REFERENCES
[1] O. B. Tysnes and A. Storstein, “Epidemiology of Parkinson’s disease,” J. Neural Transm. , vol. 124, no. 8, pp. 901–905, 2017, doi: 10.1007/s00702-017-1686-y.
[2] A. AlDakheel, L. V. Kalia, and A. E. Lang, “Pathogenesis-Targeted, Disease-Modifying Therapies in Parkinson Disease,” Neurotherapeutics , vol. 11, no. 1, pp. 6–23, 2014, doi: 10.1007/s13311-013-0218-1.
[3] S. Papapetropoulos, N. Adi, J. Ellul, A. A. Argyriou, and E. Chroni, “A prospective study of familial versus sporadic Parkinson’s disease,” Neurodege , vol. 4, no. 6, pp. 424–427, 2007.
[4] H. Y. Xie, Y. Cui, F. Deng, and J. C. Feng, “Connexin: A potential novel target for protecting the central nervous system?,”Neural Regen. Res. , vol. 10, no. 4, pp. 659–666, 2015, doi: 10.4103/1673-5374.155444.
[5] A. Kawasaki et al. , “Modulation of connexin 43 in rotenone-induced model of Parkinson’s disease,” Neuroscience , vol. 160, no. 1, pp. 61–68, 2009, doi: 10.1016/j.neuroscience.2009.01.080.
[6] E. Ahmadian, A. Eftekhari, M. Samiei, S. Maleki Dizaj, and M. Vinken, “The role and therapeutic potential of connexins, pannexins and their channels in Parkinson’s disease,” Cell. Signal. , vol. 58, no. February, pp. 111–118, 2019, doi: 10.1016/j.cellsig.2019.03.010.
[7] S. Kurtenbach, S. Kurtenbach, and G. Zoidl, “Emerging functions of pannexin 1 in the eye,” Front. Cell. Neurosci. , vol. 8, no. September, pp. 1–12, 2014, doi: 10.3389/fncel.2014.00263.
[8] A. Baranova et al. , “The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins,”Genomics , vol. 83, no. 4, pp. 706–716, 2004, doi: 10.1016/j.ygeno.2003.09.025.
[9] A. Ray, G. Zoidl, P. Wahle, and R. Dermietzel, “Pannexin expression in the cerebellum,” Cerebellum , vol. 5, no. 3, pp. 189–192, 2006, doi: 10.1080/14734220500530082.
[10] A. Moretto and C. Colosio, “The role of pesticide exposure in the genesis of Parkinson’s disease: Epidemiological studies and experimental data,” Toxicology , vol. 307, pp. 24–34, 2013, doi: 10.1016/j.tox.2012.11.021.
[11] J. Xu, L. Chen, and L. Li, “Pannexin hemichannels: A novel promising therapy target for oxidative stress related diseases,”J. Cell. Physiol. , vol. 233, no. 3, pp. 2075–2090, 2018, doi: 10.1002/jcp.25906.
[12] A. C. Maritim, R. A. Sanders, and J. B. Watkins, “Diabetes, oxidative stress, and antioxidants: A review,” J. Biochem. Mol. Toxicol. , vol. 17, no. 1, pp. 24–38, 2003, doi: 10.1002/jbt.10058.
[13] J. K. Andersen, “Oxidative stress in neurodegeneration: Cause or consequence?,” Nat. Rev. Neurosci. , vol. 10, no. 7, p. S18, 2004, doi: 10.1038/nrn1434.
[14] S. Penuela, R. Gehi, and D. W. Laird, “The biochemistry and function of pannexin channels,” Biochim. Biophys. Acta - Biomembr. , vol. 1828, no. 1, pp. 15–22, 2013, doi: 10.1016/j.bbamem.2012.01.017.
[15] G. Zoidl, M. Kremer, C. Zoidl, S. Bunse, and R. Dermietzel, “Molecular diversity of connexin and pannexin genes in the retina of the zebrafish danio rerioc,” Cell Commun. Adhes. , vol. 15, no. 1–2, pp. 169–183, 2008, doi: 10.1080/15419060802014081.
[16] S. Kurtenbach et al. , “Pannexin1 Channel Proteins in the Zebrafish Retina Have Shared and Unique Properties,” PLoS One , vol. 8, no. 10, pp. 1–19, 2013, doi: 10.1371/journal.pone.0077722.
[17] O. Bandmann and E. A. Burton, “Genetic zebrafish models of neurodegenerative diseases,” Neurobiol. Dis. , vol. 40, no. 1, pp. 58–65, 2010, doi: 10.1016/j.nbd.2010.05.017.
[18] V. Surendra, U. Raj Sharma, D. Goli, and S. Reddy, “Behavioral Studies of Different Drugs Using Zebrafish as a Model,” Int. J. Pharmagenes. , vol. 2, no. 1, pp. 75–82, 2011.
[19] A. V. Kalueff and J. M. Cachat, x , Illustrate. Humana Press, 2011.
[20] A. Khalili, A. R. Peimani, N. Safarian, K. Youssef, G. Zoidl, and P. Rezai, “Phenotypic chemical and mutant screening of zebrafish larvae using an on-demand response to electric stimulation,”Integr. Biol. , vol. 11, no. 10, pp. 373–383, 2019.
[21] W. K. Alderton, “Zebrafish : An in vivo model for the study of neurological diseases,” vol. 4, no. 3, pp. 567–576, 2018.
[22] Y. Xi, S. Noble, and M. Ekker, “Modeling neurodegeneration in zebrafish,” Curr. Neurol. Neurosci. Rep. , vol. 11, no. 3, pp. 274–282, 2011, doi: 10.1007/s11910-011-0182-2.
[23] F. M. Richards et al. , “Validation of the use of zebrafish larvae in visual safety assessment,” J. Pharmacol. Toxicol. Methods , vol. 58, no. 1, pp. 50–58, 2008, doi: 10.1016/j.vascn.2008.04.002.
[24] K. Howe and A. Et, “The zebrafish reference genome sequence and its relationship to the human genome.,” Nature , vol. 496, no. 7446, pp. 498–503, 2013, doi: 10.1038/nature12111.
[25] J. R. Fetcho and K. S. Liu, “Zebrafish as a model system for studying neuronal circuits and behavior,” Ann. N. Y. Acad. Sci. , vol. 860, pp. 333–345, 1998, doi: 10.1111/j.1749-6632.1998.tb09060.x.
[26] O. V Anichtchik, J. Kaslin, N. Peitsaro, M. Scheininà, and P. Panula, “Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” J. Neurochem , vol. 88, pp. 443–453, 2004, doi: 10.1046/j.1471-4159.2003.02190.x.
[27] H. A. Burgess and M. Granato, “Modulation of locomotor activity in larval zebrafish during light adaptation,” J. Exp. Biol. , vol. 210, pp. 2526–2539, 2007, doi: 10.1242/jeb.003939.
[28] T. Bartolini, V. Mwaffo, S. Butail, and M. Porfiri, “Effect of acute ethanol administration on zebrafish tail-beat motion,”Alcohol , vol. 49, no. 7, pp. 721–725, 2015, doi: 10.1016/j.alcohol.2015.06.004.
[29] O. L. Son, H. T. Kim, M. H. Ji, K. W. Yoo, M. Rhee, and C. H. Kim, “Cloning and expression analysis of a Parkinson’s disease gene, uch-L1, and its promoter in zebrafish,” Biochem. Biophys. Res. Commun. , vol. 312, no. 3, pp. 601–607, 2003, doi: 10.1016/j.bbrc.2003.10.163.
[30] H. Matsui, Y. Taniguchi, H. Inoue, K. Uemura, S. Takeda, and R. Takahashi, “A chemical neurotoxin, MPTP induces Parkinson’s disease like phenotype, movement disorders and persistent loss of dopamine neurons in medaka fish,” Neurosci. Res. , vol. 65, no. 3, pp. 263–271, 2009, doi: 10.1016/j.neures.2009.07.010.
[31] Y. Zhang et al. , “Rescue of Pink1 Deficiency by Stress-Dependent Activation of Autophagy,” Cell Chem. Biol. , vol. 24, no. 4, pp. 471-480.e4, 2017, doi: 10.1016/j.chembiol.2017.03.005.
[32] S. Bretaud, S. Lee, and S. Guo, “Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease,”Neurotoxicol. Teratol. , vol. 26, no. 6 SPEC. ISS., pp. 857–864, 2004, doi: 10.1016/j.ntt.2004.06.014.
[33] C.-W. Feng et al. , “Effects of 6-Hydroxydopamine Exposure on Motor Activity and Biochemical Expression in Zebrafish (Danio Rerio ) Larvae,” Zebrafish , vol. 11, no. 3, pp. 227–239, 2014, doi: 10.1089/zeb.2013.0950.
[34] O. Anichtchik, H. Diekmann, A. Fleming, A. Roach, P. Goldsmith, and D. C. Rubinsztein, “Loss of PINK1 Function Affects Development and Results in Neurodegeneration in Zebrafish,” J. Neurosci. , vol. 28, no. 33, pp. 8199–8207, 2008, doi: 10.1523/JNEUROSCI.0979-08.2008.
[35] D. Sheng et al. , “Deletion of the WD40 domain of LRRK2 in zebrafish causes parkinsonism-like loss of neurons and locomotive defect,” PLoS Genet. , vol. 6, no. 4, 2010, doi: 10.1371/journal.pgen.1000914.
[36] A. R. Peimani, G. Zoidl, and P. Rezai, “A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae,”Biomicrofluidics , vol. 12, no. 1, pp. 1–15, 2018, doi: 10.1063/1.5016381.
[37] A. Khalili, E. van Wijngaarden, K. Youssef, G. Zoidl, and P. Rezai, “Designing microfluidic devices for behavioral screening of multiple zebrafish larvae,” Biotechnol. J. , vol. 17, no. 2100076, pp. 1–11, 2021, doi: 10.1002/biot.202100076.
[38] A. Khalili, E. van Wijngaarden, G. R. Zoidl, and P. Rezai, “Zebrafish Larva’s Response to Electric Signal: Effects of Voltage, Current and Pulsation for Habituation Studies,” Sensors Actuators A. Phys. , vol. 332, no. 113070, pp. 1–10, 2021.
[39] A. Khalili, E. van Wijngaarden, G. R. Zoidl, and P. Rezai, “Multi-phenotypic and bi-directional behavioral screening of zebrafish larvae,” Integr. Biol. , vol. 12, no. 8, pp. 211–220, 2020.
[40] N. Safarian, P. Whyte-Fagundes, C. Zoidl, J. Grigull, and G. Zoidl, “Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling,” Sci. Rep. , vol. 10, no. 1, p. 9538, 2020, doi: 10.1038/s41598-020-66378-y.
[41] V. Cenedese, W. De Graaff, T. Csikós, M. Poovayya, G. Zoidl, and M. Kamermans, “Pannexin 1 is critically involved in feedback from horizontal cells to cones,” Front. Mol. Neurosci. , vol. 10, no. December, pp. 1–13, 2017, doi: 10.3389/fnmol.2017.00403.
[42] A. Cronin and M. Grealy, “Neuroprotective and Neuro-restorative Effects of Minocycline and Rasagiline in a Zebrafish 6-Hydroxydopamine Model of Parkinson’s Disease,” Neuroscience , vol. 367, pp. 34–46, 2017, doi: 10.1016/j.neuroscience.2017.10.018.
[43] M. W. Pfaffl, “Relative expression software tool (REST(C)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR,” Nucleic Acids Res. , 2002, doi: 10.1093/nar/30.9.e36.
[44] D. Ryczko and R. Dubuc, “Dopamine and the brainstem locomotor networks: From lamprey to human,” Frontiers in Neuroscience . 2017, doi: 10.3389/fnins.2017.00295.
[45] A. Carlsson, “On the neuronal circuitries and neurotransmitters involved in the control of locomotor activity,” 1993.
[46] S. Crespo Yanguas et al. , “Pannexin1 as mediator of inflammation and cell death,” Biochim. Biophys. Acta - Mol. Cell Res. , vol. 1864, no. 1, pp. 51–61, 2017, doi: 10.1016/j.bbamcr.2016.10.006.