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ABSTRACT:

1. Tropical deciduous forests show strong seasonal variations due to temporal dynamics of 

precipitation and temperature and therefore, resource availability for animals are also limited 

accordingly. Certain harsh environment even pushes animals to seasonal movements towards 

available resources. 

2. We hypothesize that the density distribution of four sympatric ungulate species is 

structured by habitat covariates but more affected by seasonality. We then investigated 

density gradient of these species between contrasting season and correlated with 

environmental covariates. 

3. We used distance-based density surface modelling with survey effort of 518 km in winter 

and 356 km in summer and with count data as a function of environmental variables in 

generalised additive modelling framework. We extrapolated seasonal abundance of each 

species and calculated coefficient of variation to ensure precision for the entire study area. 

4. We observed a clear seasonal shift in the density distribution of all four species between 

summer (more abundant in valley) and winter (evenly distributed), significantly influenced 

by anthropogenic and topographic factors. Solitary species were congregated in larger groups

during summer while group living species were in larger groups during winter.

5. Our study provides a clear understanding of species-habitat relationship as a function of 

seasonality in tropical forest and is useful in spatial prioritization of the habitats for relevant 

management inputs. 
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KEYWORDS: Density surface modelling, Distance sampling, Movement ecology, Resource

distribution, Seasonal shift, Spatio-temporal distribution

1. INTRODUCTION

Tropical dry deciduous forests are highly seasonal due to the effect of monsoon and climate 

(Singh & Chaturvedi, 2017). The amount and period of annual rainfall, length of the dry 

season and the mean temperature of the coldest month are the major seasonal drivers which 

cause extreme variations in the forest attributes (Meher-Homji & Fontanel, 1978). Tropical 

dry deciduous forest witnesses a very short period of growth during monsoon after a very 

long dry season of around six months and hence making every taxa completely dependent on 

the monsoonal rainfall directly or indirectly. Strong seasonality of dry deciduous forests leads

to seasonal variation in phenology of different floral species (Singh & Singh, 1992) and 

accordingly, the deciduousness of tree leaves during dry season is an important event shaping

animals distribution. Water availability limits the growth of deciduous trees (Reich and 

Borchert 1984) and hence, drier regions have greater proportion of the deciduous trees. 

Topography in such scenario plays a major role in establishing moisture gradient across 

regions. Most of the monsoonal water sink to the river valley, leaving plateaus drier and thus 

triggering deciduousness of trees which in turn allow more sunlight penetration making these 

regions warmer. In contrasts, valleys retain most of the monsoonal water, allow evergreen 

tree species to flourish makes them shady habitats and cooler all throughout the year. The 

phenological variations changes the microclimatic conditions and availability of food 

resources. In dry season, soil also becomes dry due to wind and insolation (Kapos, 1989) and 

reduce plant productivity (Ceballos, 1990). Consequently, mammals in dry deciduous forest 

either becomes generalists that adapt or change the diet in different seasons or become diet 
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specialists that move to preferable habitats when resources are abundant or scarce (Stoner & 

Timm, 2004).

Animal species cope with the environmental seasonality by variety of behavioural 

adaptations such as; dietary flexibility, local movements, short-distance migration, long-

distance migration, change in activity patterns and seasonality of reproduction (Stoner & 

Timm, 2004; Wall, González, & Simmons, 2011) which allow them to survive in harsh 

environment. These adaptations allow animals to obtain sufficient resources, cope with the 

hot and dry environmental conditions and reduce competition. Variation in the forest attribute

pushes animals to make their preferences across habitats in different seasons. Ungulates 

preference of different habitats in different seasons (Lamprey, 1963) is then guided by abiotic

factors such as topography, water availability and weather and biotic factors such as forage 

availability (Bailey & Provenza, 2008). As previous studies suggest, animals prefer higher 

elevation and ridges in colder temperatures (Harris, Johnson, George, & McDougald, 2002) 

and seek shade during hot weathers (McIlvain & Shoop, 1971). Ungulates migrate from one 

region to another is also a result of the lack of forage and water (Fryxell & Sinclair, 1988; 

Payne et al., 2020). In dry season, sources of water and shade is often limited and forage 

availability becomes scarce. In the dry deciduous forests, trees in riverine and cliff habitat 

retain their leaves and are more humid (Moura, 2007) and are the best refugee. In such 

scenario, dispersal allows them to survive despite the harsh climatic variations (Boone, 

Burnsilver, Worden, Galvin, & Hobbs, 2008) and help fulfil their nutritional requirements 

(Coppedge & Shaw, 1998; Scott, Provenza, & Banner, 1995; Senft, Rittenhouse, & 

Woodmansee, 1985). Human settlements and agricultural field also affect their distribution 

patterns (Mysterud, Lian, & Hjermann, 1999).

Understanding the seasonal movement patterns is of much benefit for conservation and 

habitat management as it particularly improves our understanding of habitat important for 
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wildlife in space and time (Hebblewhite & Haydon, 2010) which further help in maintaining 

connectivity within the landscape and identifying the probable threats (Allen & Singh, 2016).

With advancements in the methodology, it is now comparatively easier to understand these 

ecological patterns particularly by building spatial models which allow habitat heterogeneity 

as well as identify environmental variables that influence density distribution in space and 

time. Density Surface Modelling (DSM) (Miller, Burt, Rexstad, & Thomas, 2013) combines 

spatial modelling techniques with distance sampling (Buckland et al., 2001, 2004) taking into

account the probability of detecting an animal at each sampling unit and build maps of the 

population abundance distributions. These maps are extremely useful due to their scale 

flexibility and simple interpretation of complex scientific algorithm and thus easy to 

communicate results to the non-specialists (Miller et al., 2013). DSM also propagates 

uncertainty from detection function to spatial model depending on the environmental 

variables and estimate the variance for each sampling unit to ensure precision of the 

population estimates (Hedley & Buckland, 2004). DSM has recently been used for many 

different taxa, i.e. marine mammals (Mannocci, Roberts, Miller, & Halpin, 2017; Redfern et 

al., 2017; Sigourney et al., 2020), seabirds (Fifield et al., 2017), marine benthos 

(Katsanevakis, 2007), terrestrial plants (Dias et al., 2016) and terrestrial ungulates (Valente, 

Marques, Fonseca, & Torres, 2016). However, a holistic approach of comparative seasonal 

abundance distribution with detailed information on the environmental variables influencing 

these patterns remains pioneering in tropical forests. 

Most of the studies on seasonal movements are mostly based on radio-telemetry data and 

concentrated on the African savannah (Fryxell & Sinclair, 1988; Owen‐Smith et al., 2020; 

Yoganand & Owen-Smith, 2014) and Neotropical forests. Studies based on radio-telemetry 

data give precise estimates however, have limitations such as, observations restricted to a 

small number of individuals and are not very cost-effective. In contrasts, distance sampling 
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based on line transect data is cost-effective and includes the population for observations. 

Given the strong seasonality of tropical dry deciduous forests, studies describing the role of 

seasonality in mediating the ungulates distribution is gravely lacking. Therefore, we built our 

hypothesis based on the above theories so as to understand the seasonal movement by 

establishing density gradient in the whole study area for four ungulate species in two different

seasons and to investigate the relationship between environmental covariate and population 

density. 

2. METHODOLOGY: 

Study area

This study was undertaken in Panna Tiger Reserve (PTR) (Figure 1) situated in the Vindhyan

mountain ranges in Madhya Pradesh, central India, between 24°27N to 24°46N latitude and 

79°45′E to 80°09′E longitude. PTR is uniquely characterized by its ‘terraced topography’ and

presents two tabletop mountains and a valley formed by the Ken River. The transition from 

one plateau to another forms rocky and steep escarpments ranging from 10 to 80 m in height. 

The Ken River cuts through the reserve from south-west to north-east and serves as a major 

water source for most lives in the reserve.

PTR is mostly dependent on monsoon rainfall during July–September. The average annual 

rainfall is approximately 1100 mm. Following the monsoon, there is the winter season from 

November-February when the minimum temperature drops down to 5°C, followed by dry 

summer in April-June when the maximum temperature often exceeds 45°C (Karanth, 

Chundawat, Nichols, & Kumar, 2004). There are six species of ungulates which are Chital 

(Axis axis), Sambar (Rusa unicolor), Nilgai (Bocephalus tragocamelus), Wild pig (Sus 

scrofa), Four-horned Antelope (Tetracerus quadricornis) and Chinkara (Gazella bennettii) 

although the latter two are highly restricted in distribution and only occasionally sighted. The 
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major forest type is tropical dry deciduous (Meher-Homji, 1990) shows exceptional 

seasonality with the scarcity of resources during summer. 

Field sampling

We followed distance sampling protocol (Buckland et al., 2004) for ungulate data collection. 

A total of 66 spatially distributed line transects were walked covering the whole core area of 

PTR and sampling was done in both Summer and Winter. Data were collected for two 

sampling seasons of winter 2015-2016 and 2016-2017 and two sampling seasons of summer 

2016 and 2017. Line length was kept 1.5 km to 2.0 km depending upon the habitat and terrain

complexity. We walked transects in the early morning hours at the time of peak activity of 

the ungulates. All the transects were subjected to repeated sampling of up to thrice in each 

sampling season. 

We used laser range finder to estimate the distance from the observer to the animal, GPS 

device for coordinates and Suunto compass to calculate the angle. Ungulate species ID, 

number of individuals, sighting angle, GPS coordinates and sighting distance were recorded 

in the field. 
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Figure 1: Map showing the spatial distribution of line transect survey in the study area, Panna

Tiger Reserve overlaid on the digital elevation model data. Elevation divides the whole area 

into three distinct boundaries viz; upper Panna plateau (south), middle Hinota plateau and 

lowest Ken river valley (north). 

Statistical analysis

a) Data preparation: 

Two years data was compiled for both seasons for each species separately. We divided all 

transects into 400 meters bin and accordingly yielded spatio-temporal replicates of 1286 for 

summer and 892 for winter. We used both geographical and local habitat variables to model 

spatial density-distribution of the ungulate species (Figure 11; Appendix A). We derived 

covariates value either directly from remotely sensed data or derived from remote sensing 

data to calculate Euclidean distance (Table 1). We used two geographic covariates consisted 

of Elevation and Terrain Ruggedness Index (TRI); vegetation index consisted of Normalised 
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Difference Vegetation Index (NDVI), Habitat parameter consisted of distance to water source

(water) and one parameter for anthropogenic pressure was distance from the forest edge 

(Distedge). We also incorporated bivariate smooth of spatial coordinates to address the 

spatial variations. Due to dynamic seasonality of the dry deciduous forest, we calculated 

NDVI and distance from water source for summer and winter separately. Prediction grids 

were formed by dividing the whole study area into square grids of 200m X 200m and 

covariates values were extracted for the centroid of the grid for both seasons. 

Variable Data Source and processing 

details

Spatial 

resolution and 

time period

Description

Latitude, Longitude

(x, y)

Survey location

Elevation (dem) Digital elevation- Shuttle 

Radar Topography Mission 

data

https://earthexplorer.usgs.gov 

30 meter

Topographic 

Ruggedness index 

(TRI)

Calculated from SRTM – 

digital elevation data (Riley, 

DeGloria, & Elliot, 1999)

30 meter This is a measure of 

roughness in the terrain. 

Distance from the 

water source 

(water)

Sentinel-2A

https://earthexplorer.usgs.gov 

First, generated a layer of 

water bodies for two seasons 

using normalized difference 

water index (NDWI) 

10 meter; Winter 

data: Dec 2016 – 

Jan 2017; 

Summer data: 

April 2016 – May

2016

This provides a measurable 

distance from the water that 

may affect distribution in 

dry season.
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(McFEETERS, 1996) in 

ERDAS-Imagine tools. We 

then calculated as Euclidean 

distance from the water source.

Normalized 

difference 

vegetation index 

(NDVI)

Sentinel-2A

https://earthexplorer.usgs.gov

10 meter; Winter 

data: Dec 2016 – 

Jan 2017; 

Summer data: 

April 2016 – May

2016

This is used as vegetation 

cover in both summer and 

winter season. 

Distance from the 

Forest Edge 

(distedge)

Calculated as Euclidean 

distance from the forest 

boundary. 

This variable represents 

distance from the human 

settlements, metal roads and

agricultural field present at 

the periphery. It will also 

serve as an calculative 

measures to the access of 

local people to the forest 

produces. 

Table 1: Predictor variables to function count data in generalised additive modelling 

framework for spatial modelling.

b) Density surface modelling:

For each analysis, we used count per segment as a response variable which was modelled 

given habitat variables using GAM approach. The model for count per segment is:

10

170

171

172

173

174

10

https://earthexplorer.usgs.gov/


The initial part of the equation  defines the detection probability in each segment 

multiplied by the area of each segment whereas, the later part defines the intercept and 

smooth functions of covariate (Miller et al., 2013). The modelling process is implemented 

using a two-stage approach. The first step is to fit the detection function to the distance data 

and the second step is to construct the generalised additive modelling (GAM) with per-

segment counts as a response variable.

To model the density, we used conventional distance sampling (CDS) which models 

detection probability as a function of observed perpendicular distances. Three key detection 

functions i.e. Uniform, Half-normal and Hazard-rate were fitted to the distance data along 

with and without cosine, polynomial and Hermite-polynomial adjustment terms (Appendix: 

B). The best detection function was selected using Akaike’s Information Criteria (AIC). Data 

was truncated for the farthest observations up to 9% from the line of sighting based on visual 

inspection of the detection function superimposed on the histogram of distances (Buckland et 

al., 2001). We chose to keep same truncation distance for one species in both seasons to 

optimise variations in detection probability due to seasonal changes in the habitat. This 

analysis was implemented using the Distance package version 1.0.0 (Miller, Rexstad, 

Thomas, Marshall, & Laake, 2019) for R version 3.6.0 (R Core Team, 2019) 

To model spatial abundance of each species per season, count per segment was modelled as a

smooth function of predictor variables. Segment area was used as an offset term obtained 

from  where  is truncation distance and the  is the segment length. We used default 

thin plate regression spline smoother in GAM. The term selection was performed by checking

smoother p-value significance and zero effect (Wood, 2006). An extra shrinkage term was 

imposed in the model allowing smooth terms to be removed from the model during fitting 
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(Wood, 2011). Data were assumed to follow a Poisson distribution. The mean-variance 

relationship was allowed to vary with advanced distribution Tweedie and Quasi-Poisson 

(Candy, 2004; Foster & Bravington, 2012). Dispersion parameter was investigated for each 

family distribution and model was refitted if data was highly under-dispersed or over-

dispersed. The basis dimensions in the model were chosen by a repetitive process, in which 

analysis was rerun to make the model wiggly enough to capture the relationship in the data 

and not too wiggly to capture the noise in the data. A decision was made for basis dimensions

by comparing the effective degree of freedom and random patterns in residuals for each 

smoother (Pedersen, Miller, Simpson, & Ross, 2019). This analysis was implemented using 

‘dsm’ package version 2.3.0 (Miller, Rexstad, Burt, Bravington, & Hedley, 2020) for R 

version 3.6.0 (R Core Team, 2019). All the models were checked and selected by the iterative

process (Appendix A).

c) Abundance prediction and variance estimation:

Response distribution obtained from DSM was then used to predict abundances over the 

whole study area with 200m X 200m prediction cells. Predictions were made for each cell 

based on predictor variables used to fit the model. We assume that detection function and 

spatial models are independent (detection probability is constant across whole study area for 

each analysis) therefore, we estimated coefficient of variance (CVs) for detection function 

parameters and GAM parameters. To measure CVs for abundance prediction, squared 

coefficient of variation from both parameters vis; GAM and detection function were added on

a per-cell basis following the approach described in (Miller et al., 2013). To visualize the 

CVs, we produced maps for the prediction cells overlaid by the CV values. 

3. RESULTS:
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The total survey effort in summer was 356 km and in winter was 518 km. Animal sightings 

were frequent in summer due to increased visibility and thinner understorey vegetation. 

Sambar was the most frequently sighted animal in both seasons followed by Nilgai and 

Chital. However, sambar was sighted mostly as solitary species. Most commonly selected 

predictor for abundance was distance from the forest edge and TRI. Seasonal distribution of 

abundance showed a difference in the group size formation. Sambar, Nilgai and Wild pig 

formed larger groups during summer and more evenly distributed during winter whereas, 

Chital were more dispersed during summer and forming larger groups in winter. 

Sambar (Rusa unicolor): 

Sambar followed the Half-normal and Hazard-rate distribution in summer and winter 

respectively (Table 2). Quasi-Poisson and Poisson family distribution explained the mean-

variance relationship in summer and winter respectively. Sambar winter abundance was 

predicted to increase with elevation (Figure 2). They were more likely to prefer upper and 

middle plateau regions that also offer dense vegetations and complex topography. Their 

distributions seem to be adjusting with distance to the forest edge throughout the year that 

offers forage resources in the form of agricultural crops in winter also comes with some costs 

of anthropogenic pressure in terms of settlements and road. While in summer, Sambar was 

predicted to be abundant in middle plateau offering less rugged terrain and valley offering 

highly rugged terrain. They seemed to avoid human proximity in summer as forest edge does 

not offer many resources in that season. Our results show a clear seasonal shift in abundance 

gradient of the species (Figure 3 & 4). Sambar is forming larger groups in summer while in 

winter, distribution is more dispersed with smaller group size (0-6 individuals/cell) depicting 

its behaviour modification with harsh climatic conditions. In summer, distribution shrinks to 

more suitable habitats which offer shade as well as food resources. We recorded low CVs in 
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most of its distributional ranges in both seasons except the riverine area in winter and near the

forest edges in summer. 

Nilgai (Bocephalus tragocamelus) :

Nilgai followed the Half-normal and Hazard-rate distribution in summer and winter 

respectively (Table 2). Poisson family distribution explained the mean-variance relationship 

in both seasons. Nilgai winter abundance was predicted to increase away from the forest edge

and in less rugged terrain (Figure 2). They avoid dense vegetations preferring open habitats 

whereas, in summer, terrain ruggedness elevation does not affect their distribution much. 

Nilgai majorly prefers proximity to the water source in both seasons. Their distributions were

much restricted to the valley forming larger groups (0-11 individuals/cell) in summer while 

they are distributed to the valley and middle plateau in winter forming smaller groups (0-6 

individuals/cell). Nilgai showed a clear seasonal shift in the distribution with habitat 

preference of middle plateau and valley in the winter and completely shifted to the valley in 

summer (Figure 5 & 6). We recorded low CVs in most of the distributional ranges in both 

seasons except the area away from water in winter and away from the forest edge in summer.

Chital (Axis axis):

Chital followed the Uniform and Hazard-rate distribution in summer and winter respectively 

(Table 2). We recorded higher detection probability in summer due to increased visibility. 

Poisson family distribution explained the mean-variance relationship in both seasons. Chital 

abundances were predicted to increase away from the forest edge and in moderately rugged 

terrain in both seasons. Chital was found most abundant in the valley and preferring dense 

vegetations in winter. Response curve with elevation in summer clearly shows its higher 

abundance in the valley and middle plateau, avoiding ridge areas and upper plateau (Figure 

2). Chital forms larger groups in winter when resources are abundant while more dispersed in

summer forming relatively smaller groups when resources are scarce. This might act as an 
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anti-predatory strategy for group-living animals to congregate in larger groups to increase 

safety when visibility is less and the cost of living in the group due to resource sharing could 

be minimised. We observe a seasonal shift in the abundance distribution as a larger chunk of 

abundances were distributed to the valley and middle plateau in summer (Figure 7 & 8). We 

observe low CVs in summer however, CVs were large in winter due to sampling limitation of

detecting animals near the sighting line.

Wild pig (Sus scrofa):

Wild pig is the least sighted ungulate however, data fulfilled the model assumptions and 

hence were sufficient enough to perform the analysis. Data followed Half-normal distribution

in both seasons. Poisson and Tweedie family distributions explained the mean-variance 

relationship in summer and winter respectively (Table 2). Wild pig winter abundances were 

predicted to increase in less rugged terrain avoiding highly rugged terrain (Figure 2). While 

in summer, abundance distribution show species water independence. They avoided 

proximity to the forest boundary and were more evenly distributed in each type of terrain. 

Abundance maps of both seasons show their complete seasonal shifts to the valley in summer

(Figure 9 & 10). They make larger groups in summer as there is lesser number of niche 

available due to resource scarcity. Whereas in winter, animals were more evenly distributed 

to the plateau in smaller groups. We observe low CVs in most of the distributional range in 

both seasons except the area where detections were less. 

 

4. DISCUSSION:

This study majorly focuses on the seasonal movement of four ungulate species. Tropical dry 

deciduous forests show strong seasonality which in turn cause a difference in resource 

distribution across habitats (Singh & Chaturvedi, 2017). Seasonal dynamics is so evident that 

it causes the animals to shift their habitat as per the resource availability. Our results show a 
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clear seasonal shift in the abundance distribution of all ungulate species, more abundant in 

the valley region during summer.

The topography of dry deciduous forests plays a major role in driving the abundance 

distribution of ungulates. Topography defines the ascending moisture gradient from plateau 

to the valley which is further related to the forage availability (Moura, 2007; Singh & 

Chaturvedi, 2017). Thus in summer when resources become scarce, valley fulfil all the 

habitat requirements such as shade to escape the heat, water and green foliage as forage 

(Johnsingh & Manjrekar, 2015; McKay & Eisenberg, 1974; Schaller, 1974). Whereas in 

winters, when moisture does not limit resource distribution across habitats cause animals to 

be distributed more evenly. Elephants (Bohrer, Beck, Ngene, Skidmore, & Douglas-

Hamilton, 2014) and other large herbivores in Kenyan savanna landscape showed similar 

pattern and migrated along the elevational gradient in response to water and forage 

availability (Hobbs & Gordon, 2010) concurring with our hypothesis and observations of 

movement of herbivores in response to resource distributions. Abundance distribution due to 

terrain ruggedness is also associated with the resources it has to offer in different seasons. 

The drier environment of plateaus harbours greater proportion of trees of deciduous habit 

which shed leaves early winters, receives more sunlight hence warmer, helps animals to 

escape cold forest nights. On the other hand, the valley habitats provide more shades with 

thick canopy and hence relatively colder. Consequently, we found all four species to be 

distributed on the plateaus during winters.

Ungulates seasonal distribution is largely influenced by the availability of suitable habitat, 

vegetation cover, water and lack of disturbance (Johnsingh & Manjrekar, 2015; Neumann et 

al., 2015). Varying response with distance from the forest edge highlights the unsegregated 

effects of human presence in terms of settlements, local people access to the forest and road 

cause disturbance and agricultural fields offer forage resources. In winter, forest edge at some
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places benefits the species offering forage whereas, in summer, forest edge majorly cause a 

disturbance which in turn pushes species to modify its behaviour throughout the study area in

a given season. Nilgai in central India is considered as a serious crop-raider since it is 

distributed in the fringe area (Sankar, 1994). Accordingly, Awasthi et al., (2016) and 

(Harihar, Pandav, & Macmillan, 2014) found Nilgai to be abundant in human-dominated 

landscape. Nilgai’s positive relationship with distance from the forest edge in our study can 

be explained by its preferences to less dense vegetations. Relocated villages in PTR inhabits 

many fruiting trees and ample amount of grasses in winters provide excellent habitats for 

such mixed feeders (Sankar, 1994). However, positive relationship of Chital, Sambar and 

Wild pig with the distance from the forest edge explains their habitat preferences to the 

undisturbed forest. 

Plateaus are the most preferable habitats in winter as they provide an ample amount of 

resources due to availability of water post-monsoon. In winter, streams and waterholes retain 

monsoonal water and thus support higher abundance than the valley. As summer approaches, 

water shrinks measurably in waterholes and streams. Being an antelope, Nilgai distributions 

is independent of water and can tolerate larger distances with water sources (Figure 2) 

(Prater, 1990). However Wild pig, being water-dependent species prefer to stay near 

permanent water sources (Johnsingh & Manjrekar, 2015; Roberts, 1997) and moved to those 

areas where river waters are easily accessible (Figure 2). Local movements and migration 

activities in response to water limitations in dry season have been recorded in White-eared 

kob (Fryxell & Sinclair, 1988), Khulan (Payne et al., 2020),African Elephants (Purdon, Mole,

Chase, & van Aarde, 2018) and in different ungulate species in Serengeti. However, browsers

and grazers were found to have similar water requirements (Kihwele et al., 2020), while in 

contrast, few other mammals such as bats (Heithaus, Fleming, & Opler, 1975) and primates 

(Brown & Zunino, 1990) are found to have shift in their diet to increase intake of water 
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through forage as well as reduce competition when resources are scarce (Galetti & Pedroni, 

1994). Although we did not include the diet preferences of any of four ungulates in this study,

we suspect that Chital and Sambar rely more on dietary flexibility for water requirements in 

dry season as there were no significant relationship of water and population density for both 

of the species (Figure 2). 

Our results also bring insights that Sambar habitat preferences match to the Chital in both 

seasons and they found in common presence while it shows spatial abundance segregations 

with Nilgai. Chital and Sambar prefer dense vegetations in winter while Nilgai prefers open 

habitats. Our study also highlights that group-living animals such as Chital formed larger 

groups in winter when resources are abundant. This act as their anti-predatory behaviour 

helps them to stay more vigilant when visibility is less and the cost of resource sharing could 

be minimised (Johnsingh & Manjrekar, 2015). However, solitary species such as Sambar and 

Nilgai are pushed to stay in groups during summer as resources become scarce and less 

number of suitable habitats are available. Wild pig, on the other hand, does not show much 

differences in group size formation confirms its behaviour, not as an obligatory group-living 

animal. 

Conservation implications:

Our study builds a robust spatial model to elaborate seasonal shifts in ungulates densities over

a large spatio-temporal scale. This study also highlights the species-specific and season-

specific roles of environment variables in defining the density gradients. Spatial distribution 

maps elaborating the density gradients between seasons is useful in communicating the 

results to non-experts and conservation managers. The results can be used to plan habitat 

management including the opportunity for increasing ungulate abundance as the current 

requirement demands increasing prey abundance as the large predator population is showing 

spill-over effects in the reserve. The spatially explicit patterns also serve the options to devise

18

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

18



appropriate monitoring strategies and managing the habitats for these species, while also 

planning tourism opportunity suitably with minimal effect on the conservation values of the 

reserve. 
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Species Season Detection 

function

Detection 

probability

Response Terms (p-value < 

0.01)

Dispersion

parameter

Deviance

explained

Estimated 

abundance

CV

S
am

b
ar

Summer(n=131) Half-Normal 

with cosine 

adjustments

0.32 Quasi-Poisson s(x,y, 28.5), 

s(distedge, 13.6), 

s(TRI, 5.66)

1.09 28.6% 6486937 0.14

Winter(n=172) Hazard-rate 

with no 

adjustment

0.33 Poisson s(x,y, 21.1), 

s(distedge, 9.04), 

s(dem, 5.09), s(ndvi, 

3.76)

0.91 23.7% 5817690.8 0.11

N
ilg

ai

Summer(n=93) Half-Normal 

with cosine 

adjustment

0.28 Poisson s(x,y, 21.5), 

s(distedge, 6.68), 

s(TRI, 3.01), s(water,

3.05), s(dem, 4.93)

1.02 30.2% 4270782 0.18

2828



Winter(n=138) Hazard-rate 

with no 

adjustment

0.26 Poisson s(x,y, 25.7), 

s(distedge, 1), 

s(water, 6.42), s(TRI,

2.55), s(ndvi, 1)

0.76 20.8% 4176892 0.21

C
h

it
al

Summer(n=94) Uniform 

with cosine 

adjustment

0.39 Poisson s(x,y, 20.3), 

s(distedge, 7.23), 

s(TRI, 6.8), s(dem, 

5.2)

1.73 29.1% 7519884 0.11

Winter(n=103) Hazard-rate 

with cosine 

adjustment

0.28 Poisson s(x,y, 20.6), 

s(distedge, 7.13), 

s(dem, 2.33), s(TRI, 

7.05), s(ndvi, 1)

0.71 37.1% 4866733 0.15

W
ild

 p
ig

Summer (n=68) Hazard-rate 

with cosine 

adjustment

0.32 Poisson s(x,y, 23.8), 

s(distedge, 5.26), 

s(TRI, 3.41), s(water,

6.57)

0.73 37.2% 2305481 0.20

2929



Winter (n=45) Hazard-rate 

with cosine 

adjustment

0.32 Tweedie s(x,y, 15.2), s(TRI, 

1.96)

0.73 21% 2138475 0.22

Table 2: Model parameters for detection function and Generalised additive modelling of spatial model for each species in each season.
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Figure 2: Generalised response curve of significant predictor variable with 95% confidence interval (blue fills) for each species in each season.
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Figure 3: Map of Sambar a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Summer season.

33

597

598

599

600

33



Figure 4: Map of Sambar a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Winter season.
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Figure 5: Map of Nilgai a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Summer season.
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Figure 6: Map of Nilgai a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Winter season.
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Figure 7: Map of Chital a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Summer season.
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Figure 8: Map of Chital a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model the for Winter season.
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Figure 9: Map of Wild pig a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Summer season.
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Figure 10: Map of Wild pig a) predicted density (individuals / 4hactares) and b) coefficient of variations 

calculated from both detection function and GAM parameters of the model for the Winter season
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Appendix: A

Density Surface Modelling: Data exploration and Model selection procedure

A. Data exploration: 

Data exploration was performed in R program using package ‘lattice’ (Sarkar, 2008) and 

‘latticeExtra’ (Sarkar & Andrews, 2019) packages following Zuur, Ieno, & Elphick (2010). 

Cleveland dot plots were used to inspect predictor variables for extreme observations. Pair 

plot and VIF values were used to assess collinearity. Multi-panel scatterplots with LOESS 

smoother were used to visualize relationships between predictor and response variables. Data 

were checked for zero-inflation and correlation structures. We found non-linear relationships 

between predictor and response variable with no correlation structure. Hence, we used 

Generalized Additive Modelling (GAM) (Wood, 2006, 2017) approach in Density Surface 

Modelling (DSM)(Miller, Burt, Rexstad, & Thomas, 2013) framework. Cluster size for each 

species in both seasons along with the transect lines were overlaid on the predictor variables 

to visualize the spatial distribution of observations.

B. Model checking and selection:

Models were selected based on restricted maximum likelihood (REML) scores, deviance 

explained. We chose REML score over generalised cross validation and unbiased risk 

estimators because REML provides a fitting criteria with a more pronounced optima that 

avoids some problems with parameter estimation (Miller et al., 2013). However, we did not 

rely solely on REML score and deviance explained due to their sensitivity, though both 

values played an important role in our model selection process. We calculated dispersion 

parameter to understand the mean-variance relationship explained by the model. We check 

the models with standard GAM diagnostic plots and smoothing parameter estimation 

convergence information (Wood, 2017). The standard GAM diagnostic plots correspond to 

the various residual plots visualising if residual patterns remained in the model. Slight 
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departure from the assumed distributions were not considered problematic if dispersion 

parameter was accurate (Augustin, Sauleau, & Wood, 2012; Heyde, 1997). 

We further investigated our model for data independency due to model misfit by plotting 

residuals versus each covariate in the model and also versus each covariate not in the model. 

Any patterns in these plots were considered dependency due to model misfit caused by 

covariate and model were corrected for the variation. 

When models were fitted with multiple smooth we check our model for concurvity. 

Concurvity measures how well one smooth term can be explained by some combination of 

the other smooth terms in the model (Pedersen, Miller, Simpson, & Ross, 2019). We removed

one of the two variables if the two have concurvity value >0.8. We check our model for 

influential observations by plotting cook’s distance and influential observations were 

removed. Spatial auto-correlation was checked by using semi-variogram and residual box 

plot for each sampling sites. Our data did not show any correlation structure therefore, we 

stick to generalised additive modelling and did not incorporated generalised additive mixed 

modelling. We again performed GAM with model residuals and covariates to check if there is

any residual structure left in the model. Patterns were considered systematic if we got 

smoothers p-value significant and in such scenario, main model was rerun with adjusted 

parameters.
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Augustin, N. H., Sauleau, E.-A., & Wood, S. N. (2012). On quantile quantile plots for 

generalized linear models. Computational Statistics & Data Analysis, 56(8), 2404–2409.
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Figure 11: Maps showing all predictor variable for Winter and Summer season across study area. Here, water_sum (Distance from the water source in Summer,
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Appendix: B
Histograms of fitted detection function using Distance sampling methods

Figure 2: Fitted detection function using Distance sampling method for all four species in both seasons; 
Sambar a) Summer, b) Winter; Nilgai c) Summer, d) Winter; Chital e) Summer, f) Winter; Wild pig g) 
Summer, h) Winter. x-axis shows detection probability and y-axis shows observed perpendicular distances.
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