5 References
Akaike T, Yoshida M, Miyamoto Y, Sato K, Kohno M, Sasamoto K, et
al. (1993). Antagonistic action of imidazolineoxyl N-oxides against
endothelium-derived relaxing factor/.NO through a radical reaction.
Biochemistry 32: 827-832.
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters
JA, et al. (2019a). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G
protein-coupled receptors. Br J Pharmacol 176 Suppl 1:S21-S141.
Alexander SPH, Fabbro D, Kelly E, Mathie A, Peters JA, Veale EL,
et al. (2019b). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Enzymes. Br
J Pharmacol 176 Suppl 1: S297-S396.
Arcaro A, Lembo G, & Tocchetti CG (2014). Nitroxyl (HNO) for treatment
of acute heart failure. Curr Heart Fail Rep 11: 227-235.
Barton M, & Yanagisawa M (2019). Endothelin: 30 Years From Discovery to
Therapy. Hypertension 74: 1232-1265.
Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, & Danser AH (2004).
Mediators of bradykinin-induced vasorelaxation in human coronary
microarteries. Hypertension 43: 488-492.
Batenburg WW, Popp R, Fleming I, de Vries R, Garrelds IM, Saxena
PR, et al. (2004). Bradykinin-induced relaxation of coronary
microarteries: S-nitrosothiols as EDHF? Br J Pharmacol 142:125-135.
Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, Mitchell M,
et al. (2017). Transition in the mechanism of flow-mediated dilation
with aging and development of coronary artery disease. Basic Res Cardiol
112: 5.
Cooper GR, Mialkowski K, & Wolff DJ (2000). Cellular and enzymatic
studies of N(omega)-propyl-l-arginine and
S-ethyl-N-[4-(trifluoromethyl)phenyl]isothiourea as reversible,
slowly dissociating inhibitors selective for the neuronal nitric oxide
synthase isoform. Arch Biochem Biophys 375: 183-194.
Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz
MA, et al. (2018). Experimental design and analysis and their
reporting II: updated and simplified guidance for authors and peer
reviewers. Br J Pharmacol 175: 987-993.
Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I,
et al. (2017). Targeting vascular (endothelial) dysfunction. Br J
Pharmacol 174: 1591-1619.
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock
JS, et al. (2016). Endothelin. Pharmacol Rev 68:357-418.
Elbatreek MH, Sadegh S, Anastasi E, Guney E, Nogales C, Kacprowski
T, et al. (2020). NOX5-induced uncoupling of endothelial NO
synthase is a causal mechanism and theragnostic target of an age-related
hypertension endotype. PLoS Biol 18: e3000885.
Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, & Gutterman DD
(2016). Endothelium-Derived Hyperpolarization and Coronary Vasodilation:
Diverse and Integrated Roles of Epoxyeicosatrienoic Acids, Hydrogen
Peroxide, and Gap Junctions. Microcirculation 23: 15-32.
Ellis A, Li CG, & Rand MJ (2000). Differential actions of L-cysteine on
responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta. Br
J Pharmacol 129: 315-322.
Evgenov OV, Pacher P, Schmidt PM, Hasko G, Schmidt HH, & Stasch JP
(2006). NO-independent stimulators and activators of soluble guanylate
cyclase: discovery and therapeutic potential. Nat Rev Drug Discov
5: 755-768.
Forstermann U, & Munzel T (2006). Endothelial nitric oxide synthase in
vascular disease: from marvel to menace. Circulation 113:1708-1714.
Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, & Gutterman DD
(2014). Ceramide changes the mediator of flow-induced vasodilation from
nitric oxide to hydrogen peroxide in the human microcirculation. Circ
Res 115: 525-532.
Fukuto JM (2019). A recent history of nitroxyl chemistry, pharmacology
and therapeutic potential. Br J Pharmacol 176: 135-146.
Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, & Mayer B
(1995). Potent and selective inhibition of nitric oxide-sensitive
guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one.
Mol Pharmacol 48: 184-188.
Ignarro LJ, Barry BK, Gruetter DY, Edwards JC, Ohlstein EH, Gruetter
CA, et al. (1980). Guanylate cyclase activation of nitroprusside
and nitrosoguanidine is related to formation of S-nitrosothiol
intermediates. Biochem Biophys Res Commun 94: 93-100.
Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, &
Kemp-Harper BK (2008). Nitroxyl (HNO): the Cinderella of the nitric
oxide story. Trends Pharmacol Sci 29: 601-608.
Joseph J, Kalyanaraman B, & Hyde JS (1993). Trapping of nitric oxide by
nitronyl nitroxides: an electron spin resonance investigation. Biochem
Biophys Res Commun 192: 926-934.
Kaesemeyer WH, Ogonowski AA, Jin L, Caldwell RB, & Caldwell RW (2000).
Endothelial nitric oxide synthase is a site of superoxide synthesis in
endothelial cells treated with glyceryl trinitrate. Br J Pharmacol
131: 1019-1023.
Kopincova J, Puzserova A, & Bernatova I (2012). L-NAME in the
cardiovascular system - nitric oxide synthase activator? Pharmacol Rep
64: 511-520.
Leo CH, Joshi A, Hart JL, & Woodman OL (2012). Endothelium-dependent
nitroxyl-mediated relaxation is resistant to superoxide anion scavenging
and preserved in diabetic rat aorta. Pharmacol Res 66: 383-391.
Leurgans TM, Bloksgaard M, Brewer JR, Bagatolli LA, Fredgart MH,
Rosenstand K, et al. (2016). Endothelin-1 shifts the mediator of
bradykinin-induced relaxation from NO to H2 O2 in resistance arteries
from patients with cardiovascular disease. Br J Pharmacol 173:1653-1664.
Leurgans TM, Bloksgaard M, Irmukhamedov A, Riber LP, & De Mey JGR
(2018). Relaxing Responses to Hydrogen Peroxide and Nitric Oxide in
Human Pericardial Resistance Arteries Stimulated with Endothelin-1.
Basic Clin Pharmacol Toxicol 122: 74-81.
Liu T, Zhang M, Mukosera GT, Borchardt D, Li Q, Tipple TE, et al.(2019). L-NAME releases nitric oxide and potentiates subsequent
nitroglycerin-mediated vasodilation. Redox Biol 26: 101238.
Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K,
et al. (2000). Hydrogen peroxide is an endothelium-derived
hyperpolarizing factor in mice. J Clin Invest 106: 1521-1530.
Mian KB, & Martin W (1997). Hydrogen peroxide-induced impairment of
reactivity in rat isolated aorta: potentiation by
3-amino-1,2,4-triazole. Br J Pharmacol 121: 813-819.
Monica FZ, Bian K, & Murad F (2016). The Endothelium-Dependent Nitric
Oxide-cGMP Pathway. Adv Pharmacol 77: 1-27.
Moore PK, Wallace P, Gaffen Z, Hart SL, & Babbedge RC (1993).
Characterization of the novel nitric oxide synthase inhibitor 7-nitro
indazole and related indazoles: antinociceptive and cardiovascular
effects. Br J Pharmacol 110: 219-224.
Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder
MA, et al. (2003). Pivotal role of Cu,Zn-superoxide dismutase in
endothelium-dependent hyperpolarization. J Clin Invest 112:1871-1879.
Munoz M, Martinez MP, Lopez-Oliva ME, Rodriguez C, Corbacho C,
Carballido J, et al. (2018). Hydrogen peroxide derived from NADPH
oxidase 4- and 2 contributes to the endothelium-dependent vasodilatation
of intrarenal arteries. Redox Biol 19: 92-104.
Omar HA, Cherry PD, Mortelliti MP, Burke-Wolin T, & Wolin MS (1991).
Inhibition of coronary artery superoxide dismutase attenuates
endothelium-dependent and -independent nitrovasodilator relaxation. Circ
Res 69: 601-608.
Pino RZ, & Feelisch M (1994). Bioassay discrimination between nitric
oxide (NO.) and nitroxyl (NO-) using L-cysteine. Biochem Biophys Res
Commun 201: 54-62.
Rees DD, Palmer RM, Schulz R, Hodson HF, & Moncada S (1990).
Characterization of three inhibitors of endothelial nitric oxide
synthase in vitro and in vivo. Br J Pharmacol 101: 746-752.
Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, et
al. (2013). Nitroxyl (HNO): A novel approach for the acute treatment of
heart failure. Circ Heart Fail 6: 1250-1258.
Schmidt HH, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, &
Feelisch M (1996). No .NO from NO synthase. Proc Natl Acad Sci U S A
93: 14492-14497.
Schulz ME, Katunaric B, Hockenberry JC, Gutterman DD, & Freed JK
(2019). Manipulation of the Sphingolipid Rheostat Influences the
Mediator of Flow-Induced Dilation in the Human Microvasculature. J Am
Heart Assoc 8: e013153.
Shimokawa H, & Godo S (2020). Nitric oxide and endothelium-dependent
hyperpolarization mediated by hydrogen peroxide in health and disease.
Basic Clin Pharmacol Toxicol 127: 92-101.
Shimokawa H, & Morikawa K (2005). Hydrogen peroxide is an
endothelium-derived hyperpolarizing factor in animals and humans. J Mol
Cell Cardiol 39: 725-732.
Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H,
et al. (2008). Crucial role of nitric oxide synthases system in
endothelium-dependent hyperpolarization in mice. J Exp Med 205:2053-2063.
Toda N, & Okamura T (2003). The pharmacology of nitric oxide in the
peripheral nervous system of blood vessels. Pharmacol Rev 55:271-324.
Vane JR, Bakhle YS, & Botting RM (1998). Cyclooxygenases 1 and 2. Annu
Rev Pharmacol Toxicol 38: 97-120.
Vanhoutte PM, Shimokawa H, Feletou M, & Tang EH (2017). Endothelial
dysfunction and vascular disease - a 30th anniversary update. Acta
Physiol (Oxf) 219: 22-96.
Vanhoutte PM, Zhao Y, Xu A, & Leung SW (2016). Thirty Years of Saying
NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived
Vasodilator Mediator. Circ Res 119: 375-396.
Wanstall JC, Jeffery TK, Gambino A, Lovren F, & Triggle CR (2001).
Vascular smooth muscle relaxation mediated by nitric oxide donors: a
comparison with acetylcholine, nitric oxide and nitroxyl ion. Br J
Pharmacol 134: 463-472.
Widlansky ME, & Gutterman DD (2011). Regulation of endothelial function
by mitochondrial reactive oxygen species. Antioxid Redox Signal
15: 1517-1530.
World Medical A (2013). World Medical Association Declaration of
Helsinki: ethical principles for medical research involving human
subjects. JAMA 310: 2191-2194.
Zhang Y, Murugesan P, Huang K, & Cai H (2020). NADPH oxidases and
oxidase crosstalk in cardiovascular diseases: novel therapeutic targets.
Nat Rev Cardiol 17: 170-194.
Zhu G, Groneberg D, Sikka G, Hori D, Ranek MJ, Nakamura T, et al.(2015). Soluble guanylate cyclase is required for systemic vasodilation
but not positive inotropy induced by nitroxyl in the mouse. Hypertension
65: 385-392.
Zinkevich NS, Fancher IS, Gutterman DD, & Phillips SA (2017). Roles of
NADPH oxidase and mitochondria in flow-induced vasodilation of human
adipose arterioles: ROS-induced ROS release in coronary artery disease.
Microcirculation 24.
Table 1. Patients’ clinical information and medication.