological color
change mechanisms. Curr. Zool. , 62, 237-252.
Ligon, R.A., Simpson, R.K., Mason, N.A., Hill, G.E. & McGraw, K.J.
(2016). Evolutionary innovation and diversification of carotenoid-based
pigmentation in finches. Evolution , 70, 2839-2852.
Littleford-Colquhoun, B.L., Clemente, C., Thompson, G., Cristescu, R.H.,
Peterson, N., Strickland, K. et al. (2019). How sexual and
natural selection shape sexual size dimorphism: Evidence from multiple
evolutionary scales. Funct. Ecol. , 33, 1446–1458.
Lopes, R.J., Johnson, J.D., Toomey, M.B., Ferreira, M.S., Araujo, P.M.,
J., M.-F. et al. (2016). Genetic basis for red coloration in
birds. Curr. Biol. , 26, 1–8.
Lovich, J.E. & Gibbons, J.W. (1992). A review of techniques for
quantifying sexual size dimorphism. Growth Develop. Aging , 56,
269–281.
Macedonia, J.M., James, S., Wittle, L.W. & Clark, D.L. (2000). Skin
pigments and coloration in the Jamaican radiation of Anolislizards. J. Herpetol. , 34, 99–109.
Mahler, B., Araujo, L.S. & Tubaro, P.L. (2003). Dietary and sexual
correlates of carotenoid pigment expression in dove plumage.Condor , 105, 258–267.
McGraw, K.J. (2005). The antioxidant function of many animal pigments:
are there consistent health benefits of sexually selected colourants?Anim. Behav. , 69, 757–764.
McGraw, K.J., Gregory, A.J., Parker, R.S. & Adkins-Regan, E. (2003).
Diet, plasma carotenoids, and sexual coloration in the zebra finch
(Taeniopygia guttata). Auk , 120, 400–410.
McLean, C.A., Lutz, A., Rankin, K., Stuart-Fox, D. & Moussalli, A.
(2017). Revealing the Biochemical and Genetic Basis of Color Variation
in a Polymorphic Lizard. Mol. Biol. Evol. , 34, 1924–1935.
McLean, C.A., Lutz, A., Rankin, K.J., Elliott, A., Moussalli, A. &
Stuart-Fox, D. (2019). Red carotenoids and associated gene expression
explain colour variation in frillneck lizards. Proc. R. Soc. Lond.
B Biol. Sci. , 286, 20191172.
Melville, J., and Wilson, S. K (2019). Dragon Lizards of
Australia: Evolution, Ecology and a Comprehensive Field Guide . Museums
Victoria Publishing.
Merkling, T., Chandrasoma, D., Rankin, K.J. & Whiting, M.J. (2018).
Seeing red: pteridine-based colour and male quality in a dragon lizard.Biol. J. Linn. Soc. Lond. , 124, 677–689.
Mundy, N.I., Stapley, J., Bennison, C., Tucker, R., Twyman, H., Kim,
K.-W. et al. (2016). Red carotenoid coloration in the zebra finch
is controlled by a cytochrome P450 gene cluster. Curr. Biol. , 26,
1435–1440.
Newman, P., Raymond, B., VanDerWal, J., Belbin, L. & Stevenson, M.
(2020). ALA4R: Atlas of Living Australia (ALA) Data and Resources in R.
R package version 1.9.0, pp. URL:
https://CRAN.R-project.org/package=ALA4R.
Olson, V.A. & Owens, I.P.F. (1998). Costly sexual signals: are
carotenoids rare, risky or required? Trends Ecol. Evol. , 13,
510–514.
Olson, V.A. & Owens, I.P.F. (2005). Interspecific variation in the use
of carotenoid-based coloration in birds: diet, life history and
phylogeny. J. Evol. Biol. , 18, 1534–1546.
Olsson, M., Stuart-Fox, D. & Ballen, C. (2013). Genetics and evolution
of colour patterns in reptiles. Semin. Cell Dev. Biol. , 24,
529–541.
Ortiz, E., Bächli, E., Price, D. & Williams-Ashman, H.G. (1963). Red
pteridine pigments in the dewlaps of some anoles. Physiol. Zool. ,
36, 97–103.
Ortiz, E. & Maldonado, A.A. (1966). Pteridine accumulation in lizards
of the genus Anolis. Caribb. J. Sci. , 6, 9–13.
Ostman, O. & Stuart-Fox, D. (2011). Sexual selection is positively
associated with ecological generalism among agamid lizards. J.
Evol. Biol. , 24, 733–740.
Palmer, B.A., Hirsch, A., Brumfeld, V., Aflalo, E.D., Pinkas, I., Sagi,
A. et al. (2018). Optically functional isoxanthopterin crystals
in the mirrored eyes of decapod crustaceans. Proc. Natl. Acad.
Sci. U. S. A. , 115, 2299–2304.
Prum, R.O., LaFountain, A.M., Berro, J., Stoddard, M.C. & Frank, H.A.
(2012). Molecular diversity, metabolic transformation, and evolution of
carotenoid feather pigments in cotingas (Aves: Cotingidae). J.
Comp. Physiol. [B] , 182, 1095–1116.
Pyron, R.A., Burbrink, F.T. & Wiens, J.J. (2013). A phylogeny and
revised classification of Squamata, including 4161 species of lizards
and snakes. BMC Evol. Biol. , 13.
Revell, L.J. (2012). phytools: an R package for phylogenetic comparative
biology (and other things). Methods Ecol. Evol. , 3, 217–223.
Ross, L., Gardner, A., Hardy, N. & West, S.A. (2013). Ecology, not the
genetics of sex determination, determines who helps in eusocial
populations. Curr. Biol. , 23, 2383–2387.
Simons, M.J.P., Maia, R., Leenknegt, B. & Verhulst, S. (2014).
Carotenoid-Dependent Signals and the Evolution of Plasma Carotenoid
Levels in Birds. Am. Nat. , 184, 741–751.
Steffen, J.E., Hill, G.E. & Guyer, C. (2010). Carotenoid access,
nutritional stress, and the dewlap color of male brown anoles.Copeia , 2010, 239–246.
Steffen, J.E. & McGraw, K.J. (2009). How dewlap color reflects its
carotenoid and pterin content in male and female brown anoles
(Norops sagrei ). Comp. Biochem. Physiol. Biochem. Mol.
Biol. , 154, 334–340.
Svensson, P.A. & Wong, B.B.M. (2011). Carotenoid-based signals in
behavioural ecology: a review. Behaviour , 148, 131–189.
Twomey, E., Johnson, J.D., Castroviejo-Fisher, S. & Van Bocxlaer, I.
(2020a). A ketocarotenoid-based colour polymorphism in the Sira poison
frog Ranitomeya sirensis indicates novel gene interactions underlying
aposematic signal variation. Mol. Ecol. , 29, 2004–2015.
Twomey, E., Kain, M., Claeys, M., Summers, K., Castroviejo-Fisher, S. &
Van Bocxlaer, I. (2020b). Mechanisms for Color Convergence in a Mimetic
Radiation of Poison Frogs. Am. Nat. , 195, E132–E149.
Twyman, H., Valenzuela, N., Literman, R., Andersson, S. & Mundy, N.I.
(2016). Seeing red to being red: conserved genetic mechanism for red
cone oil droplets and co-option for red coloration in birds and turtles.Proc. R. Soc. Lond. B Biol. Sci. , 283.
Weaver, R.J., Santos, E.S.A., Tucker, A.M., Wilson, A., E. & Hill, G.E.
(2018). Carotenoid metabolism strengthens the link between feather
coloration and individual quality. Nat. Commun. , 9, 73.
Weiss, S.L., Foerster, K. & Hudon, J. (2012). Pteridine, not
carotenoid, pigments underlie the female-specific orange ornament of
striped plateau lizards (Sceloporus virgatus ). Comp.
Biochem. Physiol. , 161, 117–123.
Wilson, T.G. & Jacobson, K.B. (1977). Isolation and characterization of
pteridines from heads of Drosophila melanogaster by a modified
thin-layer chromatography procedure. Biochem. Genet. , 15,
307–319.
Zheng, Y.C. & Wiens, J.J. (2016). Combining phylogenomic and
supermatrix approaches, and a time-calibrated phylogeny for squamate
reptiles (lizards and snakes) based on 52 genes and 4162 species.Mol. Phylogenet. Evol. , 94, 537–547.
Ziegler, I. (2003). The pteridine pathway in zebrafish: regulation and
specification during the determination of neural crest cell-fate.Pigment Cell Res. , 16, 172–182.