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ABSTRACT
Sexual size dimorphism (SSD) is caused by differences in selection pressures and life-history tradeoffs faced by males and females. Proximate causes of SSD may involve sex-specific mortality, energy acquisition, and energy expenditure for maintenance, reproductive tissues, and reproductive behavior. Using a quantitative, individual-based, eco-genetic model parameterized for North Sea plaice, we explore the importance of these mechanisms for female-biased SSD, under which males are smaller and reach sexual maturity earlier than females (common among fish, but also arising in arthropods and mammals). We consider two mechanisms potentially serving as ultimate causes: (1) male investments into male reproductive behavior might detract energy resources that would otherwise be available for somatic growth, and (2) diminishing returns on male reproductive investments might lead to reduced energy acquisition. In general, both of these can bring about smaller male body sizes. We report the following findings. First, higher investments into male reproductive behavior alone cannot explain the North Sea plaice SSD. This is because such higher reproductive investments require increased energy acquisition, which would cause a delay in maturation, leading to male-biased SSD contrary to observations. When accounting for the observed differential (lower) male mortality, maturation is postponed even further, leading to even larger males. Second, diminishing returns on male reproductive investments alone can qualitatively account for the North Sea plaice SSD, even though the quantitative match is imperfect. Third, both mechanisms can be reconciled with, and thus provide a mechanistic basis for, the previously advanced Ghiselin-Reiss hypothesis, according to which smaller males will evolve if their reproductive success is dominated by scramble competition for fertilizing females, as males would consequently invest more into reproduction than growth, potentially implying lower survival rates relaxing male-male competition. Fourth, a good quantitative fit with the North Sea plaice SSD is achieved by combining both mechanisms while accounting for sex-specific costs males incur during their spawning season. Fifth, evolution caused by fishing is likely to have modified the North Sea plaice SSD.
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Sexual size dimorphisms. Sexual size dimorphism (SSD) occurs when either males or females reach a larger adult body size than the other sex (Fairbairn et al. 2007). Male-biased SSD (i.e., males being larger than females) is commonly observed in endotherms, and in mammals in particular (Fairbairn et al. 2007). It has been extensively studied and is easily explained by adaptation also for ectotherms: larger males have an advantage in male-male competition for females (for fishes, see, e.g., Emlen and Oring 1977, Parker 1992, Fleming and Gross 1994). In contrast, the adaptive significance of female-biased SSD (i.e., females being larger than males) – observed in various species of bony fish (e.g., Pietsch 1975, Henderson et al. 2003, Rennie et al. 2008), but also in mammals (e.g., Fokidis et al. 2007), insects (e.g., Esperk et al. 2007), and spiders (e.g., Foellmer and Fairbairn 2005) – is still poorly understood. SSD, in general, may be related to divergent gamete-size evolution of males and females (anisogamy), and the resulting sex-specific energy investments per gamete (Parker 1982, Lessells et al. 2009, Lehtonen and Kokko 2010): the larger eggs impose different energetic requirements than the smaller male gametes, which are minimized in size but maximized in number so as to compete for fertilizations (Parker 1982, Bulmer and Parker 2002, Lehtonen and Kokko 2010). The evolutionary causes of anisogamy, however, remain unresolved (Kokko and Jennions 2008, Klug et al. 2010). Also, SSDs exist in both directions (female-biased and male-biased), so even if the evolutionary causes of anisogamy were sufficiently understood, this could not directly help to understand SSDs. Instead, to explain the evolutionary causes of SSDs, the divergent selection pressures on, and lifestyles of, males and females have to be taken into account.
Proposed causes of female-biased SSD. To explain female-biased SSD, the Ghiselin-Reiss hypothesis (Ghiselin 1974, Reiss 1989) suggests that evolution will favor small males if male reproductive success is dominated by scramble competition among males for fertilization opportunities, because smaller males require less energy and can thus devote more time to reproduction (finding females) than to growth (finding food). While males consequently acquire less food than females, their reproductive investments, including behavioral and physiological costs, might be similarly high as those of females, due to their higher cost of reproductive behavior and despite their lower cost of gamete production, thus causing males to be smaller than females. As a specification of the increased behavioral cost, the differential mortality model (DMM) has been proposed (Vollrath and Parker 1992): since males are the sex searching for fertilization opportunities, male adult mortality is higher, which relaxes male-male competition for females and thereby establishes a further evolutionary advantage for early-maturing smaller males. Some studies have found empirical evidence for both hypotheses; e.g., Blanckenhorn et al. (1995) reported that smaller body size in males correlated with indicators of higher success in scramble competition, and Mas and Ribera (2009) found that smaller body size in males correlated with higher mortality. Other studies have not found such correlations (see, e.g., Foellmer and Moya-Laraño 2007). At any rate, an integrative understanding of the underlying mechanisms has remained elusive. For example, assuming that female body size is driven by fertility selection, Parker (1992) showed that weak sperm competition alone readily generates female-biased SSD and that sex-specific mortality (as considered by the DMM) further modifies the SSD (Mas and Ribera 2009). However, since Parker’s model assumed that both sexes use the same patterns of energy acquisition and allocation, SSD in his model could arise only as a result of a sex-specific age and size at maturation. In this study, we thus try to establish an integrative understanding of the evolutionary basis of SSD using energy allocation as our conceptual starting point.
Expectations of SSD based on energy allocation. Energy allocation describes how individuals channel their acquired energy towards growth, maintenance, and reproduction (von Bertalanffy and Pirozynski 1952, West et al. 2001). Sex-specific differences in growth and size at age may result from differential maturation and from differences in energy acquisition or reproductive investment (Fig. 1). In general, female-biased SSD can thus result either from males investing more energy into reproductive behavior (Fig. 1.1) or from males acquiring less energy (Fig. 1.2). Lower energy acquisition, or growth efficiency, in males has indeed been observed in fish species with female-biased SSD, and a higher male reproductive investment has been suggested as a potential explanation of female-biased SSD (Henderson et al. 2003, Rennie et al. 2008). Although the connection was not made explicit in those earlier studies, the mechanisms of lower male energy acquisition and of higher male reproductive investment are both compatible with the Ghiselin-Reiss hypothesis, which predicts that males would stay smaller, thus acquiring less energy, and invest more into reproduction than growth, if their reproductive success were dominated by scramble competition for fertilizing females. Here we build on these mechanisms by examining the evolution of SSD under general sex-specific energy allocations and maturation patterns. In short, we study the following two, not mutually exclusive, general mechanisms for explaining female-biased SSD (Fig. 1):
· Males invest more into reproductive behavior. This may happen if they need to compete for females and the energy required for the associated behavior is then no longer available for somatic growth. Such behavioral cost may be complemented by a time cost and/or a mortality cost when male reproductive behavior implies less time being available for feeding and/or a higher exposure to predators, respectively.
· Males acquire less energy. This may happen if reproductive success in males is less dependent on body size and overall reproductive investment than in females. In this case, males will forage less and hence avoid predation and/or disease-related mortality. If mating opportunities are limited in space and time, male reproductive success may become largely uncoupled from male body size, which can be approximated by considering diminishing returns on male reproductive investment with increasing body size.
Implications of SSD for fisheries. SSD may have important implications for the sustainable harvesting of fish populations. Differences in growth rates imply differences in the productivity of male and female stock components (Beverton and Holt 1957). Since fishing typically is size-selective, it is likely also to be sex-specific, which will affect a stock’s long-term sustainable yield and has implications for a proper assessment of a stock status and its fishery (Kell and Bromley 2004). In addition, fisheries selection may elicit evolutionary responses (e.g., Jørgensen et al. 2007, Dieckmann et al. 2009, Heino and Dieckmann 2009, Heino et al. 2013, Laugen et al. 2014, Heino et al. 2015), which SSD may thus render sex-specific. It is therefore important to understand the evolutionary mechanisms that can lead to female-biased SSD. Among fishes, the flatfish North Sea plaice Pleuronectes platessa L. is a prominent example of female-biased SSD (Rijnsdorp and Ibelings 1989, Van Walraven et al. 2010). Due to its commercial importance, North Sea plaice ranks among the best-studied fish species, with exceptional quantitative data being available on its life history, and thus for understanding the observed SSD.
Scope of this study. As no integrative assessment of the relative merits of the aforementioned potential mechanistic causes of the life-history evolution of female-biased SSD has as yet been offered in the literature, we evaluate their importance in North Sea plaice using an eco-genetic modelling approach (Dunlop et al. 2009a). Our model quantitatively describes the ecology and inheritance of growth, maturation, and reproduction, as well as the life-history tradeoffs between growth and mortality and between reproduction and mortality. The same model has previously been used without sex structure and SSD to explore the consequences of fisheries-induced evolution and to study management opportunities for mitigating the impacts of fisheries-induced evolution on sustainable harvest (Mollet et al. 2016a, 2016b). Here we expand this approach by allowing for sex structure and SSD, to explore which mechanisms are required to model the male life history consistently with the available life-history data in general and with the observed female-biased SSD in particular. We also assess the possible effects of fishing on the North Sea plaice SSD. After presenting our findings for North Sea plaice, we discuss how these can be extended to other species and to male-biased SSD.
MATERIAL AND METHODS
Modelling approach. Addressing the research question of understanding the selection pressures that lead to different energy-allocation patterns in males and females resulting in SSD (Fig. 1) requires examining how the energy-allocation traits determining body size – describing energy acquisition, maturation schedule, and reproductive investment – evolve over time. For accomplishing this objective, three major challenges have to be met simultaneously by the chosen modelling approach:
First, the literature on the Ghiselin-Reiss hypothesis and on the differential-mortality model demonstrates that an integrative understanding of the evolutionary causes of SSD cannot be established when the involved traits, tradeoffs, life-history processes, and environmental determinants are addressed either only qualitatively or only partially. In particular, ecological and demographic dynamics have to be modeled sufficiently faithfully to predict resultant selection pressures reliably. It is therefore important to use a modelling approach that allows studying the underlying life-history complexity both quantitatively and comprehensively.
Second, the evolution of the involved traits is determined by the corresponding fitness landscape, which in turn depends on environmental conditions and a population’s trait composition. The latter dependence means that the evolution of a trait has feedbacks on its own evolution and on the evolution of all other traits, which is technically known as frequency-dependent selection. It is therefore important to use a modelling approach that accounts for these eco-evolutionary feedbacks.
Third, it is important to use a modelling approach that can be calibrated to the empirical data available for a real population. This is because it is not feasible to explore a complex model’s full parameter space, while it is crucial to show that the modelled mechanisms not only to apply in principle (i.e., for parameter values whose match with observations is largely left unaddressed), but also in practice (i.e., for parameter values that reflect the best available knowledge about the modelled population).
To account for life-history complexity, eco-evolutionary feedbacks, and calibration requirements, we use an individual-based eco-genetic model. In comparison with other possible approaches, this offers several advantages: (i) an IBM is understandable at the individual level, where the modelled tradeoffs indeed apply; (ii) realistic ecological dynamics with sufficient life-history complexity can be specified to determine selection pressures; (iii) eco-evolutionary feedbacks are readily included; (iv) model parameters and outputs can be calibrated to real populations; and (v) in higher-dimensional continuous trait spaces, individual-based models can be more computationally efficient than models using a grid of compartments (as most of the latter tend to be empty; Dunlop et al. 2009a).
North Sea plaice data. Plaice is sexually dimorphic: females mature at larger body sizes and older ages than males, and subsequently also grow to larger adult body sizes (Rijnsdorp and Ibelings 1989). During spawning in winter, male and female North Sea plaice cease feeding, but males remain twice as long in spawning condition than females (Rijnsdorp and Ibelings 1989). The instantaneous mortality rate for males during spawning is about twice as high as for females, suggesting a difference in behavior that increases the exposure of males to predators and to fishing gear (Beverton 1964, Rijnsdorp 1993). Since North Sea plaice has been exploited intensively for more than a century (Rijnsdorp and Millner 1996), its current life-history characteristics are likely affected by fisheries-induced evolution (Jørgensen et al. 2007, Heino et al. 2015): in particular, the age at maturation has decreased and reproductive investment has increased (Grift et al. 2003, 2007, Van Walraven et al. 2010).
Our life-history model, specified below, is simultaneously fitted to three independent life-history datasets focusing, respectively, on growth, maturation, and reproduction: (i) size at age, described by age-specific somatic weights, (ii) maturation length at age, described by the age-specific midpoints of a probabilistic maturation reaction norm (PMRN), and (iii) reproductive investment at age, based on gonad weights and migration costs and described by an age-specific somatic-weight equivalent. Details and data sources are presented in Appendix B.
Model description. We use an individual-based eco-genetic model (Dunlop et al. 2009a; see also Thériault et al. 2008, Dunlop et al. 2009b, Enberg et al. 2009, Okamoto et al. 2009, Wang and Höök 2009, Eikeset et al. 2013, 2016, 2017, Marty et al. 2014, Mollet et al. 2016a, 2016b) calibrated to North Sea plaice. Below we provide an overview of the key model features; more details are presented in Appendix A. All model variables are listed in Table A1 and all model parameters in Table A2.





Our model follows cohorts of superindividuals (Scheffer et al. 1995) throughout their lifetime and determines their survival probability and reproductive success in annual time increments, based on their genetic trait values and their phenotypic expression of these. The model accounts for sex structure and sex-specific trait expression: male and female individuals inherit a male-specific and a female-specific value of each trait, with only the value corresponding to their sex being phenotypically expressed. The modelled evolving traits expressed in males or females determine an individual’s energy-acquisition rate , reproductive-investment rate , and probabilistic maturation reaction norm (PMRN) intercept  (Table 1, Fig. 2). The evolving traits expressed only in males further include an individual’s spawning duration , determining the residence time annually spent on the spawning grounds; for females,  is fixed at 1/8 yr.










The energy available for somatic growth at a given body weight  is given by the difference between the energy-acquisition rate  and the energy-expenditure rate  for maintenance and, after becoming mature, the energy-expenditure rate  for reproduction (Von Bertalanffy and Pirozynski 1952, West et al. 2001). We consider the evolution of the rates of energy acquisition () and of reproductive investment (), respectively, while the maintenance rate  is assumed to be constant. Based on metabolic theory (West et al. 1997) and species-specific estimates (Fonds et al. 1992), we assume that the rate of energy acquisition scales with somatic weight  to the power of , whereas the rates of maintenance and reproductive investment scale with  to the power of 1. This leads to the following dynamics for the body weight of individuals,

					for juveniles,				(1.1)

					for adults,				(1.2)




where  denotes time. The energy-acquisition rate  depends on population density, implying density-dependent growth. Eqs 1 determine the discrete-time dynamics describing the somatic weight  as a function of the somatic weight  (eq. A1).


Maturation is determined by a probabilistic maturation reaction norm (PMRN; Stearns and Koella 1986, Heino et al. 2002, Dieckmann and Heino 2007, Heino and Dieckmann 2008) with an intercept  and a slope ,

,										(2)


where  determines an age-specific reaction-norm midpoint, i.e., the body length at which the probability of maturing equals 50% at age . Body lengths are related to body weights according to a fixed allometric relationship (eq. A3).

After maturation, individuals reproduce in annual mating events, during which a focal individual’s probability to produce offspring depends on its reproductive success relative to all other individuals. The reproductive investment , itself a function of the energy allocation model (eq. A2), is described by a somatic-weight equivalent and comprises all investments that contribute to annual reproduction, including gamete production and behavioral investments such as spawning migration and spawning behavior. Reproductive success is a sex-specific function of this investment, and the difference in these functions between the sexes is crucial for explaining SSD (see below).


Natural mortality is applied during each year and consists of predation mortality, which decreases with body size and increases with foraging behavior as described by the energy acquisition rate  (growth-survival tradeoff), reproduction mortality, which depends on the relative energy loss due to reproduction (reproduction-survival tradeoff), and starvation mortality, which occurs when the maintenance costs  cannot be covered by an individual. Since the observed life history of North Sea plaice is the result of adaptation to fishing, our model also includes the sex-specific size-dependent patterns of fishing mortality characteristic for North Sea plaice.
Mid-parental genetic values determine inherited genetic traits, and environmental variability is adjusted so as to match the heritability levels of life-history traits expected in fish (Roff 1991). Processes of maturation, mate selection, trait inheritance, trait expression, and mortality are all modelled stochastically.
Model calibration. The parameterization of our model was carried out in three steps. In a first step, parameters for which independent estimates are available were either taken from the literature or directly estimated from empirical data on age, size, and maturity from Dutch market samples and scientific surveys (Table A2).





In a second step, the remaining parameters were fitted for the female life history (Table A2), separately for the historic period (around 1900) and the present period (around 2000), so as to minimize the mean  of squared relative deviations for females at ages  yr of model-predicted (subscript M) from empirically observed (subscript E) population-averaged body weights , PMRN midpoints , and relative reproductive investments ,

.			(3)






As empirical observations on reproductive investments are unavailable for the historic period, the third term above was omitted when calculating  for that period. Model-predicted values were obtained assuming that the population was at evolutionary equilibrium. Parameter combinations minimizing  were determined using a grid-based search (Table A2). The average natural mortality rate at age 6 yr was set to  yr-1 in accordance with the ICES stock assessment (ICES 2011). The density dependence of energy-acquisition rates (eq. A4) was assumed to be absent (negligible) in the heavily exploited (and thus, low-density) present population state. For both the historic period (subscript H) and the present period (subscript P), the maximum fishing-mortality rate  was included in the estimated parameters (yielding  yr-1 and  yr-1, respectively).




In a third step, the male-specific life-history parameters (, , and , see below) were fitted using mechanisms M1ab2 (see below) based on the female-specific parameter settings in the present population obtained from the second step, by minimizing  (eq. 3) for males using a grid-based search (Table A2).



SSD mechanisms. We evaluate the ability of the two not mutually exclusive mechanisms described in the introduction to explain female-biased SSD (Fig. 1, Table 1). Based on the empirical evidence that all of these mechanisms are likely to apply, the model parameters were fitted (see above) using mechanisms M1ab2 (see below), before exploring their separate effects on female-biased SSD by separately adding the respective mechanism to the female-specific model (Table 1). The divergent male life history corresponding to each considered mechanism or combination thereof is assumed to evolve from sex-specific differences in reproductive success in conjunction with sex-specific differences in natural mortality and fishing mortality. While the relative reproductive success of a female individual is directly proportional to its reproductive investment  (eq. A7), the relative reproductive success  of a male individual  is given by

,									(4.1)




where  and  are diminishing-return functions of the reproductive investment  and the spawning duration , respectively,

,										(4.2)

.										(4.3)





These functions describe a decreasing marginal gain as male reproductive investments in terms of  and  are increased, respectively. Assuming that the rate of reproductive activity of males is constant during the male spawning duration , we consider their reproductive-investment rate  to be proportional to ,

.											(4.4)








For both sexes, the natural mortality rate  is given by a predation-mortality rate  caused by foraging (growth-survival tradeoff), a mortality rate  due to reproduction (reproduction-survival tradeoff), and a starvation mortality rate . For both sexes, the fishing-mortality rate  applies. Because of their spawning activity, males suffer from an additional predation-mortality rate  and from an additional fishing-mortality rate  during the male spawning duration ,

,									(5.1)

.										(5.2)
Given these differences in male life history, the following mechanisms are tested for their potential to explain female-biased SSD (Table 1):
· Mechanism M1: Diminishing returns of prolonged male spawning. We consider a diminishing return of prolonged male spawning duration, i.e., a decreasing marginal gain as male spawning duration is increased (described by eq. 4.3). 
· 
Mechanism M1a: Time costs of prolonged male spawning. In addition to mechanism M1, we consider that male behavioral reproductive activity comes at a time cost. As feeding ceases during spawning (Rijnsdorp and Ibelings 1989), prolonging  in males reduces their time available for growth (described by eq. A1.2).
· 
Mechanism M1b: Mortality costs of prolonged male spawning. In addition to mechanism M1, we consider that male behavioral reproductive activity comes at a mortality cost. Due to elevated exposure to predators and to fishing gear during spawning, higher mortality rates apply to males on the spawning ground; prolonging  in males thus reduces their survival (described by eqs 5).
· Mechanism M2: Diminishing returns of raised male reproductive investment. We consider a diminishing return of raised male reproductive investment, i.e., a decreasing marginal gain as male reproductive investment is increased (described by eq. 4.2).
M1ab refers to the combination of mechanisms M1, M1a, and M1b, while M1ab2 refers to all four mechanisms being applied together.
RESULTS
Effects of all mechanisms considered together. The empirically observed and model-predicted life-history characteristics for mechanisms M1ab2 are displayed in Fig. 3 for the historic population and the present population. These results show that our model is capable of reproducing the empirically observed life histories of males and females, not only for the present population but also for the historic population. Our model thus is the first to recover the SSD in North Sea plaice based on a process-based life-history model maximally informed by empirical data.
Effects of sex-specific behavioral reproductive investments and diminishing returns. The results for the effects of the single mechanisms considered in isolation reveal that the SSD in North Sea plaice can be recovered and understood by mechanism M2 alone, but not by mechanism M1 alone (Figs 4 & 5, Table 1). Adding the mechanisms M1a and M1b, which account for the time costs (M1a) and mortality costs (M1b) of behavioral reproductive investments (more time spent on the spawning ground), we observe that the energy-acquisition rate in males increases to compensate for the higher energy demand, leading to larger males, a male-biased SSD, and a slight upward shift in the male PMRN (Figs 4 & 5, Table 1). These effects are not in line with the empirical observations.

The diminishing returns of male reproductive investment, as described by mechanism M2, result in decreased energy-acquisition rates, earlier maturation, and consequently a significantly smaller size at age and lower PMRN in males (Figs 4 & 5, Table 1). This finding applies to the exploited population as well as to the unexploited population (Fig. 4, Table 1). Under exploitation ( yr-1), the fitness advantages of the smaller size and earlier maturation in males are amplified for the commonly observed ages.
We thus suggest that the female-biased SSD in North Sea plaice can best be understood as a consequence of reduced energy acquisition and earlier maturation caused by diminishing returns of reproductive investment in males, and not of a higher demand for relative reproductive investment in males, as had previously been proposed (e.g., Henderson et al. 2003, Rennie et al. 2008).



Effects of sex-specific time costs and mortality costs of reproductive investments. When the increase in male reproductive behavioral investment incurs time costs due to a reduced growing season (mechanism M1a) and mortality costs due to reduced feeding activities (mechanism M1b), this results in increased energy acquisition and delayed maturation in males (Tables 1 and 2, Figs 4 & 5). The mortality costs (mechanism M1b) have the stronger effect on increased size and delayed maturation; these effects are further increased by exploitation, since the mortality costs increase with exploitation. In contrast, the time costs (mechanism M1a) have a stronger effect on reducing the relative reproductive investment , while their effect on maturation is ambiguous, depending on the level of exploitation (not shown). As a consequence, these two effects amplify the effects towards male-biased SSD relative to mechanism M1 alone. Due to their positive effect on male size, mechanisms M1a and M1b improve the fit to the empirical data when combined with mechanism M2, as they are responsible for a lower male relative reproductive investment  under exploitation ( yr-1).






Effects of sex-specific exploitation. Comparing the effects on the evolving traits among the unexploited population ( yr-1), the historic population ( yr-1) and the present population ( yr-1) allows us to formulate expectations for the effects of fishing. With increased exploitation rates, realized energy-acquisition rates  increase (because density-dependent competition is relaxed; the effects on the genetic energy-acquisition rates may differ), reproductive-investment rates  increase (and thus spawning duration  in males increases), and the PMRN shifts to lower levels in both sexes (Table 1). The pace of the life histories increases due to increased exploitation rates, leading to an increase in size at younger ages (e.g., at age 6 yr), but to a decrease in size at older ages (e.g., at age 10 yr; Fig. 3).

Because the amplitudes of the life-history responses to increased fishing mortality differ between the sexes, our results show that fishing affects the amplitude of the sexual dimorphism in adult size (SSD), maturation, and reproductive investment, although the change may not be monotonic with respect to fishing mortality, so that the direction of change may vary during a history of increased exploitation (Table 3). First, SSD, expressed as the ratio of the asymptotic body size () between male and females, increases in magnitude due to fishing in the historic population relative to the unexploited population and subsequently decreases in the present population. Second, sexual dimorphism in the onset of maturation decreases in the historic population relative to the unexploited population and subsequently increases in the present population. Third, reproductive investment shows a consistent increase in sexual dimorphism in response to higher exploitation rates.
DISCUSSION
SSD through lower energy acquisition or higher reproductive investment? Our model predicts female-biased SSD only when there are diminishing returns of male reproductive investment (mechanism M2). It can thus be concluded that smaller male size arises as a consequence of lower energy-acquisition rates in males. The alternative mechanism of a higher reproductive investment through additional behavioral costs or spawning behavior in males (mechanisms M1, M1a, and M1b) lead to higher energy-acquisition rates in males, delayed maturation in males, and a male-biased SSD. The extent to which higher behavioral reproductive investments are compensated for by higher energy-acquisition rates will be influenced by the strength of the growth-survival tradeoff. Predation mortality accelerates with the energy-acquisition rate (eq. A10), but we have found that increasing this acceleration does not affect the main findings (not shown). We therefore expect that higher reproductive investments will generally be supported by higher energy-acquisition rates. On the other hand, we expect that lower energy-acquisition rates are a general consequence if fitness returns from increased reproductive investment are diminishing and high energy-acquisition rates are costly. Under size-selective fishing, this cost is obviously amplified.
Causes and implications of diminishing fitness returns. The evolutionary force leading to reduced energy acquisition in males, and thus to female-biased SSD, results from the diminishing returns of reproductive investment. Several mechanisms may lead to such diminishing returns. First, particularly in seasonal environments, the time window in which fish can reproduce successfully is restricted (Cushing 1990), resulting in a temporal limitation of mating opportunities. In contrast to females, males could vary their spawning duration, but the marginal gains for a male to increase its spawning duration and its reproductive investment decrease, due to the limitation of mating opportunities. These diminishing returns are thus one possible interpretation of the Ghiselin-Reiss hypothesis according to which small males evolve if male reproductive success is a function of scramble competition for mating opportunities with females (Ghiselin 1974, Reiss 1989). The rate at which returns on reproductive investments are diminishing will depend on the intensity of male-male competition or sperm competition: e.g., if sperm competition is low, a focal male needs relatively less sperm to fertilize the same amount of eggs, resulting in more strongly diminishing returns of investing in sperm production.

Scramble competition and the differential mortality model. Scramble competition for limited mating opportunities has been argued to increase male-male competition and therefore lead to increased male body size (e.g., Parker 1992). Male-male competition can be inferred from the operational sex ratio (OSR), i.e., the local ratio of sexually active males to fertilizable females (Kvarnemo and Ahnesjo 1996). Higher OSRs (more active males per fertilizable female) will increase scramble competition and select for males with higher male reproductive investment. Higher male reproductive investment, however, typically comes at a mortality cost and might therefore compensate for the skewed OSR (Kokko and Jennions 2008). The competition-induced mortality corresponds to the differential mortality model (DMM; Vollrath and Parker 1992), which we account for in our model through additional male mortality as function of increased reproductive activity (i.e., prolonged spawning durations ). The additional male mortality skews OSRs towards females and therefore relaxes gamete competition and sexual selection (Parker 1992, Vollrath and Parker 1992, Okuda 2011), from which smaller males might be expected – which is the basis of the expectation resulting from the DMM. The scramble competition caused by a male-biased OSR might thus typically be neutralized because the OSR induces frequency-dependent selection for increased male investment, and since this investment increases male mortality, the OSR is pushed back towards 1 again (Kokko and Jennions 2008), and does therefore not necessarily lead to an expectation of larger males. Yet, the mortality effect results in larger males due to competition-independent effects. The additional male mortality leads to increased energy acquisition and delayed maturation: Males take the risk of increased mortality on the spawning ground (resulting from both natural mortality and fishing mortality) only if this risk is balanced by fitness gains through high reproductive success attained at relatively larger sizes. In this sense, the DMM has to be rejected as the direct cause of female-biased SSD. But the DMM might be part of the justification of the diminishing returns: since additional male mortality skews OSRs and consequently relaxes gamete competition, it might be one of the mechanisms due to which male reproductive returns are diminishing. It is, however, not the mortality effect itself that leads to smaller males, but its potential to neutralize scramble competition. Male-male competition might also be offset if males develop alternative mating tactics such as sneaking (Parker 1990), but such behaviors were not in the scope of this study.
In the case presented here, mortality causes males to evolve to larger sizes because it selectively applies only to adults. The result would not be the same if the mortality applied equally over the entire lifespan. The mortality effect found here is in line with the general finding that increasing adult mortality results in delayed maturation (Law and Grey 1989, Ernande et al. 2004) and with similar results from eco-genetic models, in which later maturation is observed when a fishery mainly harvests on a stock’s spawning ground compared to harvesting the same population on its feeding ground ( Dunlop et al. 2009b, Jørgensen et al. 2009, Heino et al. 2015).
Extrapolation of results. Diminishing returns of male reproductive investment (mechanism M2) might be the evolutionary cause of female-biased SSD in other species as well, in which mating opportunities are limited and/or limited male-male competition occurs (see Webb et al. 2007 for a review of female-biased SSD). In contrast, mating systems with strong male-male competition for access to females ready to reproduce may be conceived as systems where males get an increasing return from reproductive investment, and consequently a male-biased SSD will evolve. The evolutionary cause of SSD might generally lie in the difference in reproductive investment returns in the broad sense between males and females (Fig. 5): the sex with the steeper fitness returns will evolve to have larger body size. Factors in female life history might also determine the difference in steepness between males and females (Fig. 5): returns on female reproductive investment will, for instance, increase with body size, as their fecundity and offspring survival increase with body size (e.g., Trippel et al. 2004); multiple egg batches spawned over the spawning period will increase the probability that at least some larvae will encounter favorable environmental conditions; and high gamete survival will enhance the effect of low sperm competition and thus accentuate the diminishing returns (Lehtonen and Kokko 2010). In summary, all of the following factors will contribute to diminishing fitness returns in males relative to females, and hence, result in female-biased SSD: limitation of mating opportunities, low level of sperm competition (possibly mediated partly through differential mortality), high fertilization probability, and maternal size effects.
Furthermore, it might be a general pattern that mortality rates between the sexes differ due to reproduction. Differences in sex-specific mortality rates will likely be due to reproductive behavior, and the different sexes will likely behave equally in their juvenile phases (e.g., Henderson et al. 2003). And mortality on the adult part of a population has been shown to delay maturation and increase body sizes evolutionarily, both in theory and in practice (Law and Grey 1989, Ernande et al. 2004, Jørgensen et al. 2007, Heino et al. 2015). That differential male mortality – although partly justifying a diminishing return in reproductive investment by relaxing competition – leads to larger size and delayed maturation, might therefore also be a general result.

Model fit. The above findings, in conjunction with the empirical evidence for the life history of North Sea, plaice corroborate that the combination M1ab2 of mechanisms is the best choice to model and understand the SSD in this population. Mechanism M2 is required to obtain a female-biased SSD, and mechanisms M1a and M1b are needed to match the observed reproductive investments , which would otherwise be too high:








Under exploitation, the lower relative reproductive investment  in males is caused by the time costs (mechanism M1a) and mortality costs (mechanism M1b) of spawning, but not by the diminishing-return mechanism M2 (Figs 4 & 5). Reproductive investment  depends on metabolic rates (, ) and the onset of maturation (, eq. 3), and since the energy-acquisition rate  increases under mechanisms M1a and M1b, the decrease in relative reproductive investment  must be due to a lower reproductive-investment rate , driven by the costs imposed by mechanisms M1a and M1b. Although not causing SSD, the mechanisms of time costs (M1a) and mortality costs (M1b) therefore help to improve the fit with the empirical data under mechanisms M1ab2.
For sizes around maturation, the model fit for males could be improved further by including a switch in energy acquisition after maturation. While males might grow fast before maturation to outgrow the predation-size window and thus reduce their size-dependent predation risk, they may reduce their energy acquisition thereafter (Henderson et al. 2003, Rennie et al. 2008). Modelling such a switch in energy acquisition after maturation would therefore make biological sense and improve our model’s fit to the empirical data by avoiding the overestimation of male size around maturation, but it would also add complexity to our already complex model, to an extent that was deemed unnecessary for the scope of this paper.


Effect of fishing. Our results are consistent with predictions from similar models that fisheries-induced evolution leads to a faster pace of life, namely to faster growth, higher reproductive investment, and earlier onset of maturation (e.g., Dunlop et al. 2009a, Enberg et al 2009). Exploitation affects SSD by differentially affecting the evolution of these traits in males and females, due to the sex-specific tradeoffs shaping SSD. Such differential evolution will, however, depend on the balance between the mortalities caused by spawning, predation, and exploitation, and might further differ because of other species-specific causes. The effects of the energy-acquisition rate  and the reproductive-investment rate  on body size are opposite to each other, and changes in SSD thus depend on the strength of selection on each.
If SSD was simply defined based on the ratio of the asymptotic size between the sexes, one would have to conclude that SSD always decreases due to exploitation (Table 2). However, in contrast to the hypothetical asymptotic size, which is never reached, such a monotonic dependence on fishing mortality might not apply at intermediate ages, to which a substantial fraction of individual might survive (e.g., age 6 yr; Table 2). Also the sexual dimorphism in length at maturation does not increase monotonically when fishing mortality is raised (Table 2). Such non-monotonic effects might be due to thresholds in the fitness landscape and the correlation of traits. For example, as soon as maturation evolves to occur at sizes below the size at which fish are vulnerable to fishing, an additional selection pressure is expected to kick in for not growing beyond this size, which can be achieved by adaptations of energy acquisition and reproductive investment.
Our model calibration assumes that the historic and current populations of North Sea plaice are at evolutionary equilibrium under a constant fishing mortality and selectivity. However, the ongoing decrease in the PMRN of North Sea plaice (Grift et al. 2003, 2007, Van Walraven et al. 2010) suggests that the current population is still under fishing-induced selection pressures, and thus keeps evolving. Relaxing the assumption of evolutionary equilibrium would affect the calibration and consequently also retrospective or prospective predictions. But since we focused on the causes of SSD in the time window within which the model was calibrated, the assumption of evolutionary equilibrium is not expected to distort the results and conclusions for SSD.
Conclusions. Our results may provide an evolutionary explanation for female-biased SSD in species that have a similar mating system as North Sea plaice. We reject the hypothesis that smaller males evolve due to higher activity costs during reproduction and suggest that female-biased SSD is instead caused by diminishing returns of increased reproductive investments in males relative to females. The evaluated mechanisms provide an evolutionary explanation of the Ghiselin-Reiss hypothesis (Ghiselin 1974, Reiss 1989) and elucidate that the differential mortality model (DMM; Vollrath and Parker 1992) is unlikely as a direct cause of female-biased SSD. Our study presents the first eco-genetic model fitted in such detail to empirical estimates of age-specific empirical data of size, maturation probability, and reproductive investment for males and females. Since our model captures key demographic processes and can reproduce empirical data for both present and historic populations of North Sea plaice, it provides a method for assessing the evolutionary impacts caused by the North Sea plaice fishery (Jørgensen et al. 2007, Heino et al. 2015). The modeling framework introduced here could therefore become a powerful tool for exploring and evaluating alternative management measures to mitigate fisheries-induced evolution, supporting a modern Darwinian approach to fisheries management (Laugen et al. 2014).
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Table 1: Average phenotypic values of the four evolving life-history traits in an unexploited population ( yr-1) and the exploited population ( yr-1) at the respective evolutionary equilibria for the various considered mechanisms explaining sexual size dimorphism (SSD). Evolving traits: spawning duration , energy-acquisition rate , reproductive-investment rate , and PMRN intercept . The third column explains how the considered mechanisms, or combinations thereof, are impacting the modeling of male life histories.
	Sex
	Mechanism
	Modelling implications
	Unexploited population
	Exploited population

	
	
	
	

[yr]
	

[g1/4 yr-1]
	

[yr-1]
	

[cm]
	

[yr]
	

[g1/4 yr-1]
	

[yr-1]
	

[cm]

	Female
	Absence of all mechanisms M1, M1a, M1b, and M2.
	None.
	0.125
	5.59
	0.233
	50.6
	0.125
	5.88
	0.421
	25.4

	Male
	M1: male fitness affected by diminishing returns of behavioral (time) investments.
	



Spawning duration  evolves. Male reproductive success  influenced by diminishing returns  of spawning duration, while  (eqs 4).
	0.282
	5.77
	0.288
	50.8
	0.342
	5.94
	0.454
	28.8

	Male
	M1a: male fitness affected by growth costs of behavioral (time) investments.
	




 Spawning duration  evolves. Male reproductive success  influenced by diminishing returns  of spawning duration, while  (eqs 4). Male growth reduced according to spawning duration  (eq. B.1.2).
	0.242
	5.78
	0.267
	48.6
	0.272
	5.94
	0.372
	29.8

	Male
	M1b: male fitness affected by mortality costs of behavioral (time) investments.
	



Spawning duration  evolves. Male reproductive success  influenced by diminishing returns  of spawning duration, while  (eqs 4). Male mortality raised according to spawning duration (eqs 5).
	0.228
	5.88
	0.239
	59.4
	0.314
	6.00
	0.411
	33.4

	Male
	M1ab: male fitness affected by growth and mortality costs of behavioral (time) investments.
	
Same as above while male growth reduced according to spawning duration  (eq. B.1.2), and male mortality raised according to spawning duration (eqs 5).
	0.192
	5.891
	0.213
	58.7
	0.242
	6.01
	0.331
	33.2

	Male
	M2: male fitness affected by diminishing returns of reproductive (energy) investments.
	


Male reproductive success  influenced by diminishing returns  of reproductive investment, while  (eqs 4).
	0.125
	5.50
	0.232
	33.6
	0.125
	2.85
	0.471
	8.12

	Male
	M1ab2: combination of all mechanisms M1, M1a, M1b, and M2.
	




Spawning duration  evolves. Male reproductive success  influenced by diminishing returns  of spawning duration and by diminishing returns  of reproductive investment (eqs 4). Male growth reduced according to spawning duration  (eq. B.1.2) and male mortality raised according to spawning duration (eqs 5).
	0.175
	5.28
	0.230
	34.3
	0.223
	5.21
	0.32
	15.6




Table 2: Population averages of emergent metrics describing SSD in the unexploited, historic, and present populations considering mechanisms M1ab2. In parentheses, the SSD in each metric is summarized by the ratio of the male value to the female value, .
	Metric
	Symbol
[unit] 
	Sex
	Unexploited
population
	Historic
population
	Present
population

	Asymptotic length
	
 [g]
	



	59.8
56.9
	(95%)
	49.8
45.9
	(92%)
	48.7
47.9
	 (98%)

	Length at age 6 yr
	
 [g]
	



	30.4
27.1
	(89%)
	37.2
29.5
	(79%)
	37.6
30.4
	(81%)

	Age at maturation
	
 [yr]
	



	9.6
7.1
	(74%)
	5.6
4.4
	(79%)
	4.1
3.1
	(76%)

	Length at maturation
	
 [cm]
	



	48.1
32.8
	(68%)
	35.2
24.2
	(69%)
	31.2
19.9
	(64%)

	Relative reproductive investment at age 6 yr
	

[-]
	



	0.105
0.097
	(92%)
	0.167
0.112
	(67%)
	0.182
0.110
	(60%)




FIGURES
Figure 1: Energy allocation model used to explore potential mechanisms leading to female-biased sexual size dimorphism (SSD). Acquired energy is first used for maintenance and reproductive investment, with the remainder being available for somatic growth. The resultant female base energy allocations are shown in light grey. Male growth might be reduced if (1) more energy is spent for reproductive investment than in females due to an additional male behavioral investment, or (2) less energy is acquired than in females, while the other metabolic rates stay equal. The resultant male energy allocations are shown in dark grey, superimposed on the ones for females. Complementing the mechanism M1, time costs (M1a) and mortality costs (M1b) of prolonging the male spawning season are also considered.
[image: ]
Figure 2: Illustration of the individual-based eco-genetic model underlying this study’s analyses. Male and female individuals inherit and express evolving traits based on which they undergo life cycles involving growth, maturation, mate selection, reproduction, and mortality. The resultant population is updated annually and feeds back on individual life histories through frequency dependence and density dependence. Most of the life-history processes are modelled stochastically.

[image: ]


Figure 3: Comparison of model predictions with empirical observations. Average lengths at age (black; left vertical axes), PMRN midpoints at age (magenta; left vertical axes), and relative reproductive investments at age (cyan; right vertical axis) from empirical data (dashed lines) and model predictions using mechanisms M1ab2 (continuous lines) for females (thick lines) and males (thin lines) of the historic population (left panel) and the present population (right panel). To be comparable with gonadosomatic indices, reproductive investments were scaled to the energy-equivalent female gonadic weights.
[image: ]





Figure 4: Size at age (black), PMRN midpoints (magenta) and relative reproductive investment  in % of somatic weight (cyan lines) of females (thick lines) and males (thin lines) resulting from the competing hypothesized mechanisms potentially leading to female-biased SSD: benefits of increased male behavioral investments traded-off against growing season length and mortality costs (M1ab, left panel), the diminishing return of male reproductive investment (M2, right panel). The effects of these mechanisms are given for the unexploited ( yr-1, upper panel) and the exploited ( yr-1, lower panel) population.
[image: ]





Figure 5: Effects of the six mechanisms M1, M1a, M1b, M1ab, M2, and M1ab2 (see text) on three metrics of SSD. The three panels show (from left to right) the weight at age 6 yr (), the PMRN intercept (), and the relative reproductive investment at age 6 yr (). The effects of each considered mechanism on the male metrics (crosses) are shown relative to the corresponding female metrics (filled circles at 100%).

 

Figure 6: Differences in fitness returns of reproductive investment between males and females and consequences for SSD. The sex with the steeper fitness return will evolve to larger body size. For the sake of illustration, the female fitness return is shown to increase linearly with reproductive investment, but it might take any other monotonically increasing form.

[image: ] 

APPENDICES
APPENDIX A: MODEL DETAILS






Energy allocation. Growth is derived from metabolic energy allocation (Von Bertalanffy and Pirozynski 1952, West et al. 2001) assuming an allometric relation of energy acquisition  with body weight  that fits well theoretically (West et al. 1997) as well as empirically to North Sea plaice (Fonds et al. 1992) as described in the text (eqs 1). Reproduction is prioritized over growth. If the acquired energy cannot cover maintenance costs, the individual does neither grow nor reproduce and experiences starvation mortality (eq. A12). To predict individual growth in each year, the time-continuous energy-allocation model (eqs 1) is used to obtain a time-discrete model with annual time steps, by expressing the somatic weight  at age  yr as a function of the somatic weight  at age  yr at the start of the growing season,

				for juveniles,				(A1.1)

		for adults.				(A1.2)



No energy is allocated to somatic growth in adults during the spawning duration  while maintenance is covered by stored energy resources. An individual’s reproductive investment  at age  yr consists of its gonadic and behavioral investment and is obtained by integrating its reproductive-investment rate, which is proportional to its weight, over the growing season according to eqs 1,



													(A2)


For males,  is replaced with  in eqs A1 and A2, to reflect their extra behavioral cost of reproduction. The following allometric length-weight relationship applies to post-spawning individuals whose gonads and energy reserves have been emptied,

.											(A3)



Since the model is implemented in annual time steps, variation in the length-weight relationship over the year is irrelevant. Growth is density-dependent because of intraspecific competition for food. The energy-acquisition rate  can maximally reach its genetically determined value  and decreases with the modeled population’s total biomass ,

.											(A4)




Maturation. The PMRN is determined by an intercept  and a slope  defining the age-specific PMRN midpoints  according to eq. 2. The probability of maturing at a given age  yr is assumed to increase logistically with size,
									(A5)


For simplicity, the PMRN slope and the PMRN width  relative to the PMRN midpoint  are assumed to be constant ()





Reproduction. The number of recruits  surviving to age  yr is given by a Beverton-Holt-type stock-recruitment relationship and depends on total fecundity, given by the sum of reproductive investment  of all  mature females, assuming a constant egg weight ,

.									(A6)

Reproductive success increases linearly with reproductive investment  in females (eq. A7),

,											(A7)



but nonlinearly in males, for which additionally spawning duration  matters (eqs 4): since the probability of successful mating decreases before and after peak spawning and since mating opportunities are limited, there are diminishing returns of increasing spawning duration  (eq. 4.3) and of increasing reproductive energy investment  (eq. 4.2).











Mortality. Fish are exposed to both natural mortality and fishing mortality; see Fig. A1 for the resulting mortality patterns. The natural mortality rate  is given by a baseline mortality (size-dependent baseline predation  included in  and size-independent baseline mortality  from diseases and parasites  included in , see below), predation mortality  caused by foraging (growth-survival tradeoff), mortality  due to reproduction (reproduction-survival tradeoff), and starvation mortality  (eq. A10-12; compare to male mortality rates in eqs 5). Due to their spawning activity, males are more vulnerable and suffer from additional predation mortality (baseline predation mortality increased by a factor of , eq. 5.1) and additional fishing mortality (fishing mortality increased by a factor of , eq. 5.2) during the spawning duration ,

,										(A8)

.											(A9)



Data and theory suggest that the predation-mortality rate in marine systems allometrically scales with body size  (Peterson and Wroblewski 1984, Brown et al. 2004, Savage et al. 2004). Since higher potential energy-acquisition rates  induce higher foraging rates and thus a higher risk of exposure to predators, the predation mortality rates increase with the genetic energy-acquisition rate ,

 											(A10)






An absence of foraging () results in a baseline predation mortality of . Depletion of stored energy due to reproduction may result in a lower survival probability (e.g., Hutchings 1994). The mortality rate due to reproduction is therefore assumed to increase with the stored relative reproductive energy investment , with the baseline mortality rate  due to disease and parasites thus being given by setting ,

.											(A11)

If individuals do not acquire sufficient energy to cover their maintenance costs, i.e., if , they starve at an instantaneous mortality rate proportional to the rate of energy loss per unit of somatic weight,
									(A12)





The fishing mortality rate  is determined by a maximum  and mesh selection with mesh size , selection factor , and selection range  (Sparre and Venema 1998),

.											(A13)









Inheritance & expression. The four evolving traits – energy-acquisition rate , PMRN intercept , reproductive allocation , and spawning duration  – are individually inherited. Parents for each offspring are selected using a von Neumann rejection algorithm (Von Neumann 1951) based on their reproductive success (eqs 7 and A4). The inherited genetic trait values  (where  denotes any evolving trait) are sampled from a normal distribution  with a mean given by the mid-parental value (defined as the arithmetic mean of the maternal and paternal genetic trait values, ) and a variance derived from the population’s current mean of  and a constant coefficient of variation,

.							(A14)




These genetic trait values  are expressed as phenotypic trait values  by sampling from a normal distribution with a mean given by the genetic trait value and a variance derived from  and the narrow-sense heritability ,

.							(A15)
The environmental effect of phenotypic variability is given by the narrow-sense heritability, as we assume heritability to be constant and at a level generally expected for various life-history traits in fish (Roff 1991).
APPENDIX B: EMPIRICAL DATA


Size at age was estimated from market data and survey data covering the full age and size range of North Sea plaice and taking account of the size-stratified sampling. Female reproductive investment was estimated as the sum of the ripening ovary weights and migration costs estimated at 13% of the body weight (Mollet et al. 2010). Somatic and reproductive tissue weights were standardized by the conversion ratio  of the energy densities of gonadic to somatic tissue ( for North Sea plaice; Dawson et al. 1980).




Probabilistic maturation reaction norms (PMRNs)  are defined as the probability that an individual is becoming mature conditional on its age and size (Heino et al. 2002, Dieckmann and Heino 2007, Heino and Dieckmann 2008). They were derived from the maturity ogives , denoting the probability that an individual is being mature at age  yr and length ,

,								(B1)





with . While PMRNs in empirical studies are often defined retrospectively, as the probability  of maturing at age  yr as a function of the change in the probability of being mature from age  yr to age  yr (Barot et al. 2004), it is defined here prospectively to facilitate implementing the dependence of growth on maturity,

,								(B2)







where  is the expected length increment from age  yr to age  yr. The PMRN slope (eq. 2) was taken from averaging slopes estimated by decade. The PMRN intercept was then obtained by fitting the linear reaction norm used in modelling (eq. 2) to the estimated PMRN-midpoints () by minimizing least squares for the maturation-relevant ages (ages 3-6 yr), again by decade. The scaling  of the PMRN width is derived from the width  of the maturation envelope (eq. 5) in conjunction with the two maturation probabilities  and  defining the envelope’s upper and lower bounds, respectively,
											(B3)
.										
APPENDIX C: SENSITIVITY ANALYSIS










The life histories generated by the model are most sensitive to changes in the exponent  of the allometric relationship between length and weight (eq. A3), the size-specific maintenance rate  (eqs 1, A1-2), the exponent  of the allometric relationship between predation mortality and weight (eq. A10), the parameters  and  of the growth-survival tradeoff (eq. A12), and the parameters determining fishing mortality,  and  (eq. A13, Fig. A2). Of these parameters shared by both sexes, only  has opposite sex-specific effects, due to male spawning mortality. For males, the life history is additionally sensitive to the proportionality constant  (eq. 4.4) and the diminishing-return constant  (eq. 4.3). Generally, changes resulting in larger size at age also result in higher reproductive investment and later maturation, and vice versa (Fig. A2).

TABLES IN APPENDIX
Table A1: Model variables, including evolving traits and emergent individual-level or population-level characteristics changing with the evolving traits and/or the environment.
	
	
	Symbol
	Description
	Unit

	Structure
	
	

	Age (time after birth)
	yr

	
	
	

	Somatic weight
	g

	
	
	

	Body length
	cm

	Evolving traits
	Energy allocation
	



	Size-specific phenotypic (realized) energy-acquisition rate
Size-specific genetic (potential) energy-acquisition rate
	g1/4 yr-1

	
	
	

	Size-specific (phenotypic) maintenance rate
	yr-1

	
	
	

	Size-specific (phenotypic) reproductive-investment rate
	yr-1

	
	
	

	Probabilistic maturation reaction norm (PMRN) intercept
	cm

	
	
	

	Spawning duration
	yr

	Emergent traits
	Maturation
	

	Age- and size-specific probability of maturation
	-

	
	
	

	

Age-specific PMRN midpoint: length at which the maturation probability  equals 50% at age 
	cm

	
	
	

	

PMRN width: distance between symmetric maturation probabilities  and 
	cm

	
	Reproduction
	

	Annual size-specific reproductive investment in terms of its energy-equivalent somatic weight: energy spent for reproduction including a gonadic as well as a behavioral investment
	g

	
	
	

	
Female reproductive success of individual 
	-

	
	
	

	
Male reproductive success of individual 
	-

	
	
	

	Fitness return from reproductive energy investment
	-

	
	
	

	Fitness return from reproductive time investment
	-

	
	Mortality
	

	Instantaneous natural mortality rate in females
	yr-1

	
	
	

	Instantaneous natural mortality rate in males
	yr-1

	
	
	

	Instantaneous fishing mortality rate in females
	yr-1

	
	
	

	Instantaneous fishing mortality rate in males
	yr-1

	
	
	

	Instantaneous predation mortality rate including baseline predation and foraging predation increasing with the energy-acquisition rate (growth-survival tradeoff)
	yr-1

	
	
	

	Instantaneous mortality rate due to reproduction (reproduction-survival tradeoff)
	yr-1

	
	
	

	Instantaneous starvation mortality rate
	yr-1

	
Individual
	Inheritance
	

	
Genetic and phenotypic values of trait 
	Trait-specific 

	
	
	

	
Maternal and paternal values of trait 
	Trait-specific

	Population
	
	

	
Population mean of genetic trait 
	Trait-specific

	
	
	

	
Population variance of genetic trait 
	Trait-specific

	
	
	

	
Part of phenotypic variance caused by environmental variability of trait 
	Trait-specific

	
	Abundance
	

	Biomass of individuals (< 25 cm) competing for resources 
	g

	
	
	

	Number of adult females
	-

	
	
	

	Number of adult males
	-

	
	
	

	Number of recruits
	-

	
	Fit
	

	Deviation between model predictions and empirical estimates
	-



Table A2: Model parameters. Reference: value taken from the indicated reference. Direct estimation: value estimated directly from individual-level data (on size, age, and maturity) from market samples and scientific surveys (see section on empirical data). Calibration: no empirical data available, value calibrated to provide the best fit to population-level data (see section on model calibration).
	
	Symbol
	Description
	Source
	Value
	Unit

	Energy allocation and maturation
	

	Size-specific maintenance rate (eqs 1, A1-2)
	Mollet et al. (2010)
	0.6
	yr-1

	
	



	Male PMRN slope (eq. 2)
Female PMRN slope (eq. 2)
	Direct estimation
	-0.5
-1.34
	cm yr-1

	
	
	
Scaling of PMRN width  (eq. B3)
	Grift et al. (2003)
	0.11
	cm

	
	



	Parameters of length-weight allometry (body condition and scaling, eq. A3)
	Rijnsdorp (1990)
	0.01
3.0
	g cm-β
-

	
	



	Parameters of density dependence (eq. A4)
	Calibrationa
	9.6 10-7
10.82
	g-1
-

	Reproduction
	

	Egg weight (eq. A6) 
	Direct estimation
	4.2 10-3
	g

	
	



	Parameters of stock-recruitment function (eq. A6)
	ICES (2008)
	8 103
1 106
	-
-

	
	

	Spawning period resulting in half-maximal success of spawning-duration (time) investment (eq. 4.2)
	Calibrationb
	0.11
	yr

	
	

	Reproductive investment resulting in half-maximal success of gonadic (energy) investment (eq. 4.3)
	Calibrationb
	47.0
	g

	
	

	Proportionality constant linking spawning duration to reproductive-investment rate (eq. 4.4)
	Calibrationb
	1.45
	yr-2

	
Natural mortality
	

	Instantaneous  total natural mortality rate for an average-sized female at age 6 yr (eq. A8)
	Beverton (1964)
ICES (2008)
	0.1
	yr-1

	
	

	Parameter to differentiate instantaneous male and female natural mortality rates on the spawning ground due to increased male activity (eq. 5.1)
	Beverton (1964)
	1.41
	g1/4 yr-2

	
	

	Instantaneous baseline predation mortality rate (eq. A10)
	Calibrationa
	1.25 10-4
	g1/4 yr-1

	
	

	Parameter in growth-survival tradeoff (eq. A12)
	Calibrationa
	1.28
	g-1/4 yr

	
	

	Allometric exponent of instantaneous predation mortality rate (eq. A12)
	(Peterson and Wroblewski 1984)
Brown et al. (2004)
	-0.25
	-

	
	

	Instantaneous baseline mortality rate (eq. A11)
	Calibrationa
	0.009
	yr-1

	
	

	Parameter in reproduction-survival tradeoff (eq. A11)
	Calibrationa
	9.4
	-

	
	

	Starvation mortality rate constant (eq. A12)
	Schultz et al. (1999)
	5.0
	g-1

	Fishing mortality
	

	Parameter to differentiate male and female instantaneous fishing mortality rates on the spawning ground due to increased male activity (eq. 5.2)
	Rijnsdorp (1993)
	1.75
	-

	
	



	Instantaneous maximum fishing mortality rate in the present population (P) and historic population (H) assuming evolutionary equilibrium (eq. A13)
	Calibrationa
Calibrationa
	0.37
0.27
	yr-1
yr-1

	
	

	Fishing-selectivity constant (eq. A13)
	Van Beek et al. (1983)
	0.594
	cm-1

	
	

	Mesh-size selection factor (eq. A13)
	Van Beek et al. (1983)
	2.2
	-

	
	

	Mesh size (eq. A13)
	Van Beek et al. (1983)
	8.0 
	cm

	Inheritance
	

	Coefficient of variation of evolving traits (eqs A14-15)
	Grift et al. (2003)
Mollet et al. (2010)
	0.1
	-

	
	

	Heritability of evolving traits (eq. A15)
	Roff (1991)
	0.24
	-
















a These parameters were calibrated based on the listed directly estimated parameter values by applying the following search grid:  = 0, 0.1, …, 0.5 yr-1;  = 1, 1.01, …, 1.5 g-1/4 yr; and  = 5, 5.2, …, 15. For each parameter combination on this grid,  and  were determined assuming that the natural-mortality rate  equals 0.1 yr-1 (ICES 2011) and that the reproduction-mortality rate  and the foraging-mortality rate  equally contribute to  for a female with average traits at age 6 yr. To estimate  and , a search grid was applied for the reduction of energy acquisition due to density dependence in the historic population state:  = 0.5, 0.51, …, 1. Assuming that there was no such reduction in the present population state,  and  were then determined from the two corresponding instances of eq. A4.



b These male-specific parameters were calibrated based on all other listed parameter values by applying the following search grid:  = 0, 0.1, …, 0.4 yr;  = 0, 1, …, 100 g; and  = 1.00, 1.01, …, 2.00 yr-2.


FIGURES IN APPENDIX
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Figure A1: Composition of average mortality at age. Instantaneous mortality rates are shown for females (top row) and males (bottom row) in the historic population (left column) and present population (right column). Males suffer higher overall mortality due to the exposure to predators and fishing during spawning (fishing and spawning), higher predation mortality due to smaller size at age (predation), but lower foraging mortality due to lower energy-acquisition rates (foraging) and lower reproduction mortality due to lower reproductive investment (reproduction).

[image: ]




Figure A2: Sensitivity analysis of key model results. The three columns are showing the relative effects of changes in model parameters on three metrics: weight  at age 6 yr (left column), weight  at maturation (middle column), and relative reproductive investment  at age 6 yr (right column) for females (top row) and males (bottom row). Light-grey bars: effects of a 10% decrease in the parameter. Dark-grey bars: effects of a 10% increase in the parameter. Only those parameters are displayed that have an effect of more than 10% (with these thresholds indicated by the dotted vertical lines) for at least one of the shown metrics of the female or male life history.
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