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Abstract

Detectors for the passive acoustic monitoring (PAM) of bats have become invaluable research tools,

especially for surveys, monitoring programs and environmental impact assessments. However, little

is known about the small-scale (within-site) variability of PAM recordings and especially about the 

influence of detector identity and distance, and of microphone orientation on the statistical 

confidence of activity estimates and species detection probabilities. We recorded vocalizations in a 

homogeneous meadow with no trees, bushes or tall ground vegetation. Eight detector pairs were 

arranged in an octagon, the two detectors of a pair facing in opposite directions. The call sequences 

of eight species were analyzed. The deviations of individual detectors from the overall mean were 

generally small, but large outliers occurred both at the file (temporal resolution: five seconds) and 

the night (resolution: one night) scale. All devices detected the main temporal patterns of calling 

activity in the study period, but three devices deviated systematically from the others and the 

sensitivity of two devices deteriorated over time. Detector orientation and distance were significant,

yet small, sources of variability. The probability of detecting the presence of species correlated with

species’ activity and ranged on average from 100 % for bats in total to only 18.8 % for the least 

active Myotis myotis. The sample sizes necessary to achieve 90 % statistical confidence of activity 

estimates ranged from 7 to 16 detectors and from 5 to 12 nights, depending on taxon. Increasing the 

number of nights resulted in much higher confidence than increasing the number of detectors. We 

recommend PAM studies of bats to frequently calibrate detector sensitivity; deploying at least three 

detectors per study site; sampling longer periods instead of deploying more detectors; randomly 

assigning and swapping detectors among sites, treatments, strata, etc.; and statistically scrutinizing 

the sample data, especially for outliers.

Keywords: Chiroptera, survey design, sampling optimization, detection probability, bat detector, 

microphone

2

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49



1 Introduction 

Passive acoustic monitoring (PAM, Stowell & Sueur 2020) units autonomously record and store 

animal sounds to a tape or digital file. They offer a convenient way to measure animal activity in 

the field: using these units is often more time and cost efficient than alternative assessment methods

because, once assembled, operating personnel is not required for their performance. When deployed

for a prolonged period, the devices can sample vast amounts of vocalizations, and thus have a high 

probability of detecting the presence of a study taxon. PAMs are used for a broad variety of faunal 

groups, notably birds (e.g. Darras et al. 2019, Frommolt 2017), anurans (e.g. Duarte et al. 2019, 

Madalozzo et al. 2017), even invertebrates (e.g. Görres & Chesmore 2019, Mankin et al. 2011), and

most often for bats (Sugai et al. 2019). 

Beginning with low-tech applications in the mid-1990s (e.g. Krusic et al. 1996), PAM quickly rose 

to popularity among batworkers to detect, quantify the activity and calculate the density of their 

elusive objects (Milchram et al. 2019). PAM is especially valuable for remote areas and large-scale 

studies where mist-netting and telemetry are unable to reach robust conclusions over large spatial 

scales (Kaiser & O'Keefe 2015). Thus, acoustic detectors have today become the "new normal" 

(Nocera et al. 2019) in bat monitoring programs and related applications, not least because modern 

software packages now also help to (semi-) automatically process and analyze the often quickly 

amassed volume of sound files (see Fraser et al. 2020 for a current overview). 

However, PAM detectors sample only a small fraction of the acoustical activity in their 

surroundings (Adams et al. 2012, Britzke et al. 2013). A growing body of literature provides 

empirical evidence that the size of this fraction depends on the interplay between the technical 

specifications of the equipment, the modalities of detector field deployment, and the call 

characteristics of the bat community under study. 

For example, the probability of recording echolocation calls of specific frequencies may vary 

significantly between detector brands (Adams et al. 2012, Kaiser & O'Keefe 2015), and even 

between detectors of the same brand and type, if not properly calibrated (Larson and Hayes 2000). 
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Kaiser and O'Keefe (2015), O'Keefe et al. (2014), and Weller and Zabel (2002) indicated that 

detector position relative to vegetation clutter or to flyways may affect the quantity and probability 

of bat species detection. Kubista & Bruckner (2017) found less recording variability among three 

detectors simultaneously deployed in sites with no woody vegetation than in sites with dense 

vegetation structure. Height of detectors above ground and orientation relative to the horizontal axis

are further often reported influencing factors on the number of recorded call sequences and species 

(e.g. Britzke et al. 2010, Menzel et al. 2005, Staton & Poulton 2012, Weller and Zabel 2002). 

Altogether, many intricacies of detector deployment are critical for obtaining unbiased estimates of 

bat calling activity at monitoring sites, and yielding rigorous data from PAM campaigns is much 

less straightforward than it may at first seem.

A different, but closely related, question concerns sample size: how many PAM units, sites, or 

nights are needed to adequately sample the bat population or community under study? Here, PAM 

needs to balance the trade-off between high replicability (many sites investigated) and reliability 

(sites, and potentially sub-plots and strata, are investigated intensely to get a detailed picture of the 

resident fauna, Fischer et al. 2009, Froidevaux et al. 2014, Law et al. 2015). Since high-quality bat 

detectors are still expensive and the number of available devices is limited in many projects, we 

suspect that batworkers may sometimes be tempted to sacrifice reliability for replicability, 

especially in environmental impact assessments and other practical applications. 

In the research presented here, we ignored between-site variability to instead focus on the sources of

within-site variability of bat call activity. With an intentionally simple experimental setting, we 

aimed at providing a baseline for PAM studies operating in more complex situations and 

implementing more complex designs. We excluded potential effects of detector brand, vegetation 

clutter, and deployment height and angle, which we feel are well enough covered in literature. 

Rather, unshielded detectors of the same manufacturer and type were set in a spatially 

homogeneous hay meadow with no trees, bushes or tall ground vegetation. No sub-plots or strata 

were designated within the site. We placed eight pairs of devices in an octagon of 13 m diameter, 
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with the devices of each pair facing in opposite directions (inwards and outwards of the octagon). 

This setup allowed us to assess the effects of (i) varying sensitivity among detectors, (ii) the 

horizontal orientation (direction) of microphones, and (iii) the spatial placement of detectors (= the 

distance between each two detectors), and (iv) temporal patterns on the variability of activity 

recordings and on the detection probability of species. Finally, we assessed the influence of sample 

size (number of nights sampled and number of detectors, respectively) on the statistical confidence 

of calling activity estimates at the site scale.

2 Materials and Methods

2.1 Study Site and Experimental Setup

The experiment was conducted in an enclosure fenced off within a 6 ha meadow situated in the deer

compound of the Wildlife Ecology Research Institute of the University of Veterinary Medicine, 

Vienna, Austria (16°16´ E, 48°13´ N). The meadow was surrounded by mature oak (Quercus spp.) 

and European beech (Fagus sylvatica) forest. 

We deployed ultrasound detectors on 2.5 m high tent poles in a regular octagon. The vertices of the 

octagon corresponded with the cardinal directions of the compass rose and lay 6.5 m from the 

center and at a minimum distance of 4.96 m from each other (Fig. 1). During the recording period, 

the poles were not moved, thus excluding any data variability due to translocation.

Each pole carried a detector pair that consisted of two devices attached together back to back. One 

detector of each pair faced towards the octagon’s center, the other in the opposite (outward) 

direction. The detector positions were randomly switched each night, making sure each device held 

each position only once. To prevent the detector pairs from swinging on the pole and thus changing 

direction, they were secured with wire. The detectors were not inclined relative to the horizontal, 

and covered with artificial fur to avoid ultrasound reflections.
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2.2 Detector Specifications and Settings 

We used 16 automated devices (batcorders, ecoObs GmbH, Nürnberg, Germany, 

http://www.ecoobs.de) of two different generations (1, 2.0) for recording and storing bat call 

sequences. The results derived from the different generations are supposed not to differ, since they 

use identical microphones and were checked and calibrated by the manufacturers prior to the study. 

Recordings were made using the default settings of the ‘Auto+Timer’ function (-27dB threshold 

level, 400 ms post trigger, real time recordings at 500kHz and 16bit; see Adams et al. 2012 for a 

comparison of batcorder specifications and performance with other popular devices). 

The devices were deployed during 16 nights with a good weather forecast (minimum night 

temperature > 12°C, no rain, wind ≤ 4 Beaufort) between May and July, 2012. All recordings were 

started at 6 pm and ended at 7 am the following day to include possible activity before sunset and 

after sunrise. To ensure comparability among the recorded vocalizations, all detectors were time 

synced every recording night to the nearest second.

2.3 Call identification and selection of taxa for analysis

The recorded files were transferred to a computer and analyzed with bcAdmin 2.18 and BatIdent 

1.03 (ecoObs, Nürnberg, Germany). Supposed call sequences of zero or excessive length (ratio 

sequence length [s] / number of calls < 0.5) were removed after manual inspection because they did 

not contain any or only orthopteran vocalizations.

Species-specific analyses were done using verified species only. A species was regarded verified 

after manually validating all its call sequences (see Fritsch & Bruckner 2014 for details). The data 

of each night and detector were inspected blindly and in random order to ensure that the operator's 

decisions were unbiased with respect to these factors. The validations were performed by the 

second author.

Due to the plasticity of orientation calls, the acoustical identification of many bat species is 

questionable and has been profoundly criticized (Barclay 1999, Ratcliffe and Jakobson 2018, Russo
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& Voigt 2016, Rydell et al. 2017). We therefore restricted the data analysis to a set of phonic 

groups (operational taxonomic units = OTUs) the calls of which could be identified with high 

confidence. The very similar sequences of Pipistrellus kuhlii (Kuhl, 1817) and P. nathusii 

(Keyserling & Blasius, 1839) were pooled and labelled "P. kuhlii/nathusii". For the same reason, 

the sequences of Eptesicus nilssonii (Keyserling & Blasius, 1839), E. serotinus (Schreber, 1774), 

Nyctalus leisleri (Kuhl, 1817), N. noctula (Schreber, 1774), and Vespertilio murinus Linnaeus, 1758

were pooled to form the "nyctaloid" OTU.

2.4 Statistical Analyses

We used the length of the call sequences (= length of passes, in seconds) as measure of the 

recording performance of bat detectors. To cater for any inaccuracies of the time syncing of the 

detectors, the sequences were summed in 5-seconds intervals. Because of incorrect labelling of 

recordings in the field, we had to delete one night from the data set, hence the data analysis 

comprised 15 recording nights (15 nights x 16 detectors = 240 detector nights in total).

If applicable, data variability was expressed on a fine and a coarse temporal scale: the fine scale had

a minimum resolution of seconds (= the individual files of the recordings, summed in 5-seconds 

intervals, dubbed "file scale" in the following) and aimed at investigating the sources of data 

variability. The coarse scale was that of sampling nights (dubbed "night scale") and aimed at 

providing recommendations for the practice of bat work. 

We conducted the following analyses:

(i) To characterize the influence of detector sensitivity on data variability, we computed Δ call 

sequence length as the absolute difference in call sequence length between every detector and the 

arithmetic mean of all 16 simultaneously recording detectors. We plotted frequency histograms of 

this measure, pooling the data of all sampling nights, and expected the shape of the histograms to 

correlate with the accuracy of the detectors: wide histograms for large recording differences 
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between individual devices and their average, and narrow ones for small differences. Bin width of 

these and the following histograms was manually set to best display the data, using the Sturges and 

Freedman-Diaconis rules as a guide (procedures nclass.Sturges() and nclass.FD() in base R).

 (ii) To assess the effects of detector orientation (that is, microphones pointing in- or outwards of 

the octagon), Δ call sequence length was calculated as the absolute difference in call sequence 

length between two detectors deployed in the same position of the octagon but oriented in opposite 

directions, and histograms were produced from the results. Prior to the analysis, double-zero 

pairings (that is, neither of the detectors of a position pair had recorded a file) were removed from 

the data set so as not to confound them with pairs recording files of the same length.

 (iii) To investigate the influence of the spatial detector distance on data variability at the file scale, 

we computed Δ call sequence length as the absolute difference in call sequence length between each

two detectors deployed at the eight positions of the octagon. Distances varied between 4.96 and 

13.00 m, and the data of the distances 9.18 and 9.19 m, and 12.98 and 13.00 m, respectively, were 

pooled. The calculations were restricted to inwardly directed detectors (n = 8) to reduce any effects 

of microphone orientation on the results. Double-zero pairings were removed from the data set prior

to the calculations. 

(iv) To test the influences of the experimental factors, we computed linear mixed effects models 

(LMM, gaussian family) (a) for the factors detector and orientation, and (b) for spatial distance. In 

standard R (Wilkinson-Rogers) notation, the detector/orientation models had the form:

length sequence ~ detector + orientation + (1|time interval) + (1|position/orientation) (1)

thus in their random parts accounting for the longitudinal structure of the study and for the nested 

position of orientation within position (= the octagon vertices). Inevitably, the models had to ignore 

potential distance effects (but these were anyway small, see below). In addition, the total, nyctaloid 

and P. kuhlii/nathusii models each included an overdispersion and zero inflation term (dispformula 
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= detector + orientation, ziformula = ~.), while the models for P. pipistrellus and H. savii included a

zero inflation term only, and the model for B. barbastellus included no additional terms. We failed 

to find an appropriate model for the detector/orientation effects of the M. myotis data, presumably 

because of the low number of records for this species. Likewise, models testing potential 

deterioration of microphone sensitivity over time (by including detector:night as a fixed effect) did 

not converge, hence we had to examine this aspect with graphical methods only.

The detector/orientation models had the form:

Δ sequence length ~ distance + (1|time interval) + (1|detector 1) + (1|detector 2) (2)

where "detector" referred to the two devices each used for calculating Δ sequence length.

The models were fitted using function glmmTMB() in package glmmTMB 1.0.1 (Brooks et al. 

2017). During model development, we selected between alternative models by running likelihood 

ratio tests (function anova () in base R)and by comparing AIC (Akaike information criterion) and 

deviance values. Model residuals and homoscedasticity of factor levels were inspected using the 

diagnostic tools of package DHARMa 0.3.2.0 (Hartig 2020), and were found to be adequate. We 

tested for the significance of fixed effects (the experimental factors) using likelihood ratio tests 

between null (comprise random part only) and final (comprise random and fixed part) models.

The marginal importance of factor distance was calculated using r2_nakagawa() in package 

performance 0.4.5 (Lüdecke et al. 2020, Nakagawa et al. 2017). This was not possible for the 

detector and orientation models because, to the best of our knowledge, there is as yet no accepted 

way to calculate the marginal importance of glmmTMB models including zero inflation and 

overdispersion terms. As a workaround, we calculated the difference between the conditional 

coefficients of determination R2 of the final and the null models using r2_xu() in package 

performance 0.4.5 (Lüdecke et al. 2020, Xu 2003).
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(v) For all nights with at least one call sequence registered by any of the devices, we calculated the 

fraction of devices with a record and used this as a proxy for the detection probability of the OTUs 

under investigation. 

(vi) To characterize the influence of sample size (number of nights sampled or number of detectors 

deployed in parallel) on the statistical confidence of calling activity estimates, we bootstrapped 

(resampled with replacement) the file scale data 9,999 times with increasing number of nights (1 to 

15) and of devices (1 to 16). Thus, there were 9,999 replicates of each sample size for both night 

and device. Assuming that researchers would usually average the activity recorded in multiple 

nights or with multiple devices, we calculated the median activity of each bootstrapped sample size,

and used the 95 % interquantil range (the range between the 5 % and 95 % quantil) around the 

medians as a measure of confidence. Interquantil ranges are distribution-free and were selected 

because we did not find a frequency distribution which adequately fitted the bootstrapped data of all

sample sizes and OTUs. As a breakpoint from which an increase in sample size would have only 

marginally increased statistical confidence, we arbitrarily set 90 % of the best available activity 

estimate - that is, the narrowest interquantil range.

All analyses were computed and figures produced in R 3.6.2 (R Core Team 2019) under Mac OS X 

Catalina 10.15.5.

3 Results

3.1 Data overview

15,502 s of vocalizations were recorded during this study, 12,859 s of which were from bats. The 

software automatically identified 21 bat species and genera, respectively. From these, we selected 8 

operational taxonomic units (OTUs) for further analysis: total (= sum of all bat vocalizations; 

12,859 s of calls), nyctaloid (an amalgamation of the software output for Eptesicus nilssonii, E. 

serotinus, Nyctalus leisleri, N. noctula, and Vespertilio murinus; 7,432 s), Pipistrellus pygmaeus 
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(1,022 s), P. kuhlii/nathusii (736 s), P. pipistrellus (434 s), Hypsugo savii (405 s), Barbastella 

barbastellus (85 s), and Myotis myotis (35 s). Thus, the nyctaloids alone accounted for 57.8 % of 

total call sequence length. 

Activity differences between the selected OTUs and between nights contributed most to the 

variability in the data set. The frequency of occurrence of OTUs during the study period differed 

widely and ranged from highly common (total: 100 %, nyctaloids: 90.8 % of the detector nights 

with recordings) to rare (B. barbastellus: 17.9 %, M. myotis: 6.3 %) (Figure 4). Total nightly 

activity varied considerably, with an approximately 18-fold difference between the least and the 

most active night (nights 14 and 5, respectively). However, this pattern was dominated by the 

nyctaloid species, and the other OTUs exhibited different peaks of activity in the study period 

(Figure 4).

3.2 Variability among detectors - overall patterns (file and night scale)

On the file scale, the deviations of individual detectors from the overall means of all 16 detectors 

were generally small. The frequency distributions of absolute Δ sequence length were strongly 

skewed to the right - that is, large deviations occurred, but only rarely (Figure 2). On average, 91.6 

% of the detectors did not deviate (Δ = 0 s) or deviated less than one second (Δ < 1 s) from the 

overall means (range: 84.4 % M. myotis to 97.0 % B. barbastellus). The 95 % data quantile was 

between one and two seconds and the 99 % quantile close to two seconds for most OTUs; however, 

outlier Δ values reached approximately three to six seconds (Figure 2).

A very similar picture emerged at the night scale in that detectors generally deviated little from the 

overall means. The frequency distributions of Δ absolutes were again heavily right-skewed and 

long-tailed for all OTUs, with outlying values far at their extreme ends (Figure 3). 

To better understand the contribution of individual detectors to the tails of the frequency 

distributions, we plotted, at the file scale and for all detectors and OTUs, the absolutes of Δ 

exceeding the 95 % data quantile. A few devices stood out here, for example detector 83 which 
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generated many extreme values in the total and nyctaloid data, and detector 40 which contributed 

conspicuously little to the tails of all other OTUs (Figure 5). But apart from these exceptions, the 

outliers in the long tails of the frequency distributions could not be attributed clearly to individual 

detectors.

3.3 Variability among detectors - temporal patterns (night scale)

All detectors performed comparably well in tracing the temporal peaks of calling activity on the 

night scale (e.g. the peak of total and nyctaloid activity in night 5, and that of H. savii in night 1; 

Figure 4A and F). There were, however, evident cases of high within-night variability among 

devices, for example night 10 in P. pygmaeus and night 16 in P. kuhlii/nathusii (Figure 4C and D). 

At least three devices deviated systematically from the nightly overall means: detectors 25 and 

especially 40 performed worse than average throughout the study and for all OTUs, and their 

sensitivity seemed to deteriorate, especially at the end of deployment. Detector 83, in contrast, 

recorded consistently above average (Figure 4).

3.4 Variability due to detector orientation (file scale)

On the file scale the majority of position-pair differences were small, and, averaged over all OTUs, 

73.0 % of the Δ sequence length values were below 1 s (range: 35.7 % M. myotis to 75.1 % 

nyctaloids). The frequency distributions of Δ exhibited a strong right skew for all OTUs, with the 

95 % quantiles mostly falling between two and three, and the 99 % quantiles between two and four 

seconds (Figure 6). 

3.5 Variability due to detector distance (file scale)

The medians of Δ sequence length of all OTUs became slightly larger with increasing spatial 

distance, while the shape of the frequency distributions of Δ remained almost unchanged (Figure 7).
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3.6 Mixed effects models (file scale)

Detectors were a significant source of call sequence variability in the models of all OTUs except of 

H. savii. Models containing both detector and orientation as fixed effects were significantly 

different from detector-only models for P. pygmaeus, but not for the other OTUs (Table 1). 

Irrespective of statistical significances, including detector and/or orientation added no more than 1.2

to 5.2 % to the coefficient of determination, as compared to the null models. These minor 

improvements were also reflected in small differences of AIC and deviance between null, detector-

only and detector/orientation models (Table 1). 

Distance was a significantly influential factor on Δ sequence length between neighboring detectors 

of all OTUs; however, the marginal coefficients of determination were even smaller than those of 

detector/orientation (range 0.2 to 2.6 % of total variability, Table #2). 

3.7 Detection probability of OTUs (night scale)

At the night scale, the probability of detecting the presence of bats varied widely among OTUs. It 

was 100 % for total bat activity, that is, if any one detector made a record during a study night, all 

other detectors also registered at least one call sequence. The probability was lower for all other 

OTUs: It dropped to an average (median) of 18.8 % for M. myotis and several minima were as low 

as 6.3 - 12.5 % (Figure 8). Across all nights and OTUs, the detection probability correlated 

monotonously with the sums of nightly activity (Kendall's  = 0.79), that is, more actively calling 

OTUs had a greater chance of being detected by any of the devices than rarer OTUs.

3.8 Sample size and confidence of activity estimates (night scale)

As a measure of data confidence, the 95 % interquantil ranges of bootstrapped call activity data 

decreased exponentially with increasing number of detectors for all OTUs. The same was true for 

the number of nights. Since the ends of all curves paralleled the abscissae, further increasing the 

sample sizes beyond the limits of this experiment (that is, more than 16 detectors / 15 nights) would
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not have resulted in higher statistical confidence (Figures 9, 10). The sample sizes necessary to 

achieve 90 % confidence varied widely among OTUs and approx. ranged from 7 - 16 detectors and 

5 - 12 nights. Increasing the number of nights resulted in much higher data confidence (narrower 

interquantil ranges) than increasing the number of detectors (compare the scales of the ordinates of 

Figures 9 and 10).

4 Discussion

In this study, we found only small sensitivity differences among the 16 detectors we ran in parallel; 

both at the file (seconds) and at the night scale, the lengths of recorded sequences showed no, or 

only slight, deviation. We did demonstrate a significant overall influence of detectors on data 

variability for most OTUs, however, we attribute these significances to the large number of 

observations (mostly 103 to 104, depending on model and OTU) and the high power of well-

constructed mixed effects models (Bolger 2015). Thus, the tests were likely to find even small 

contributions of the detectors to the overall variability in our data sets, and identify them as 

significant.

Whether researchers can cope with similarly small differences between detectors in future 

investigations will depend on their study aims and data. For example, little additional variability 

(the marginal R2 we found for "detector") may be acceptable for studies of environmental impacts 

of highways or wind parks, where the presence of particular species is more important for the 

assessment than their activity. Conversely, even little additional variability due to detector 

differences may contribute to missing the level of significance in experiments on the vocational 

biology of species or, in monitoring programs, to failing to detect temporal trends of endangered 

populations. 

We were unfortunately not able to quantitatively compare the marginal importance of the factor 

"detector" to that of "species" and "night" because tentative mixed effect models including all 
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experimental factors were overparameterized and failed to converge. However, inspecting the 

variability among species and among nights, we recognized the latter two factors as far more 

important for total data variability than the detectors. They are therefore also more urgent to 

consider when designing monitoring studies and when analyzing activity data (Hayes 1997, Skalak 

et al. 2012).

In contrast to the generally small among-detector variability, single call sequences were overly long

and produced extremely high values in our data set. These far outlying call sequences occurred in 

all investigated OTUs (except in the sparse data of the two very rare species) and reached maxima 

of 5.6 s (P. kuhlii/nathusii) and 6.7 s (total activity). We have also seen extremes of this magnitude 

in other studies we have conducted and suppose they are a common phenomenon in PAM data. 

Unfortunately, outlying values were not only apparent at the file, but also on the night scale. They 

were therefore not a result of just a few and random events of particularly high calling activity. 

They did not "average out" when, as in most studies, nightly sums were calculated before data 

analysis. Although we could not cleanly attribute the extreme values to individual detectors because

they occurred in the data of all devices, there was at least a tendency of several detectors to 

accumulate outlying values that then also showed up at the night scale.

Whatever the biological reasons for outliers in PAM data, they can introduce serious problems to 

the analysis because if not properly accounted for, they may strongly bias results and mislead 

conclusions. We therefore strongly recommend routinely including a thorough exploratory data 

analysis step in PAM studies, and especially inspecting outlier plots and frequency distributions of 

the data. If extreme values are found, the responsible call sequences need to be reviewed for 

correctness (orthopteran calls? two sequences wrongly added together?) and possibly removed. If 

found correct, the data sets should to be summarized using robust (distribution-free) statistics and/or

characterized with models that properly account for overdispersion (e.g. Bolker 2015, Brooks et al. 

2017).
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Similar to the differences among detectors, we detected only minor variability within most position 

pairs, and orientation was a significant factor in the model of only one of the investigated OTUs. 

This was expected since batcorder microphones are small and, as directionality increases with 

microphone size (Ratcliffe & Jakobson 2018), are considered omnidirectional (Adams et al. 2012). 

Despite this, a number of extremely high Δ values of several seconds magnitude emerged in our 

data, resulting from occasionally big differences between paired devices. 

In a study conducted in a forested area and using directional microphones, Weller & Zabel (2002) 

found great variation of bat detections due to microphone orientation relative to vegetation clutter. 

They concluded that standardizing orientation is a necessary requirement to make meaningful 

comparisons between sites possible. We agree in principle, but add that the orientation of 

omnidirectional microphones in open field settings without vegetation clutter may safely be 

ignored. We have not tested this, but assume that the same holds true for the inclination (angle to 

horizontal) of microphones, as long as the detectors are sufficiently raised from the ground.

With few exceptions, the temporal patterns of calling activity in the study period were more or less 

well traced by all 16 detectors. As above, we regard this adequate for monitoring situations where 

minor differences among devices do not have much impact for study outcomes. 

A more disturbing finding was that the sensitivity of two detectors seemed to decrease over time. 

This is especially remarkable since the devices were checked and calibrated by the manufacturer 

prior to exposure, were deployed for only a short time (16 nights in a 10-week period) and solely 

under conditions of fair weather. Thus, microphone damage due to precipitation, condensation or 

freezing could be excluded. No defects were apparent in the field, and we only recognized the 

malfunctions during data analysis. Likewise, detector and microphone age did not offer a plausible 

explanation, as both batcorders belonged to the newest generation used in this study (batcorder 2.0).

These findings corroborate Fischer et al. (2009) and Larson & Hayes (2000), who stressed the 

importance of calibration when using multiple detectors in parallel. Before this experiment, we 

were ignorant of the fact that microphone deterioration may occur so suddenly and without obvious 
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reason. In all preceding studies, we were confident in having our microphones inspected and 

calibrated once a year. But apparently, batworkers are well advised to additionally, and repeatedly, 

check devices themselves during the field season so as not to miss any signs of declining sensitivity.

Calibration once a year (as is sometimes recommended, e.g. Loeb et al. 2015) is evidently not 

enough. We do not advise against having detectors regularly checked by the manufacturers, but it is 

not advisable to trust that one service can equilibrate the recording performance of individual 

devices for a full field season. Standardized testing and calibrating equipment is available for this 

purpose, but unfortunately only for a segment of the detectors currently on the market.

At least for the spatial distances among detectors in this study (5 to 13 meters), we found 

significant, but only unsubstantial effects. Although small microphones generally have limited 

sensitivity (Ratcliffe & Jakobson 2018) and the performance of batcorders is poor in comparison to 

that of other brands (Adams et al. 2012), the distances here were not sufficient to considerably 

contribute to data variability. For studies in more heterogeneous settings however, even short-scale 

distance may have an effect, and implementing spatial stratification can be a key factor to optimize 

sampling (Fischer et al. 2009, Meyer et al. 2010), for example by deploying detectors at several 

locations within sites.

Except for the very abundant OTUs (total, nyctaloids, and P. pygmaeus), the average probability of 

detection in this study was only 50 % or lower - that is, at least half or more of the detectors failed 

to register the presence of a calling OTU. For similar monitoring situations and using a single 

detector per site, we therefore expect the odds of missing an OTU calling less than ~ 45 s per night 

(the nightly average of P. kuhlii/nathusii) to be larger than 50 % - much higher than expected for 

our structurally simple experimental site. Similarly low detection rates have been found in other 

studies, but at much larger spatial scales and in more cluttered situations (Duchamp et al. 2006, 

Kaiser and O'Keefe 2015, Skalak et al 2012).

In contrast to the variability of recorded calling activity due to detector, orientation and distance 

effects, which we consider acceptably small for monitoring purposes, this variability in detection 
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probability offers very poor prospects, indeed. The often large volumes of recordings returned by 

PAM campaigns may give batworkers the deceptive feeling of having produced exhaustive species 

inventories with little effort – yet this is obviously not true, not even at the very small spatial scale 

of this study. 

An important result of this study is that sampling more nights at an investigation site produces more

confident estimates of calling activity than sampling with more detectors in parallel. This supports 

Fischer et al. (2009) who, generalizing across several species, estimated that 10 % of overall 

variability of activity occurred due to within-site differences, in contrast to 20 % that they attributed

to between-night differences. Although this study is not fully comparable to ours because of 

divergent vegetation structure and spatial scale, it also suggests emphasizing temporal over spatial 

replication to characterize the calling activity of bats at investigations sites. For monitoring 

campaigns, this is an encouraging result because usually detectors, and not so much nights, are in 

short supply.

Given the wide range of activity among the OTUs in this study, we expected that actively calling 

OTUs should be more confidently estimated than rarer species of which only few call sequences 

were recorded. In other words, actively calling OTUs would need fewer detectors / sampling nights 

to level out to a confident estimate. Surprisingly, we did not find this in the data, nor was there any 

other apparent relationship with biological characteristics of the OTUs (e.g. maximum frequency, 

bandwidth, sound pressure level of calls, Ratcliffe & Jakobsen 2018; compare to Kubista & 

Bruckner 2017). We have no clear explanation to offer for this observation, only that the number of 

OTUs in this study was probably too small to find such expected relationships, and that some OTUs

(total and nyctaloid activity, possibly also P. kuhlii/nathusii) were not biological entities, but 

compounds of more than one species. 

5 Recommendations
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(1) Check your PAM detectors frequently, adjust the sensitivity and replace damaged microphones. 

Do this more than once or twice per field season since microphones may decline suddenly. At least 

a rough-and-dirty check with a chirp means little effort.

(2) If you aim to characterize the bat assemblages of sites (for example for detecting changes over 

time due to anthropogenic impacts), prefer sampling longer periods over sampling sites with more 

detectors. Given our finding that microphone sensitivity may decrease without any visual signs of 

damage, the logical minimum is three detectors per site - this enables you to differentiate damaged 

from properly working detector data. This recommendation also applies to studies stratifying sites 

into subplots - also here, each subplot should be equipped with a minimum of three detectors.

(3) Throughout the field program, regularly and randomly change the assignment of detector 

individuals to sites, treatments, study strata, etc. This prevents confusing potential microphone bias 

with activity declines in the experimental units of the program. 

(4) Check your data after the field period. Especially look for outliers and re-inspect the raw data of 

suspicious values. Use robust statistics to summarize the data, and models that account for 

overdispersion.
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Tables

TABLE 1 Results of likelihood ratio tests of the effects of detector and detector orientation on bat calling activity in mixed effects models. Null models

contained only random effects, the other two models additionally contained detector or detector + orientation as fixed effects. No adequate model was 

found for Myotis myotis. The null model R2 are the conditional (whole-model) coefficients of determination, the R2 of the two final models are the 

additional R2 relative to the nulls. OTU: operational taxonomic unit.

OTU, number of 

observations

model / fixed effects AIC log-likelihood deviance 2 df P R2

total null 53037 -26494 52987 0.427

n = 35 258 detector 52209 -26049 52099 888.85 30 < 2 * 10-16 *** + 0.019

detector/orientation 52210 -26048 52096 2.55 2 0.280 + 0.019

nyctaloid null 25597 -12774 25547 0.532

n = 15 112 detector 24503 -12196 24393 1154.08 30 < 2 * 10-16 *** + 0.052

detector + orientation 24506 -12196 24392 0.7564 2 0.685 + 0.052

Pipistrellus 

pygmaeus

null 6134.5 -3042.2 6084.5 0.118
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n = 6 126 detector 6118.7 -3004.3 6008.7 75.797 30 7.798 * 10-6 *** + 0.012

detector + orientation 6108.2 -2997.1 5994.2 14.454 2 7.268 * 10-4 *** + 0.012

P. kuhlii/nathusii null 3347.5 -1648.8 3297.5 0.127

n = 3337.4 detector 3337.4 -1614.7 3229.4 68.05145 29 5.750 *10-05 *** + 0.018

detector + orientation 3335.9 -1610.9 3221.9 7.5792 3 0.056 + 0.028

P. pipistrellus null 2110.3 -1046.1 2092.3 0.199

n = 1 575 detector 2093.6 -1011.8 2023.6 68.6535 26 1.04 * 10-05 *** + 0.030

detector + orientation 2100.5 -1009.3 2018.5 5.1085 6 0.530 + 0.032

Hypsugo savii null 1775.5 -878.74 1757.5 0.301

n = 1 229 detector 1798.4 -860.19 1720.4 37.0880 30 0.175 + 0.015

detector + orientation 1800.2 -859.13 1718.2 2.1361 2 0.344 + 0.012

Barbastella 
barbastellus

null 610.94 -300.47 600.94 0.117

n = 694 detector 613.07 -286.53 573.07 27.8747 15 0.022 * + 0.035

detector + orientation 612.55 -285.28 570.55 2.5147 1 0.113 + 0.038
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TABLE 2 Results of likelihood ratio tests of the effects of detector distance on bat calling activity in mixed effects models. Null models contained only

random effects, distance models additionally contained distance as fixed effect. Marginal R2 is the contribution of the fixed effect to the total R2 of the 

distance models. OTU: operational taxonomic unit.

OTU, number of 

observations

model / fixed effects AIC log-likelihood deviance 2 df P marginal R2

total null 49094 -24542 49084

n = 24 864 distance 48882 -24435 48870 213.62 1 < 2.2 *10-16 *** 0.006

nyctaloid null 27084 -13 537 27074

n = 13 549 distance 27043 -13515 27031 42.845 1 5.926 * 10-11 *** 0.002

Pipistrellus 

pygmaeus

null 3272.1 -1631.1 3262.1

n = 2 588 distance 3217.7 -1602.8 3205.7 56.435 1 5.807 * 10-14 *** 0.013

P. kuhlii/nathusii null 2765.9 -1378.0 2755.9

n = 1 308 distance 2748.7 -1368.3 2736.7 19.254 1 1.144 * 10-05 *** 0.007

P. pipistrellus null 1568.1 -779.03 1558.1

n = 916 distance 1536.4 -763.22 1526.4 31.614 0 < 2.2 * 10-16 *** 0.026
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Hypsugo savii null 1572.2 -781.09 1562.2

n = 720 distance 1543.8 -765.89 1531.8 30.401 1 3.514 * 10-08 *** 0.020

Barbastella 
barbastellus

null 286.03 -138.01 276.03

n = 270 distance 277.20 -132.60 265.20 10.83 1 9.988 *10-4 *** 0.022

Myotis myotis null 133.66 -61.830 123.66

n = 65 distance 133.65 -61.823 123.65 0.0145 0 < 2.2 * 10-16 *** 0.000
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Figure captions

FIGURE 1 Placement of devices in a study on site-scale variability of passively recording bat call 

detectors. Devices were arranged pairwise in the vertices of an octagon. One detector of each pair 

was directed towards the centre, the other towards the outside (labelled "in" and "out" at position 

E). 

FIGURE 2 File-scale deviations of individual devices in a study on site-scale variability of 

passively recording bat detectors. Δ call sequence length is the absolute difference in call sequence 

length between individual detectors and the average of 15 neighboring detectors nearby, summed in

5-second time intervals. A - total bat activity, B - nyctaloid species, C - Pipistrellus pygmaeus, D - 

P. kuhlii/nathusii, E - P. pipistrellus, F - Hypsugo savii, G - Barbastella barbastellus, H - Myotis 

myotis. Note the logarithmic scaling of the ordinates. The vertical lines are the 95 (light red) and 

99% (dark red) data quantiles, respectively. 

FIGURE 3 Night-scale deviations of individual devices in a study on site-scale variability of 

passively recording bat detectors. Δ call sequence length is the absolute difference in call sequence 

length between individual detectors and the average of 15 neighboring detectors nearby, summed in

1-night time intervals. See Figure 2 for a key to panel labels and line colors.

FIGURE 4 Temporal variability of device performance in a study on site-scale variability of 

passively recording bat detectors. Point sizes indicate calling activity and color intensities indicate 

the deviation of individual detectors from the arithmetic mean of all detectors (red: values above, 

blue: below mean). Point sizes are relative to the activity of each panel, therefore not comparable 

among panels. See Figure 2 for a key to panel labels. 
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FIGURE 5 Extremely long call sequences in a study on site-scale variability of passively recording 

bat detectors. Δ call sequence length is the absolute difference in call sequence length between 

individual detectors and the average of 15 neighboring detectors, summed in 5-second time 

intervals. To identify extreme values and outliers, only Δ values above the 95% data quantile are 

shown. To maximize visibility, points are scattered, and violins are plotted in front of points in 

panels A, B and C, and behind points in the other panels. See Figure 2 for a key to panel labels. 

FIGURE 6 Effect of device orientation in a study on site-scale variability of passively recording bat 

detectors. Δ call sequence length is the absolute difference in call sequence length between two 

detectors oriented in opposite (180°) directions, summed in 5-second time intervals. Note the 

logarithmic scaling of the ordinates. The vertical lines are the 95 (light red) and 99% (dark red) 

quantiles of the data, respectively. See Figure 2 for a key to panel labels and line colors.

FIGURE 7 Effect of spatial distance in a study on site-scale variability of passively recording bat 

detectors. Δ call sequence length is absolute difference in call sequence length between two 

detectors deployed at different positions in an octagon, summed in 5-second time intervals. 

Horizontal lines inside the violins indicate the 25%, 50% (= median), and 75% quantiles, 

respectively. Since the number of detector pairs compared differed among the distance factor levels,

the violins of every panel were scaled to have the same area. Note the square root scaling of the 

ordinates. See Figure 2 for a key to panel labels.

FIGURE 8 Detection probabilities of operational taxonomic units of bats in a study on site-scale 

variability of passively recording bat detectors. As a measure of nightly detection probability, the 

fraction of 16 neighboring devices registering a call sequence was computed. Note that the data set 

comprises only time intervals with at least one device recording, hence zero probability values are 

logically impossible.
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FIGURE 9 Sample size (number of devices) and confidence of call activity estimates in a study on 

site-scale variability of passively recording bat detectors. The 95 % interquantile range of 

bootstrapped sampling data was used as a measure of statistical confidence. The dotted curve 

summarizes the data using a loess smoothing function with alpha = 0.8 (80% smoothing). The red 

arrows indicate the number of detectors necessary to achieve 90 % of the smallest interquantil 

range. See Figure 2 for a key to panel labels.

FIGURE 10 Sample size (number of nights) and confidence of call activity estimates in a study on 

site-scale variability of passively recording bat detectors. See Figure 2 for a key to panel labels and 

Figure 9 for computational details.
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