High-containment laboratories (HCLs) conduct critical research on infectious diseases, provide diagnostic services, and produce vaccines for the world’s most dangerous pathogens, often called high-consequence pathogens (HCPs). The modernization of HCLs has led to an increasingly cyber-connected laboratory infrastructure. The unique cyberphysical elements of these laboratories and the critical data they generate pose cybersecurity concerns specific to these laboratories. Cyberbiosecurity, the discipline devoted to the study of cybersecurity risks in conjunction with biological risks, is a relatively new field for which few approaches have been developed to identify, assess, and mitigate cyber risks in biological research and diagnostic environments. This study provides a novel approach for cybersecurity risk assessment and identification of risk mitigation measures by applying an asset-impact analysis to the unique environment of HCLs. First, we identified the common cyber and cyberphysical systems in HCLs, summarizing the typical cyber-workflow. We then analyzed the potential adverse outcomes arising from a compromise of these cyber and cyberphysical systems, broadly categorizing potential consequences as relevant to scientific advancement, public health, worker safety, security, and the financial well-being of these laboratories. Finally, we discussed potential risk mitigation strategies, leaning heavily on the cybersecurity materials produced by the Center for Internet Security (CIS), including the CIS Controls®, that can serve as a guide for HCL operators to begin the process of implementing risk mitigation measures to reduce their cyberbiorisk and considering the integration of cyber risk management into existing biorisk management practices. This paper provides a discussion to raise awareness among laboratory decision-makers of these critical risks to safety and security within HCLs. Furthermore, this paper can serve as a guide for evaluating cyberbiorisks specific to a laboratory by identifying cyber-connected assets and the impacts associated with a compromise of those assets.

Nina Matsumoto

and 10 more

African Swine Fever Virus (ASFV) causes a deadly disease of pigs which spread through southeast Asia in 2019. We investigated one of the first outbreaks of ASFV in Lao Peoples Democratic Republic amongst smallholder villages of Thapangtong District, Savannakhet Province. In this study, two ASFV affected villages were compared to two unaffected villages. Evidence of ASFV-like clinical signs appeared in pig herds as early as May 2019, with median epidemic days on 1 and 18 June in the two villages, respectively. Using participatory epidemiology mapping techniques, we found statistically significant spatial clustering in both outbreaks (P < 0.001). Villagers reported known risk factors for ASFV transmission − such as free-ranging management systems and wild boar access − in all four villages. The villagers reported increased pig trader activity from Vietnam before the outbreaks; however, the survey did not determine a single outbreak source. The outbreak caused substantial household financial losses with an average of 9 pigs lost to the disease, and Monte Carlo analysis estimated this to be USD 215 per household. ASFV poses a significant threat to food and financial security in smallholder communities such as Thapangtong, where 40.6% of the district’s population are affected by poverty. This study shows ASFV management in the region will require increased local government resources, knowledge of informal trader activity and wild boar monitoring alongside education and support to address intra-village risk factors such as free-ranging, incorrect waste disposal and swill feeding.

Nina Matsumoto

and 10 more

African Swine Fever Virus (ASFV) causes a deadly disease of pigs which spread through southeast Asia in 2019. We investigated one of the first outbreaks of ASFV in Lao Peoples Democratic Republic amongst smallholder villages of Thapangtong District, Savannakhet Province. In this study, two ASFV affected villages were compared to two unaffected villages. Evidence of ASFV-like clinical signs appeared in pig herds as early as May 2019, with median epidemic days on 1 and 18 June in the two villages, respectively. Using participatory epidemiology mapping techniques, we found statistically significant spatial clustering in both outbreaks (P < 0.001). Villagers reported known risk factors for ASFV transmission  such as free-ranging management systems and wild boar access  in all four villages. The villagers reported increased pig trader activity from Vietnam before the outbreaks; however, the survey did not determine a single outbreak source. The outbreak caused substantial household financial losses with an average of 9 pigs lost to the disease, and Monte Carlo analysis estimated this to be USD 215 per household. ASFV poses a significant threat to food and financial security in smallholder communities such as Thapangtong, where 40.6% of the district’s population are affected by poverty. This study shows ASFV management in the region will require increased local government resources, knowledge of informal trader activity and wild boar monitoring alongside education and support to address intra-village risk factors such as free-ranging, correct waste disposal and swill feeding.