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Abstract53

Global change alters ecological communities with consequences for ecosystem processes. Such processes and54

functions are a central aspect of ecological research and vital to understanding and mitigating the consequences55

of global change, but also those of other drivers of change in organism communities. In this context, the56

concept of energy flux through trophic networks integrates food-web theory and biodiversity-ecosystem57

functioning theory and connects biodiversity to multitrophic ecosystem functioning. As such, the energy flux58

approach is a strikingly effective tool to answer central questions in ecology and global-change research. This59

might seem straight forward, given that the theoretical background and software to efficiently calculate energy60

flux are readily available. However, the implementation of such calculations is not always straight forward,61

especially for those who are new to the topic and not familiar with concepts central to this line of research,62

such as food-web theory or metabolic theory. To facilitate wider use of energy flux in ecological research, we63

thus provide a guide to adopting energy-flux calculations for people new to the method, struggling with its64

implementation, or simply looking for background reading, important resources, and standard solutions to65

the problems everyone faces when starting to quantify energy fluxes for their community data. First, we66

introduce energy flux and its use in community and ecosystem ecology. Then, we provide a comprehensive67

explanation of the single steps towards calculating energy flux for community data. Finally, we discuss68

remaining challenges and exciting research frontiers for future energy-flux research.69

Keywords: food web, networks, multitrophic ecosystem functioning, community ecology, energy flow, BEF70
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A) Introduction71

Global biodiversity is changing with consequences for the functioning of ecosystems and the services they72

provide to humanity (Cardinale et al. (2012), Díaz et al. (2019)). To assess the potential consequences of this73

biodiversity change, much research has focused on the relationship between the biodiversity and functioning74

of ecosystems (Loreau et al. (2001), Hooper et al. (2005), Balvanera et al. (2006), Cardinale et al. (2012)).75

Strikingly, interaction networks of organisms play a key role in connecting community structure and diversity76

to ecosystem functioning (Brose et al. (2016), Eisenhauer et al. (2019)). In this respect, trophic networks77

(i.e. food webs) have been used to connect structure and function in ecology (Odum, Connell & Davenport78

(1962), Odum (1968), Thompson et al. (2012)) by connecting multidiversity to multifunctionality through79

trophic interactions (Barnes et al. (2018)). The interaction structure (network topology) alone - who eats80

whom - can tell us a lot about the properties of the community (e.g. its stability, MacArthur (1955), Neutel,81

Heesterbeek & Ruiter (2002)). However, the consideration of quantitative networks, describing the strengths82

of interactions between the trophic nodes linked to each other in such food webs, enables us to infer rates of83

ecological processes (Odum (1968), Barnes et al. (2018), Potapov et al. (2019a)) thus providing answers not84

only on the “who” interacts with each other but also to the “how much” do they interact. This additional85

layer of information enables us to combine structure and function, connecting diversity and composition86

to ecosystem processes and services, in order to more comprehensively answer big questions in ecological87

research.88

One exciting way of connecting multitrophic biodiversity to multifunctionality by using such quantitative89

networks is calculating energy fluxes through interaction networks (Lindeman (1942), Odum (1968), O’Neill90

(1969), Hunt et al. (1987), Ruiter et al. (1993), Barnes et al. (2018)). By combining food-web theory with91

metabolic theory (Barnes et al. (2018)), this approach allows the quantification of the energetic backbone for92

a given community. Specifically, the method allows the estimation of energy transfer from one node (e.g.,93

species) in the food web to another. The information drawn from such energy-flux calculations can be used94

as efficient proxies for many different ecosystem processes (Odum (1968)) with many being directly related to95

functions and services (Schwarz et al. (2017), Barnes et al. (2018), Potapov et al. (2019a)). For example, the96

combined flux of energy to all predators, herbivores, or decomposers in a community can serve as a proxy97

for predation, herbivory, or decomposition, respectively (Barnes et al. (2018), Potapov et al. (2019a)). As98

such, energy flux represents an inherently multitrophic concept of assessing ecosystem processes that enables99

us to study the relationship between multitrophic biodiversity and ecosystem functioning (BEF, Barnes et100

al. (2014)) or the altered performance of ecosystems under different climate regimes (Sohlström et al. et101

al. in prep.), and perturbations (Schwarz et al. (2017)). It also allows the assessment of top-down versus102

bottom-up forcing in a system (Barnes et al. (2020)). Moreover, single energy fluxes can jointly be used to103

calculate trophic multifunctionality (Potapov et al. (2019a)) or be combined with other, non-trophic, processes104

to gain a more general picture of ecosystem multifunctionality (Barnes et al. (2018)). Combining such105

information on trophic and non-trophic processes with scenarios of ecosystem function or service weightings106

preferred in a given context (e.g. by relevant stakeholders), will be a powerful tool for effective management107

of multifunctional landscapes (Allan et al. (2015)) or to make informed decisions in regard to conservation.108

More generally, energy flux can be used as a universal currency of ecosystem functioning that can be compared109

across different ecosystem types providing different functions that would otherwise be hard, if not impossible,110

to compare (Odum (1968), Barnes et al. (2018)). Additionally, the approach allows the quantification of111

processes that are usually hard to measure. For example, many underground processes or the herbivory112

of sucking insect herbivores are hard to quantify with common methods. Instead, such processrates can113

be inferred from calculations of energy flux between the relevant species groups in the system (Barnes et114

al. (2020)). When interested in such hard-to-assess processes, in ecosystem multifunctionality, or simply115

many different functions carried out by a specific target community, it will often be easier to assess various116

measurable attributes of the community, which can then be used to calculate energy fluxes, than measuring117

the rates of all the processes they are supporting. Moreover, given that investigators often measure proxies118

of the truly desired ecosystem processes (e.g. chewing-herbivore damage as a proxy of overall herbivory),119

calculated energy fluxes are not necessarily less accurate than direct measurement of such proxies. Energy-flux120

calculation is based on the mere presence of the organisms, which implies their energy consumption in that121
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system (they are alive, so their minimum energy demand must be met). As such, quantifying the present122

community and their interaction network allows the calculation of the energy flux through the community that123

is needed to maintain the energy demand they have for being alive. Calculating energy flux through ecological124

communities requires a combination of information on the focal community (Moore & Ruiter (2012)), such125

as the organisms it comprises and their trophic interactions, their body mass, metabolic demand, network126

topology, feeding preferences, and trophic efficiency. While this may sound like very detailed, hard-to-obtain127

information, different levels of resolution are possible to obtain and consider for each of these aspects. For128

most aspects, there are reliable literature-based parameters to calculate them based on relatively simple129

measurements. Here, we provide guidance on the sources of such parameters and what needs to be considered130

when using this kind of information for energy flux calculations131

The complexity and importance of assessing the flow of energy through ecological networks has been recognized132

for thousands of years (Moore & Ruiter (2012)). The theoretical foundation of energy flux based on both133

food-web theory and biodiversity-ecosystem functioning theory has been discussed (Lindeman (1942), Odum134

(1968), O’Neill (1969), Hunt et al. (1987), Ruiter et al. (1993), Barnes2018), and there are various example135

studies of how energy flux can be used to study important ecological questions (Barnes et al. (2014), Neutel136

& Thorne (2014), Schwarz et al. (2017)). There are methodological papers providing software to efficiently137

and effortlessly compute energy flux once the necessary data are available (Gauzens et al. (2018)). However,138

the methodological details and decisions along the way towards successfully calculating energy flux can be139

challenging and may hinder progress in this field. This is particularly the case for those new to the topic, or140

those with challenging or unusual projects such as, for example, projects focusing on ecosystem types or taxa141

receiving comparatively little attention so that the necessary data on various aspects (metabolism, topology,142

preferences) will be hard to find. Previous reports have listed the multiple steps towards calculating energy143

flux (Barnes et al. (2018)) but, given their scope, could not comprehensively answer the question of how144

to obtain the necessary data or make informed decisions along the way. Most of the steps either require145

some in-depth knowledge of the target system and community and/or some guidance on where to find the146

respective information. However, to date, a comprehensive manual of how to address these challenges and a147

general introduction and critical discussion of the single aspects needed to calculate energy flux is lacking.148

This paper aims to fill this gap by providing a step-by-step explanation of the (most) critical steps towards the149

calculation of energy flux in complex systems and discussing challenges and research frontiers for this subject.150

We aim to cover a set of default steps that people will have to take in order to successfully calculate energy151

flux based on their community data. For each of the steps, we provide ecological background knowledge on152

why this is important and what we can do to get the most out of the energy flux calculation. We use the153

fluxweb R package and follow the adapted food-web energetics approach of calculating energy flux, which154

bases flux calculations on the energy demand rather than biomass turnover of food-web nodes (Barnes et155

al. (2018)). Note that there are other ways to calculate energy flux in ecological communities, for example156

focusing on biomass turnover and mortality rates, but fluxweb also covers these (Moore & Ruiter (2012),157

Hunt et al. (1987), Ruiter et al. (1993), Buzhdygan et al. (2020)). While this paper focuses on one specific158

approach, many aspects will be just as important for a biomass-turnover centered view. Finally, we highlight159

promising frontiers for future research on using energy flux for community and ecosystem ecology. With this160

paper, we aim to encourage fellow community and ecosystem-ecologists to incorporate energy flux assessments161

into their research and to help them get started on this subject that, intitially, might seem very complex, but,162

once successfully adopted, will open up a whole suite of additional questions that can be answered about163

their target systems.164

B) Practical considerations165

Several methods have been proposed to study energy flux through trophic networks (Reuman & Cohen166

(2005), Pauly, Christensen & Walters (2000), Ulanowicz (2004)). While these have been discussed before167

(Barnes et al. (2018)), we will first explain why we focus on the adapted food-web energetics approach168

here. Subsequently, we will introduce the reader to the general framework of calculating energy flux. The169

proposed methods to calculate energy flux mainly differ in their assumptions and the level of ecological170
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organization (aggregation) at which certain parameter values are obtained and applied (species, ontogenetic171

development levels, body-size groups, trophic levels). The food web energetics approach (O’Neill (1969),172

Hunt et al. (1987), Ruiter et al. (1993), Moore & Ruiter (2012), Barnes et al. (2014), Gauzens et al. (2018))173

is based on biomass stocks, ecological efficiencies (assimilation and production), natural death rates, and174

predation rates. A few decades ago, it was originally used to assess nitrogen and carbon mineralization rates175

through decomposition processes in soil-food webs of different management (Hunt et al. (1987), Ruiter et al.176

(1993)). Later, the approach was adpated to calculate energy flux based on energy demand (metabolism) of177

the sampled community, rather than biomass stocks (hereafter metabolism- vs. biomass-centered approaches),178

in combination with assimilation efficiency and loss to predation (Barnes et al. (2014), Barnes et al. (2018)).179

While the overall concept and framework of assessing energy flux is based on previous work, the main180

advantage of this adapted method is that it additionally takes the body-size structure of the organisms,181

environmental temperature, and taxonomy into account - aspects that heavily influence energy flux because182

of their impact on organism metabolic rates - their energy demand (Barnes et al. (2018)). This is because the183

energy demand of a given biomass of organisms varies with body-size structure and temperature (smaller body184

size and higher temperatures increase energy demands (Brown et al. (2004))). Thus, a metabolism-centered185

view better enables us to take the impact of these biotic and abiotic drivers on energy flux into account.186

Moreover, as there already is a wealth of information on how organism energy demand changes with body187

size and temperature, these recent advances simplify the estimation of the parameters needed for energy-flux188

calculations. The development of the fluxweb R package (Gauzens et al. (2018)) has improved the accessibility189

of energy-flux calculations (for both biomass- or metabolism-centered investigations), so that we will relate190

our description of the single steps of energy flux calculations to how this can be achieved in fluxweb (details191

in the Supplement, full details of package usage are described in Gauzens et al. (2018)).192

To calculate energy flux through a food chain or food web following the adapted food-web energetics approach193

(Figure 1), we need information on the focal community of organisms forming this trophic structure. This194

includes information on who comprises the community (trophic identity of organisms), the energetic demand195

of the organisms (metabolic rates), who eats whom (network topology) to which extent (preferences), and how196

much of the consumed energy can be used by the consumer (assimilation efficiency). Each of these aspects197

represents a gradient such that there is a minimum requirement of input information to calculate energy198

flux (e.g. low resolution, literature-derived information on assimilation efficiencies), but higher-resolution199

information (e.g. high-resolution data, individual-level data, assimilation efficiency measured for the specific200

species relevant in the study context) can always be applied. As there is little information on how the201

resolution of data and shifting along these gradients affect the outcome of energy flux calculations, we suggest202

to use more detailed information where possible, but of course this will usually be constrained by the available203

time, work force (person hours / team size), and project funds. The details of shifting along these gradients204

of varying resolution will be discussed in the specific chapters below.205

In short, to calculate energy flux along a food chain, we start from the top node (terminal compartment sensu206

O’Neill (1969)) and assess how much energy is needed there. Given the assumption of conservation of matter207

and energy flow (Moore & Ruiter (2012)) this energy then needs to come out of the next-lower level. As208

such, it is assumed that the energy demand of organisms at a given level must be met by the energy intake of209

that level, i.e. there is an equilibrium of in- and outflux (O’Neill (1969), Barnes et al. (2018)). Because of210

ecological efficiencies (e.g. consumers cannot use all consumed energy for respiration or to produce biomass -211

some of it is excreted), in order to fulfil its energy demands, every node needs to consume more energy from212

the next-lower node(s) than it actually requires, i.e. there are costs of trophic energy transmission. The energy213

consumed from the lower-level node is then treated as energy loss from this node. This loss to consumption214

is then added to the energy demands of the resource node itself to represent the joint energy loss of this node215

that needs to be compensated by the next-lower level and so on. As such, the predator in Figure 1 only has216

metabolic losses (X), while its resource, the herbivore, has both a metabolic loss and loss to consumption (L).217

A single flux is calculated as218

F = 1
eass

· (X + L), (1)

where F is flux out of the resource node, eass is assimilation efficiency, X is metabolic demand, and L is loss219
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to consumption of higher-level nodes (Barnes et al. (2014), Barnes et al. (2018)).220

Several of the following considerations are dependent on the type of project that is carried out. Depending221

on whether the focal project is based on existing data from a previous sampling campaign or a new project is222

planned with the freedom to make decisions on which aspects to measure or sample, we have different options.223

If the calculation of energy flux is based on existing data, certain aspects will be fixed (e.g., the level of224

taxonomic / functional identification of organisms, or the area / volume that has been sampled for different225

taxa), but others can be complemented using literature data (e.g., assimilation efficiency, feeding preferences,226

or network topology). If designing a project from scratch, researchers have the opportunity to decide what227

level of precision and resolution they would like to and are able to achieve for which parameter in order228

to answer their specific research questions. Even for data-synthesis studies, additional measurements can229

sometimes be taken to enable a different topological resolution or more-detailed information on physiological230

or ecological parameters. As such, we could for example assess individual body masses of organisms to gain a231

better idea of community-size structure. Moreover, we could more closely inspect certain taxa or samples232

to validate their trophic role in the community, for example using food-choice experiments or molecular233

methods to assess feeding links and preferences (such as e.g. molecular gut content analysis, fatty acid analysis,234

stable-isotope analysis, see Topology and active preferences).235

1. Community assessment236

First of all, we need to know which organisms are present and with what abundance or biomass (Figure237

2). This information is necessary, as without knowing the sheer amount of organisms present and what238

trophic role they play in the community, we cannot assess how much energy they will require to survive,239

let alone how much energy will flow through the trophic network to sustain all these organisms while also240

accounting for energetic losses. We will go through the details of what information we would ideally collect241

(sample or retrieve from original data collectors or the literature) below. The minimum information will be242

some kind of overall biomass and some idea of the relative abundance / importance of functional feeding243

groups. Obviously, more-detailed information will provide deeper and more-nuanced insights into energy244

flux through the community and the related ecosystem processes or services. As such, the closer we can get245

to individual-level data on body mass, metabolism, feeding preferences or assimilation efficiency, the more246

detailed the retrieved information. However, it is still unclear to what extent an increase in the resolution of247

input information will have an impact on the estimated fluxes (for more detail on topological aggregation,248

please see below). In any case, the focal research question should ideally define the level of resolution and249

detail in calculating energy flux.250

1.1 A matter of scale251

One aspect that is important to consider before attempting to plan a new sampling compaign or calculate252

energy flux from existing data is spatial scale and its relationship with the study objectives. This is important253

as it will define what food-web perspective we will adopt to answer the research question and, subsequently,254

how to perform the community assessment or which of the available data to use. Cohen (1978) identified255

three different categories of food-web descriptions: the community food web, the source food web, and the256

sink food web. In short, a community food web approach is defined by a habitat and contains the species257

and interactions within this habitat. A source food web approach is based on a (set of) resource(s) at the258

base and then includes all feeding interactions up to top predators. A sink food web defines a sink, a (top)259

predator (level), and then includes all their resources and the resources’ resources down to the basal resources.260

All of these approaches are constrained, as they exclude linkages that are also related to the species they261

comprise, such as interactions across habitat borders (community approach), interactions with additional262

resources (source) and consumers (sink) not linked to the focal source or sink (Moore & Ruiter (2012)). This263

means that calculated energy flux quantities are always related to this choice of approach and will necessarily264

over- or underestimate the true flux through these systems per area.265

When using energy flux to assess ecosystem processes or functions, for example in plot-based studies, we are266
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usually interested in the rate of functioning per area or volume in space. As such, it would be ideal to take a267

community-food web perspective (sensu Cohen (1978)) and assess energy flux per area or volume (we will268

speak of area below, but mean both area or volume, depending on the study context). We should thus keep269

in mind that any interactions with organisms only partly foraging within this area (for example larger-bodied270

predators that forage over larger spatial extents) are often ignored. Should our community assessments or271

data sets contain such species that clearly operate over larger spatial scales than all others, these should either272

be excluded or dealt with by estimating which part of their energy demand is provided by the focal area of273

the study and then include them in our network topology with the fraction of their energy demand that is274

taken out of our focal system. To meaningfully assess energy flux per area, we therefore need to assess the275

organism community in that area and everything that, in terms of energy transfer, belongs to this community276

(even if only partly) and thus impacts energy flux at that spatial scale. This does not necessarily mean that277

all organism types have to be assessed on the same spatial scale, but they need to be scaled to a spatial278

extent defining their energetic relatedness. A standard approach can be to scale all organism assessments to279

the same spatial extent, exclude organisms likely operating at much larger extents, and assume that this280

is the most relevant community for the desired spatial extent of the focal ecosystem-process assessment. It281

should be noted that this is not a problem specific to energy-flux calculations but to most of community282

ecology. It is important to carefully think about what defines a community and which interactions are kept283

out of sight by choosing one of the perspectives.284

Irrespective of the chosen level of resolution, a frequent challenge is getting all community data to the same285

spatial and temporal scale (see 7.2). To meaningfully calculate energy flux within a community, it is286

important that all organisms (species, trophic groups) are assessed for the same spatial scale, thus including287

those organisms that are feeding on each other - using one scale is basically a workaround for doing this as288

long as organisms are not too mobile (if animals e.g. fly in to feed and then leave again, snapshot-sampling289

them just in a small area will not adequately capture their impact on the system). We thus need organism290

densities rather than just individual counts (abundance) or biomass per se.291

2. Energy loss292

Once the community of organisms has been sampled or the respective data assembled, we can start looking293

into energetic aspects. Energy is needed at each node to survive (metabolic demand). Additionally, all but294

the terminal (highest trophic) node(s) have losses due to consumption. We can look at all of this in terms of295

biomass turnover and include death rates and predation rates, or we use the adapted food-web energetics296

approach and view it all through the lens of metabolism (fluxweb offers both, but here we focus on the297

latter). If we take this approach, we need to include the node’s own energetic demand (metabolic rate), loss298

to consumption, and assimilative losses (efficiency) when transferring energy from one node to the next. It299

should be noted that what we calculate is the minimum energy flux required to keep the community alive300

(see below). Here, we focus on the adapted food-web energetics approach, but the concept is the same no301

matter what fluxweb-supported approach we take: At each node, there are losses and gains and these need to302

be balanced out.303

2.1 Metabolic demand304

All nodes in our food web have an energetic demand (X in Figure 1). For those nodes with higher-level305

consumers above them, their overall loss is the sum of their own energetic demand and the loss to consumption306

(accounting for ecological efficiency and the consumer’s energetic demand). Within the food-web energetics307

approach, we use metabolic rate as the measurement of an organism’s energetic demand. Metabolic rate308

(Figure 3) is the rate at which energy and materials are taken up, transformed and allocated (Brown et al.309

(2004)). For heterotrophs, metabolic rate equals respiration rate; for autotrophs, it is equal to the rate of310

photosynthesis (Brown et al. (2004)). It can be measured by measuring the rate of autotroph carbon dioxide311

uptake or heterotroph oxygen consumption.312

The metabolic theory of ecology (Brown et al. (2004)) proposes that metabolic rate is driven by body size,313
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temperature, and stoichiometry, and describes its power to control fundamental ecological processes related314

to survival, growth, and reproduction across levels of ecological organization (individual to ecosystem). Its315

dependence on body size, temperature, and other biotic and abiotic aspects is of fundamental importance as316

these aspects will ideally be taken into account to estimate metabolic rates as exactly as possible. We will317

focus on a few key aspects here.318

First, the body size of an organism is strongly related to how much energy it needs. Generally, larger319

organisms need more energy than smaller ones (Figure 4 a). However, the relationship between body320

mass and metabolic rate is not linear, but defined by a power law, such that several smaller individuals of321

the same cumulative biomass as one larger organism will need a higher amount of energy than the large322

individual (Figure 3 a and b and Figure 4 b). All else being equal (temperature, taxonomic identity,323

etc.), the mass-specific metabolic rate decreases with body mass, while per-capita rates increase. Second,324

metabolic rate increases with temperature. The warmer it is, the more energy is required. Therefore,325

ambient temperature will be one key abiotic aspect that users will need to obtain or estimate (e.g. based on326

global temperature datasets) for calculating energy flux. Additionally, both the temperature and body-mass327

dependence of metabolic rates differ between taxonomic groups (Brown et al. (2004), Ehnes, Rall & Brose328

(2011)). Depending on the focal study system, other aspects will additionally impact metabolic rates. For329

example, Jeyasingh (2007) found different allometric scaling exponents based on whether consumers were fed330

stoichiometrically-balanced vs. imbalanced diets. In summary, body size and temperature are key aspects to331

take into account when estimating metabolic demands.332

There are different ways of obtaining metabolic demand for your study organisms. Most importantly, it can333

either be measured, taken from literature reports (e.g. as per-individual average essentially ignoring body334

mass), or calculated based on literature-derived relationships with its main driving variables (body mass and335

temperature). In the first case, respiration of individuals or trophic groups can be measured (see example336

from Lefcheck & Duffy (2015) in worked example of Barnes et al. (2018)). This can either be done in situ337

(but it will often be hard to isolate certain trophic groups or species to obtain a measurement of just their338

metabolic demand) or in the laboratory. In most cases, however, measuring metabolic demand will not be339

feasible. Instead, given its strong relationships with body size, temperature and taxonomy, it is relatively340

easy to calculate metabolic demand based on these variables (see example for arthropod metabolic rates in341

Box I). Depending on the given trophic groups and ecosystem, it might be easier to find literature values for342

respiration rather than finding adequate regressions for body mass / temperature - metabolism conversions343

(e.g. or nematodes see http://nemaplex.ucdavis.edu/Ecology/EcophysiologyParms/EcoParameterMenu.html),344

but for most taxa this should be available, and general metabolic-theory regressions (Brown et al. (2004)) will345

be sufficient. Here, we will focus on calculating metabolic rates based on the above-described well-established346

relationships with body mass, temperature, and taxonomy. Before we delve into this, one word of caution:347

What is measured and provided in the literature are often reports of the basal (also: resting or standard)348

metabolic rate - of animals in a resting state. The active or field metabolic rate, over longer periods of time349

and under realistic conditions, is typically a multiple of this basal metabolic rate (Savage et al. (2004)). This350

should be kept in mind, as it means that the energy flux we calculate based on basal metabolic rates is likely351

to be the absolute minimum of energy flux to sustain the given community of organisms.352

When using the adapted food-web energetics approach, one does not require metabolic information on the353

basal resources, such as detritus or nutrient supply. For example, when using plants or detritus as basal354

nodes (see example in Figure 1), their metabolism and efficiency of energy transformation for their energy355

intake are not required, unless we wish to quantify their energy intake and their resources as the true base of356

the food web. This simply means that our energy-flux assessment does not include the energy fluxing into357

these basal nodes (or lost when converting energy due to converting efficiencies), but only that enPlease refer358

to Box II for details on length-mass regressions for terrestrial arthropods.ergy flowing out of this basal level,359

as defined by the energy demand of the first consumer level and the respective assimilation efficiency.360

In fluxweb, metabolic rates are applied as loss terms for each node and supplied to the fluxing function361

as argument losses (Gauzens et al. (2017)). Note that if argument bioms.losses is set to TRUE (default362

behaviour), then the fluxing function expects losses to be provided on per gram biomass and will consequently363

multiply these losses by the respective biomass of the node. If losses have e.g. been calculated as metabolic364

rates on a per-capita basis, then these single metabolic rates need to be summed up for each node to obtain365
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the full metabolic demand of each node. In this case, argument bioms.losses needs to be set to FALSE and366

the fluxing function will expect losses to be provided on the node level.367

Box I: Calculating arthropod metabolic rates from body mass and temperature368

For most projects, metabolic rates can be calculated based on universal metabolic scaling relationships369

(Brown et al. (2004)). However, for several taxa, there are more detailed regressions available. For example,370

metabolic rates for terrestrial invertebrates can be calculated using taxon-specific regressions from Ehnes371

et al. (2011). These regressions are based on body mass and temperature. Ehnes et al. (2011) group372

Collembola with insects, but provide specific metabolic rate regressions for Oribatida, Prostigmata, and373

Mesostigmata. However, the raw data are published and thus other groupings of interest can manually be374

processed (Ehnes et al. (2011)). Note that when using such regressions, it is of imperative importance to375

carefully check units and other details of required inputs and delivered outputs (see Units, logarithms, and376

regression equations for more detail). Some sources provide metabolic rates on a per-unit-biomass basis,377

others provide per-capita metabolic rates for individuals of a given body mass. The metabolic rate output378

units will define our energy-flux output units if they are not further transformed (e.g. to provide flux in379

kg fresh mass per hectare per year, see Barnes et al. (2014)). Please refer to Supporting Information380

Section 2.1, for R-code on this calculation.381

3. Body mass382

The body mass of an organism is related to its physiology and ecology in many ways (Peters (1983), Kleiber383

(1947), Damuth (1981), Brown et al. (2004)), and a lot of research focuses on how body size affects ecology384

from individuals to ecosystems (e.g. Kalinkat et al. (2015)). Several of these aspects make body masses385

very interesting for the purpose of energy-flux calculation (Table 1). As we have seen, body mass can be386

used to estimate metabolic rates, but it can also provide us with biomass estimates that are helpful to scale387

passive feeding preferences (see below). Furthermore, the relative body mass of consumers and their prey388

(body-mass ratio) has long been recognized as a driver of ecological interactions (Schneider, Scheu & Brose389

(2012), Gravel et al. (2013), Brose et al. (2019)) and can, for example, be used to infer feeding preferences390

and network topology (set feeding links, see e.g. Hines et al. (2019)).391

3.1 Assessing body mass392

Body mass is often indirectly assessed by measuring bulk biomass and dividing it by the number of individuals393

(abundance), or such averaged values are instead obtained from functional-trait measurements or databases.394

These options have the disadvantage that they do not provide individual-level data, more specifically, they395

do not provide any information on intraspecific variation in body size. As we have seen above, metabolic396

rate changes with body mass, and mass-specific metabolic rate decreases with body mass. This means, an397

individual of a given body mass needs less energy than several smaller individuals with the same cumulative398

biomass. Consequently, the body-size structure of a population (or of individuals within a trophic node) thus399

impacts the energy demand of the population. Therefore, as long as the actual respiration of a population400

will not be directly measured, individual-level data on body mass is ideal in order to assess energetic demand401

with respect to the non-linear relationship between individual body mass and energy demand.402

Of course, body mass can, in theory, be measured for each individual. However, this is very time and labor403

intensive and, especially for small-bodied animals, problematic as the measurement of e.g. small arthropods404

requires temperature- and moisture-regulated weighing rooms and precision scales that will not necessarily405

be available. Sometimes, measuring body mass will not be possible if the organisms are not accessible, such406

as for projects synthesising data from databases. However, in many cases, there will be options to obtain407

photographs or video footage of animals that can be used to obtain length estimates of whole bodies or body408

parts. This approach could also be used where animals cannot or do not need to be sampled, for example409

because they are meant to stay relatively undisturbed. The resulting analysis of images to obtain body mass410

estimates is non-destructive and effective (Llopis-Belenguer, Blasco-Costa & Balbuena (2018)).411
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Depending on the study system and research question, it might be reasonable and feasible to obtain a412

decent level of body mass information by measuring individual body parts (overall length or selected body413

parts) and using literature-derived regressions to calculate individual body mass from these measurements414

(Ruiz-Lupión, Gómez & Moya-Laraño (2019), Sohlström et al. (2018)). Please refer to Box II for details on415

length-mass regressions for terrestrial arthropods. For different taxa, there generally are different standard416

ways of measuring a body part (head capsule width, hind-leg length, carapace width, etc.) or the length of417

the whole animal and relating that to body mass via a regression that has been fed with length and mass418

data of, ideally, many individuals covering the typical lengh range for the given taxon. Here, we will focus on419

terrestrial arthropods, but similar regressions are available for other taxa including, for example, fish (fishbase420

database, https://www.fishbase.de/manual/fishbasethe_length_weight_table.htm), amphibians (Santini et421

al. (2018)), and reptiles (Feldman & Meiri (2013)). Combined automated, image-based identification and422

biomass estimation will likely improve over the coming years so that estimating individual-level body mass423

data for large numbers of specimens will become more broadly available (Ärje et al. (2020)).424

One aspect to keep in mind here is that what we typically need is live/fresh body mass, because this is what425

most scaling relationships use to calculate metabolic demand. This seems obvious for people working in426

e.g. movement ecology or with physiological rates, but other researcher groups tend to always use dry mass427

for their research (e.g. for stoichiometry or nutrient content), and thus a lot of what is available e.g. for428

length-mass regressions comprises only dry masses. There are different ways of converting dry masses to fresh429

masses, such as another set of regressions (Mercer et al. (2001)) or simply using rough conversion factors.430

However, ideally, fresh masses are directly calculated by using suitable regressions.431

When using fluxweb to calculate energy flux, body masses are only used indirectly, e.g. via estimating losses432

due to metabolism, to calculate biomasses that can then be used to set passive preferences, and to initially433

set up network topology and feeding preferences (Gauzens et al. (2017),Table 1 for further detail).434

Box II: Calculating arthropod fresh body mass from body length435

For arthropods, the literature holds a decent collection of length-mass regressions (Ruiz-Lupión et al. (2019),436

Mercer et al. (2001), Gruner (2003), Sohlström et al. (2018)). When choosing length-mass regressions for437

your study, keep in mind that the productivity of the target system (Ruiz-Lupión et al. (2019)) and the438

geographic region (Sohlström et al. (2018)) affect length-mass relationships and should thus be taken into439

account, where possible. Furthermore, several studies provide regressions combining more than one measured440

body dimension (Gruner (2003), Sohlström et al. (2018)), for example body length and width, and show that441

these models have better fit than single-morphological predictor models (Sohlström et al. (2018)). Thus, it442

might be reasonable to measure more than one dimension for your animals. This might be particularly helpful443

when taxonomic information on the study organisms is lacking or when no regressions for the required taxa444

are available. We provide example R code to calculate body masses for terrestrial macro- and soil mesofauna445

based on literature-derived regressions. Specifically, these examples include regressions from Sohlström et al.446

(2018) for several macrofauna taxa, for just length or both body length and width, and for both temperate447

and tropical arthropods. Soil-mesofauna body masses can, for example, be calculated using regressions from448

Mercer et al. (2001). Please refer to Supporting Information Section 3.1, for R-code on this calculation.449

4. Food web topology450

In order to calculate energy flux through a trophic network comprising an ecological community, we need451

to know which pathways this energy flux takes in this particular community - that is, we need to know the452

food-web topology, or simply put who eats whom (Figure 5). This knowledge is one of the most fundamental453

aspects of describing communities of organisms, and its scientific description is subject of research on food454

webs. The food web consists of trophic species (nodes) and their feeding interactions (links) which, together,455

form the topology of the food web. In its simplest form, a food web represents a food chain of several nodes456

linked by single feeding interactions (see example in Figure 1). However, food webs can have thousands of457

nodes and even more links. For our purposes, food webs do not necessarily have to be resolved to species level.458

Early use of the adapted food-web energetics approach has mostly made use of relatively broad functional459
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feeding groups, such as predators, herbivores, and detritivores (Barnes et al. (2014)) or more specific groups460

combining taxonomy with feeding types (Ruiter et al. (1993), Barnes et al. (2020)). This was at least in part461

driven by practical constraints as computational tools for the calculation of energy fluxes (e.g. the fluxweb R462

package) were not available and analytically solving certain food-web structures such as trophic loops was463

challenging. Now, the computational tools are available, but we still know little about what impact different464

topological resolutions have on the resulting flux calculations.465

That said, how do we obtain the information on food-web topology for our energy flux calculation? There is466

a multitude of different approaches to assess or infer feeding links (Gravel et al. (2013), Bartomeus et al.467

(2016), Cirtwill et al. (2019), Hines et al. (2019)). Which ones can be used depends on the type of project468

and the desired or possible resolution of the topology. The more data is available and the less well-resolved469

the desired food-web topology, the easier. In most cases, it should be possible to group organisms from a470

community sampling into coarse functional feeding groups, such as predators, herbivores, and detritivores,471

which can often be done based on taxonomy. For taxa reported to feed on several food resources, this can472

later be dealt with by setting preferences (see section 5 ), but both links would be set in the topology. If we473

have to rely on available data on previous community assessments and the organism samples are not available474

or not usable anymore, what we can do strongly depends on what data is available. If we have e.g. species475

names, a lot can still be inferred by taxonomy. If we have abundances per feeding group, we can use this476

level of aggregation. If we can design our study from scratch, we are more flexible, but also have to decide477

what level of topology is both desirable and achievable. The more specific the community data, the more478

flexibility do we have in the resolution of the chosen topology. In such cases, we can even test the impact of479

varying topological resolution on our results.480

Although specific information on how topological resolution (aggregation of organisms into nodes) affects481

energy-flux calculations is sparse, we can use insights from related topics (aggregation impacts on foodweb482

structure) to gain an idea of what impact the chosen level of aggregation might have, how much aggregation483

would be acceptable, and how different types of aggregation may affect our results. Aggregation is an484

important factor in ecology and the potential issues resulting from it have been discussed (Gardner, Cale &485

O’Neill (1982), Pinnegar et al. (2005), Gauzens et al. (2013), Buchkowski & Lindo (2020)). Two distinct486

types of aggregation are relevant here: serial and parallel aggregation. Parallel aggregation is the aggregation487

of two populations into e.g. a trophic level (Gardner et al. (1982)) - in our case it could also be two different488

predator groups that we treat as one trophic node of predators. Serial aggregation occurs, where we group489

several adjacent components of a food chain into one node. For example, this would occur where we group490

second- and first-order predators in one predator node. Gardner et al. (1982) found parallel aggregation491

to be a minor issue for simulations of ecological process rates through interaction networks as long as it492

aggregated over components with similar input and output rates. Serial aggregation was found to be more493

problematic, but also depended on how similar the aggregated components were in their ecological rates.494

A study looking at how aggregating a marine food web from 41 to 27 and 16 compartments found system495

properties such as connectance an system omnivory, as well as dynamic stability to be altered (Pinnegar et al.496

(2005)). Another study looking at topological-aggregation effects of predator foraging behaviour and biomass497

on food-web topology found that results, i.e. the relationship between food-web structure and ecosystem498

functioning, were preserved over a large proportion of the topological aggregation gradient (Gauzens et al.499

(2013)). Another study looking at how “lumping” of trophic species affected C and N mineralization rates500

found that lumping effects depended on how similar the lumped species were in ecological efficiencies and501

their diet (Buchkowski & Lindo (2020)). Taken together, for our energy flux calculations, these findings502

indicate that grouping taxa with a similar trophic role (feeding on the same resources and being fed on by503

the same consumers; parallel aggregation) and ecological efficiencies (assimilation efficiency) might be rather504

unproblematic. Aggregating animals that actually feed on each other (serial aggregation) might be more505

problematic. It is important to note here that most of the available information is for aggregation effects on506

topological parameters and certain process rates, while information on aggregation impacts on energy flux507

and specifically the structure-function link is still scarce. In addition,it should be noted that these conclusions508

only hold for aggregating topology. As discussed above, aggregating organisms of different body size for509

calculating metabolic demand should be avoided, as size-metabolism relationships are not linear.510

Whenever taking new measurements, we could, for example, make use of gut content analysis, digestive enzymes,511
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fatty acids, and stable isotope analysis or combine several of these analyses to identify a multidimensional512

trophic niche (Potapov et al. (2020)). Alternatively, in order to infer links for existing data, there is a513

number of aspects that could be taken into account. Previous studies have, for example, used a combination514

of literature-derived information on feeding links (specific: taxa reported to feed on a specific species, or515

generalized: taxa reported to feed on all species in a taxon), trophic level, trait-based rules (relying on516

e.g. body size, trophic level, taxonomy, consumer biting force and resource toughness, and / or overlap in517

vertical stratification of taxa), and phylogeny (Laigle et al. (2017), Brousseau, Gravel & Handa (2018),518

Hines et al. (2019) Ecology). Given the availability of stoichiometric data, links could also be inferred519

based on a minimized stoichiometric mismatch. Traditional food-web ecology has furthermore developed520

well-established rules to set links in artificial networks used for example in modeling studies. These rules are521

based on observing natural food webs and then developing algorithms to set links in artificial networks that522

are supposed to closely mirror the structure of real food webs. These rules are traditionally heavily based on523

body size and are of varying complexity (Dunne (2006)). Recent research has shown that various consumer524

and resource traits differ in their impact on who feeds on whom in ecological networks (Brose et al. (2019)).525

Thereafter, feeding links depended more heavily on predator traits, such as e.g. predator metabolic group or526

movement type, than on the equivalent prey traits.527

Given the nature of the project and data availability, we need to define a desired topological resolution and528

then set the links. In the most simple case, this will just be the feeding interaction between two species known529

to have a trophic relationship (Figure 5 a). In a low-resolution (broad trophic feeding guild) example, this530

could be predators feeding on herbivores and detritivores who, in turn, feed on plants and detritus, respectively531

(Figure 5 b). With increasing topological resolution, we will have to rely more heavily on functional traits532

of the organisms and / or specific mesurements or available data on feeding interactions (Hines et al. (2019),533

Potapov et al. (2020)) to set links for combined taxonomic and feeding guilds (e.g. fungivorous Collembola534

feeding on all fungi in soil, or herbivorous macroarthropods feeding on all plants available, Ruiter et al. (1993);535

see also Barnes et al. (2020)). If well-resolved food-web data is available (Figure 5 c), this can simply be536

used either at the highest available resolution or looking at different levels of resolution (aggregation, e.g537

comparing the same food web at different aggregation levels, (Figure 5 b and c)) to ensure robustness of538

results. In a theoretical (e.g. simulation) context, we are of course most flexible as to what approach we539

use to set food-web links and can choose between relatively simple (Dunne (2006)) or more-refined rules540

e.g. based on functional traits (Brose et al. (2019), Hines et al. (2019)).541

Taken together, depending on the research question and data availability, there is a variety of approaches542

to assess or set food-web links and build a network topology that can then be used in subsequent energy543

flux calculations. Basic functional traits of the coexisting organisms such as feeding type, body size, and544

movement type can already achieve a well-defined food-web topology. If desired, more basic rules can be545

complemented with more specific measurements on feeding interactions in a given community. These can also546

be very useful in setting preferences (see Section 5 ). It should be noted that, due to the relative novelty of547

a broader application of this energy flux approach, to our knowledge, there is no assessment of how much548

varying topological resolution drives energy flux results. Aside from some expected quantitative differences549

driven by varying topologigal resolution, there could also be qualitative differences, for example depending on550

the proportions of generalists versus specialists in the focal community. We might expect more variation with551

topological resolution, if there are more specialists in the focal community, because specialist feeding cannot552

be accounted for in lower-resolution networks. This could, for example, be more of an issue in terrestrial553

versus aquatic systems, because the latter are expected to have, in general, a higher proportion of generalist554

species (Shurin, Gruner & Hillebrand (2006)).555

In fluxweb, topology is supplied as a matrix to the fluxing function as argument mat, with consumers in556

columns and resources in rows (Gauzens et al. (2017)).557

5. Preferences558

We have now established that the different organisms, or, more generally, consumer nodes in the trophic559

network of our community, consume different resources. The next topic we will cover is the consumers’ feeding560

preferences (Figure 6). It is intuitively clear how unlikely it is that a consumer feeding on multiple resources561
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does so with equal relative feeding intensity. Preferences may be active, i.e. driven by consumer choice due to562

e.g. resource quality, size, defenses, or the ability of prey to escape or fight back (handling time). Additionally,563

consumers may be passively driven to consume different resources in different proportions simply based on the564

relative abundance / availability of these resources. Resource quality (defenses, stoichiometry, etc.) varies a565

lot between different autotroph resources (Sterner & Elser (2002), McGroddy, Daufresne & Hedin (2004)), but566

also for different heterotroph resources (Fagan et al. (2002), González et al. (2011), Martinson et al. (2008)).567

Consequently it will also vary in detrital resources (Martinson et al. (2008), McGroddy et al. (2004)) even if568

this variation might be less extreme because plants resorb their nutrients before leaf abscission. However, it is569

not only resource quality driving preferences in consumption, it will also heavily depend on the type of feeding570

interaction (i.e. the type of consumer search strategy), the ability of the consumer to overcome a prey, and571

many other aspects. For example, it has been shown in experimental and modelling trials that invertebrate572

consumers actively switch between larger and smaller prey organisms based on consumer-resource body size573

ratios (Kalinkat et al. (2011)). Finally, different resources will simply not be available in equal quantities574

which will result in varying search time for the consumers and additionally constrain relative consumption575

patterns.576

For our purposes, the preference (relative consumption) for consuming different resources can be subdivided577

into active and passive preferences. Active preference occurs if a consumer assertively chooses to consume578

more of one and less of other resources. Passive preferences occur when a consumer is driven toward eating579

more of a given resource due to increased encounter rates i.e. higher relative abundance (availability). In the580

context of energy-flux calculations, both concepts can be combined and used at the same time (Ruiter et al.581

(1993)). Again, in most cases, there will likely be no data on active consumer preference, but they could be582

available via gut-content data, observations, or expert knowledge. By contrast, passive preferences will be583

easy to assign in the energy-flux context, because biomass of all nodes is available and thus passive preferences584

can simply be assigned based on relative resource biomass (Gauzens et al. (2018)). Whether it is possible585

and makes sense to assign such active and passive preferences will depend on the availability of data and the586

type of interactions in a given community. When there is no information on active preferences, two standard587

options would be to either i) assign equal preferences to all resources (a null-assumption, Barnes et al. (2014)),588

or ii) use passive preferences defined by resource relative abundance in the given community (Gauzens et al.589

(2018)). One issue that has come up repeatedly over the past years when calculating energy fluxes and using590

relative resource biomass to define passive preferences is the issue of omnivores feeding on animal and detritus591

or animal and plant material. In most systems, there will always be a strong overabundance of plants/detritus592

relative to animal prey, but it seems unlikely that relative consumption follows this relative biomass pattern.593

In such cases, passive preferences for plant and detritus resources could be manually adjusted to e.g. equal594

that of the animal resources. It should be noted, however, that such an approach might directly affect the595

conclusions drawn from a given study and should be adopted with caution if e.g. the goal of a paper is to596

compare detritivory or herbivory along ecological gradients. In summary, whenever we have information on597

both active and passive preferences, these can easily be combined (Ruiter et al. (1993)). No matter which598

option is chosen, it is recommended to discuss the choice in a caveat section. If in doubt, the impact of the599

preference choice on the conclusions of a given analysis can be tested in a sensitivity analysis (see e.g. Barnes600

et al. (2020)).601

In fluxweb, preferences can either be calculated outside of the fluxing function (taking both active and602

passive preferences into account if desired) and then supplied to the function, or alternatively by the fluxing603

function itself. If preferences are estimated externally, they have to be supplied to the function by providing604

non-binary values in the mat argument and setting the bioms.prefs argument to FALSE. If the choice is to605

let the fluxing function compute the preferences, then active and passive preferences have to be explicitly606

provided. Active preferences are given by providing non binary values to the mat argument. The function then607

uses the ratio between the different preference values as all of them will be rescaled so that the sum of active608

preferences is equal to one for each consumer node. Passive preferences, if desired, are automatically calculated609

by setting the bioms.prefs argument to TRUE. In this case, the node biomass is used (in combination with610

active preferences, if provided) following eq. 9 in Gauzens et al. (2017). When the choice is to use passive611

preferences only, the solution is to provide binary values to the mat argument while setting the bioms.prefs612

argument to TRUE.613
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6. Assimilation efficiency614

Traditionally, trophic ecology views ecosystems as hierarchical systems of trophic levels taking up and615

transforming energy from one level below and transferring it to the next level above (Lindeman (1942), Odum616

(1968)). This energetic view heavily relies on energetic efficiencies (Andersen, Beyer & Lundberg (2009)). In617

short, life on earth is predominantly driven by inputs of solar energy that is taken up by autotrophs using618

photosynthesis who transform energy into organic materials that is then consumed by primary consumers619

that are in turn eaten by secondary consumers and so on. Along this food chain (or network), productivity620

decreases with trophic level, because not all energy produced at the lower level is consumed by the upper level621

(consumption efficiency), not all energy consumed is assimilated through consumer gut walls (assimilation622

efficiency) and not all energy assimilated is used to produce biomass (production efficiency). The product623

of these three efficiencies is the trophic transfer efficiency (Begon (2006)). The efficiencies are typically624

provided as percentages (0-100 %) or proportions (0-1) (Lang et al. (2017)). If we rely on an energy625

(metabolism)-centered view, we need to account for the transfer of energy taken from a resource node to626

a consumer node, including its energetic losses during the conversion. As we go from energy taken out of627

the resources to energy that is assimilated (used for metabolism and biomass build up) through the gut628

walls of the consumers, we only need to assount for the loss of energy via consumer excretion. This is taken629

care of by using only assimilation efficiency (Figure 7). If we were to use a biomass-centered approach630

(also possible in fluxweb), we would need to account for all losses between biomass leaving the resource node631

and biomass being built up in the consumer node. We would then need to account for both assimilation632

efficiency and production efficiency. Here, we focus on the metabolism-centered approach as it accounts633

not only for the biomass being transferred, but also for the fact that the energy available per unit biomass634

varies depending on the temperature and organism body mass (metabolic theory of ecology, Brown et al.635

(2004)). Thus, while biomass might be a good indicator of potential energy, it is a poor predictor of what636

energy it actually provides for the consumer. As we will see, assimilation efficiency varies with the quality of637

the respective resource for the respective consumer, i.e. it depends on consumer and resource identity and638

the resulting resource quality (suitability) for the consumer (Lang et al. (2017)). Additionally, assimilation639

efficiency varies with temperature (higher temperature - higher assimilation efficiency; Lang et al. 2017) and640

resource stoichiometry (higher N content - higher assimilation efficiency; Jochum et al. (2017)) and likely a641

whole set of physiological or ontogenetic (consumer life stage and age, physiological adjustment to digest642

certain resources, etc.), and resource-structural (plant defenses, indigestible compounds, etc.) aspects.643

To calculate energy flux through ecological networks, it is therefore essential to incorporate losses due to644

assimilation efficiency. We need to assign an assimilation efficiency to every trophic link. This can either be645

done based on the consumer (all resources consumed by this consumer are taken up with a certain efficiency)646

or, more commonly, based on the resource (all consumers eating this resource do it with a certain efficiency).647

It is usually preferred to assign assimilation efficiencies based on the type of resource, as not all consumers648

feed on only one type of resource, and in these cases a detritus or autotroph resource will not allow the same649

assimilation efficiency as a heterotroph resource (Lang et al. (2017)). Of course, such efficiencies can also650

be applied based on more specific knowledge, for example if we happen to know that a certain herbivore651

consumes a certain plant species with a measured assimilation efficiency. However, this level of precision652

will only very rarely be available, so here we focus on assigning assimilation efficiencies on a more coarse653

level. It is possible to assign assimilation efficiencies based on a combination of traits, such as resource type654

and ambient temperature, and for every single species-species interaction in a fully resolved food web. Most655

previous work focusing on whole communities seems to take a coarser approach and assign assimilation656

efficiencies based solely on the resource type. As such, all links including a detritus resource, an autotroph657

resource, or a heterotroph resource get assigned a literature-derived average assimilation efficiency (e.g. 0.158,658

0.545, and 0.906 at 20 °C, respectively (Lang et al. (2017))).659

Please refer to Supporting Information Section 6, for R-code on assimilation efficiency calculation for660

arthropod consumers including equations for temperature-dependent assimilation efficiencies (based on Lang661

et al. (2017)). Table 2 provides examples of literature resources for assimilation-efficiency estimates of662

various taxa. In fluxweb, assimilation efficiency is applied via a vector or array supplied to argument663

efficiencies in the fluxing function as the proportion of consumed energy that is assimilated into the consumer664

node to then be used for building biomass and respiration, rather than being excreted (Gauzens et al. (2017)).665
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Note that such efficiencies can be defined from a resource (the proportion that any consumer would take out666

of this specific type of resource, default behaviour of fluxweb) or consumer percpective (the proportion of667

energy that a specific consumer would take out of any resource), in fluxweb this is specified via argument668

ef.level in the fluxing function.669

7. Common issues670

7.1: Units, logarithms, and regression equations671

When calculating energy flux through trophic networks using the food-web energetics approach, we rely on672

many different aspects of ecological communities, such as body mass and metabolism. As we have seen above,673

these variables can often be calculated based on literature-derived information on regressions, for example674

length-mass regressions or mass-metabolism regressions. Additionally, when compiling information for whole675

communities, we often rely on different sources for different taxa. As such, our approach, and the effectiveness676

of energy-flux calculations in multitrophic communities, heavily relies not only on the availability of such677

literature data but also on the efficient written communication of calculation details. One such example for678

th eimportance of effective communication between authors and readers of scientific literature is the units679

of in- and output data of regressions. Unfortunately, it is often quite time consuming, and sometimes even680

impossible for the reader, to extract the relevant information on input and output units from papers, for681

example on length-mass regressions. The same is true for dry and fresh masses in ecological papers. Different682

sub-disciplines of ecology and biology seem to be focusing on either dry or fresh body mass which leads to683

papers lacking the important piece of information telling the reader if the paper uses fresh or dry body mass.684

As another example, metabolic rates can be expressed in very different units and these often require careful685

conversions (e.g. of ml O2 to J , see Barnes et al. (2018)).686

Similarly, papers making use of logarithms often do not efficiently report which type of logarithm they use.687

This issue is additionally complicated by different software using the same function commands for different688

types of logarithms (natural log and log10 in MS Excel and R, for example - in MS Excel, log is decadal689

logarithm, in R log is natural logarithm). While these issues are quite trivial to solve for the authors of690

scientific literature, they can turn into an unsolvable issue for their readers, especially if the respective papers691

are several decades old and the original authors cannot be contacted anymore. Obviously, these issues are692

not constrained to people calculating energy flux, but given the common dependence of our calculations693

on other people’s data and literature sources and the fact that e.g. physiological papers have often been694

published decades ago, these issues are of importance here. We therefore recommend to provide very detailed695

explanations of each individual step taken and the literature resources used for the calculation of energy696

fluxes. Even if this is not possible to be comprehensively described in the main text of a manuscript, the697

supplementary material should provide the level of detail to reproduce every single step.698

7.2 Getting everything to the same scale699

When calculating energy flux, we need to know which organisms are present in our focal system and we700

need quantitative information on how many of these individuals (densities) interact with each other. This is701

typically done via sampling a given area or volume and assuming that the sampled organisms constitute the702

bulk of this interacting community (compare section B) 1.1). As explained above, there are several issues703

with this. First, there can be (and often are) organisms feeding in the focal system but not included in our704

sampling (e.g. because they enter and leave our focal system repeatedly or because the spatial scale they705

are operating at differs from the scale of our sampling). If we can estimate the fraction of these organisms’706

energy demand supported by our focal system, we can include these organisms, e.g. by setting their individual707

density to a fraction of 1 per unit area. Alternatively, their impact would have to be ignored in the calculation708

of energy flux (but could be discussed for our focal system), but it is likely that even a low abundance or709

short foraging time of a large consumer in our focal system might have a considerable impact on energy flux.710

Second, several methods of assessing community data are not quantitative in respect to a given standardized711

area or volume. Such techniques for example include pitfall traps, flight interception traps, but also accoustic712
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or visual assessment of biodiversity in an area. These methods might deliver information on which organisms713

are present, but without their densities, we cannot directly use them in our assessments of energy flux. That714

said, we can use such qualitative information to complement available quantitative data, for example which715

diversity of a bird community (qualitative data from point counts) our invertebrate networks might support.716

C) Challenges and research frontiers717

Now that we have established how energy flux can be calculated and what it is good for, we would like to718

highlight a number of challenges that need to be overcome to more effectively use energy flux in ecological719

research. We present a list of - what we perceive as - promising research frontiers for future energy-flux720

research.721

1. Flux as a relative quantity vs. actual numerical correctness722

First of all, it is important to re-iterate that calculated energy fluxes should be perceived as comparative values723

rather than taken as being numerically correct representations of the energy flowing through a system. This is724

true for a number of reasons. As we have seen above, the absolute value of calculated flux through an ecological725

community heavily depends on the somewhat arbitrary decision of what we define as the top predator or726

highest trophic level (which is also linked to the spatial scale of the assessment). Because the energy needed727

at such a high trophic level needs to be channeled through all levels below, including assimilation losses at728

each conversion, the additional consideration of even a very small top-predator population can heavily affect729

the absolute value of calculated energy flux (hence the importance of higher-level consumers which ar enot730

sampled feeding on our target community). Another reason that has also already been mentioned above731

is the (typical) use of basal metabolic rates. We know that field metabolic rates are usually a multiple of732

those base-rates and thus flux calculations based on basal metabolic rates can be compared to each other733

but will not necessarily be a good predictor of the true energy flux based on the activity-cycles of the focal734

organisms. This does not mean that flux calculations are problematic per se, it simply highlights their use735

as a comparative quantity, to be compared among treatments in standardized experiments, or well-defined736

subsets of the trophic ladder in different systems.737

2. Testing the sensitivity of the method738

While flux calculations based on the food-web energetics approach have been related to observed fluxes before739

(Neutel & Thorne (2014)), this step towards further validating the approach will not be simple. The reason740

for this is that when comparing e.g. traditional measures of herbivory to calculated fluxes to herbivores, both741

approaches have their weaknesses and it is not simple dto decide which measeure should be the benchmark to742

compare the other against. However, eat the very least it would be interesting to know if and how strongly743

different measures of ecosystem processes correlate with estimations of energy flux, when and where they do744

not, and why.745

As mentioned repeatedly throughout the above sections, we do not know much about the sensitivity of the746

energy flux calculations to several methodological decisions along the way. Examples are the impact of using747

average body mass versus more-detailed body size distributions, or the aggregation of food-web topology.748

These aspects need to be further investigated to provide advice for future research on energy flux. Assessing749

the potential impact of topological aggregation and the resolution of other parameters, such as assimilation750

efficiency or metabolic rates (see fluxweb function sensitivity in this regard), can be done using analytical751

simulations based on simulated food-web and community data. However, it will be just as interesting to test752

the effect of real-world variation in various parameters such as the body-size distributions of different trophic753

groups on the resulting energy flux.754
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3. Way forward - promising frontiers755

Previous work has discussed how energy flux can be used in future biodiversity-ecosystem functioning research756

(Barnes et al. 2018). Here, we thus focus on methodological advances in and the broad applicability of757

calculating energy flux.758

3.1 Topology and active preferences: better assessment and embracing variability759

Both food-web topology and active consumer preferences (and not only the presence of taxa or their biomass760

- availability as a resource) change with various external drivers, such as temperature, resource quality,761

changing predator-prey body size ratios (Ushio et al. (2018)). As such, both these features will regularly762

change across experimental treatments or environmental gradients inherent in observational studies. However,763

when comparing energy flux through trophic networks, such changes are often ignored because of a sheer lack764

of available information (we hardly know who feeds on whom - knowing how this changes due to abiotic or765

biotic conditions is usually out of reach). As such, the topology and active preferences we use to compare766

energy flux through communities, for example in forest litter of different tropical land-use systems (Barnes767

et al. (2014)) or in grassland BEF experiments on different continents (Barnes et al. (2020)), are usually768

fixed and preferences are affected only through changes in passive preferences i.e. local relative availability of769

different resources. However, this issue can be overcome by more-widely adopting high-throughput techniques770

of assessing trophic relationships (Brose & Scheu (2014)). Using molecular gut content analysis (Eitzinger771

et al. (2018)), metabarcoding (Oliverio et al. (2018) Casey et al. (2019)), fatty-acid analysis (Ruess et al.772

(2005), Ferlian, Scheu & Pollierer (2012), Ferlian & Scheu (2014)), compound-specific and bulk stable-isotope773

analysis (Potapov et al. (2019b), Lesser et al. (2020)), or combinations of different techniques (Potapov et al.774

(2020)) will help to unravel such changes in topology and consumer preferences.775

3.2 Integrating functional traits776

Functional traits are increasingly being used in ecology. While plant functional traits have been widely777

used and centrally available over the past decades (Kattge et al. (2011), Díaz et al. (2015)), their use is778

becoming more readily available across different branches of the Tree of Life (Gallagher et al. (2020)) even779

though centralized platforms comparable to the plant realm are still lacking for animals (Schneider et al.780

(2019)). Functional traits have been found to structure trophic networks (Laigle et al. (2017)) and are good781

predictors of feeding interactions (Brose et al. (2019), Brousseau et al. (2018)). Consumer and resource traits782

can be used to assign feeding links and weight feeding preferences. They affect organism energy demand783

and assimilaton efficiency. While the theoretical connection of functional traits to these central aspects of784

energy-flux calculations is well established, it seems that the full potential of actually using trait data to785

inform energy flux calculations is not comprehensively taken advantage of, yet. Examples include the use of786

consumer-resource body-size ratios for defining topology and preferences (Hines et al. (2019), Brose et al.787

(2019)), and stoichiometric mismatch for informing feeding preferences, assimilation efficiency (Jochum et al.788

(2017)), and even consumer metabolism (Jeyasingh (2007)).789

3.3 Realistic metabolic rates: Basal vs. field metabolic rates; taking behavior and its climate790

dependence into account791

We have seen that metabolic rates are very important in the adapted food-web energetics approach. Field792

metabolic rates are usually by a factor of three higher than basal rates (Savage et al. (2004)). It would be793

interesting to assess how using field metabolic rates, rather than basal rates, affects the outcome of flux794

calculations. Because of the cascading nature of how changes at different trophic levels affect flux calculations,795

using field metabolic rates would not just compare to using in a simple factor of how total energy flux is796

affected, but its effect on the resulting energy flux estimation will depend on the given food web topology797

and body-size structure. However, it seems that field metabolic rates are simply not as easily available as798

basal rates (but see Hudson et al. (2013))799
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We know that metabolic demand is highly sensitive to temperature, with higher temperatures leading to800

higher metabolic demands. However, this is not the only way in which changing climate and other abiotic801

and biotic drivers will affect organism energy demands, or energy fluxes more generally. Specifically, changes802

in animal behavior, due to different abiotic or biotic environmental conditions, are likely to alter network803

topology, feeding preferences, and metabolic rates (Barton & Schmitz (2009), Hawlena & Schmitz (2010)).804

As such, changing conditions will not only physiologically affect respiration but also alter organism behavior,805

such as movement patterns with consequences for field metabolic rates, or time spent on predator-avoiding806

behaviour (Schmitz (2008)), which might affect food web topology and preferences.807

3.4 Exploring elemental fluxes808

As mentioned above, there are multiple ways in which the concept of ecological stoichiometry (Sterner &809

Elser (2002)) can be applied to facilitate energy-flux calculations (Barnes et al. (2018)). In addition to using810

stoichiometry to inform estimations of metabolic rate, feeding preferences, or assimilation efficiencies, the811

whole concept of calculating energy and matter fluxes through trophic networks can be applied to assess812

elemental fluxes instead of, or in addition to, energetic fluxes (Barnes et al. (2018)). Recent advances in this813

direction have for example been made for fish (Schiettekatte et al. (2020)), but there is plenty of scope to814

make these options available across taxa to enable a whole new suite of exciting questions to be answered at815

the interface of food-web ecology, ecological stoichiometry, and the study of energetics in community and816

ecosystem ecology.817
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Tables1081

Table 1: How organism body mass affects energy flux, split into the
different aspects of energy flux calculation that we introduce.

Affected aspect Explanation Example reference
Metabolic demand Per-capita metabolic rate increases, per-unit-biomass

metabolic rate decreases with body mass.
Brown et al. 2004

Topology Predator-prey body mass ratios affect who feeds on
whom in ecological networks.

Brose et al. 2019

Preferences Predator-prey body mass ratios determine the
relative consumption of different prey items. Body
mass can also be used to assess biomass densities of
organisms in our communities, which can be used to
set passive preferences (see below).

Schneider et al. 2012,
Gauzens et al. 2017

Table 2: Example literature sources for assimilation efficiencies of
different taxa.

Taxa Details / Focus Reference
Collembola, Acari, Nematoda,
Amoebae, Flagellates

Shortgrass prairie, soil fauna Hunt et al. (1987)

Terrestrial arthropod carnivores,
herbivores & detritivores

Temperature dependency Lang et al. (2017)

Aquatic insects Resource-N content dependency Pandian & Marian (1986)
Fishes Absorption efficiency, >50 species Pandian & Marian (1985)
Birds Food-type and species dependency Castro, Stoyan & Myers (1989)
Land snails Woodlands Mason (1970)
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Figure Legends1082

Figure 11083

Calculating energy flux following the adapted food-web energetics approach (Barnes et al. 2014, 2018).1084

Energy flux along a trophic food chain from resources to highest-level consumers is calculated with equation1085

1 by taking into account metabolic demand by the consumer (X), assimilation efficiency (ea) and, for non-top1086

nodes, loss due to consumption by higher trophic levels (L). If calculating energy flux by hand, we would start1087

with the flux between the highest-level nodes in order to subsequently enable including loss to consumption1088

(L) for all but the top node. Small arrows indicate “loss” due to energy consumption (metabolic demand,1089

X) and efficiency losses due to assimilation efficiency (what is lost is 1-ea * the flux out of the resource1090

node). Predator node in red, herbivore node in yellow, plant node in green. For icon sources, please refer to1091

acknowledgements.1092

Figure 21093

Community assessment. In order to calculate energy flux, we need to assess densities (circle diameter) of all1094

organisms comprising the trophic community, that is, all organisms feeding on each other. One approach1095

to achieve this, is to sample a specific sub-community present in a given stratum per area (terrestrial) or1096

volume (aquatic). This could, for example, be the aboveground arthropod community in a grassland patch of1097

a given area. Organisms are then sorted into trophic feeding guilds or even species to build nodes of the food1098

web to base the energy flux calculation on. Here, predators in red, herbivores in yellow, detritivores in orange.1099

This community is then considered together with their present basal resources (here: plants in green and1100

detritus in brown). For icon sources, please refer to acknowledgements.1101

Figure 31102

Metabolic rate (MR) is the rate of “energy uptake, transformation and allocation”" (Brown et al. 2004,1103

metabolic theory of ecology). It is directly related to each organism’s energy demand and, as the “fundamental1104

biological rate” (Brown et al. 2004) determines many other physiological and ecological rates of an organism.1105

It scales with body mass (M) and temperature (not shown here) according to a power law (left panel). a1106

Non-linear relationship between body mass and metabolic rate. Using two example animals from a (with1107

masses M1 and M2 and metabolic rates MR1 and MR2), b illustrates how body masses and metabolic rates1108

are not related by the same factor. This means, while per-capita metabolic rate increases with body mass,1109

mass-specific metabolic rate decreases. In other words, the metabolic demand of one large individual is lower1110

than the joint metabolic demand of several smaller individuals with the same cumulative biomass. For icon1111

sources, please refer to acknowledgements.1112

Figure 41113

Per-capita metabolic rate (MR) increases with body mass (M) following a power law, but mass-specific1114

metabolic rate delines with body mass. All else being equal (environment, taxonomy, etc), the metabolic1115

demand of a large individual is higher than that of a small individual (a). However, the joint metabolic1116

demand of a group of small-bodied individuals is higher than that of a smaller number of larger-bodied1117

individuals with the same cumulative biomass (b). For icon sources, please refer to acknowledgements.1118

Figure 51119

Topology. Food-web topology is the arrangement of elements (nodes - trophic “species”, and links - feeding1120

interactions) in a trophic network. Depicted are three different topologies. a and b could represent the same1121
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underlying community with different resolution, where a (e.g., species level) has a higher resolution than b1122

(here: functional feeding guilds). c is an example of a two-node food chain where a lady beetle population1123

feeds on an aphid population, for example in a simplified experimental setting. For icon sources, please refer1124

to acknowledgements.1125

Figure 61126

Preferences - passive (upper row, a and b) and active (lower row, c and d): Passive feeding preference (a) is1127

illustrated by a consumer population (red node, centipede) feeding more heavily (link width) on more-available1128

prey (prey biomass of millipede and springtail populations depicted by node diameter). In this case (b),1129

the distribution (% content) of prey in the environment (green) and in the consumer diet (blue) across1130

prey body size (M) is equal. Active preference (c) is illustrated by the consumer population feeding more1131

heavily on the less-available prey (here: mites) e.g. due to preferred predator-prey body size ratio or lower1132

stoichiometric mismatch between predator and prey body tissue. Here (d), the distribution of prey body mass1133

in the diet is clearly shifted towards the larger-bodied prey compared to the distribution in the environment.1134

Illustrations in b and d are motivated by Gauzens et al. (in prep). For icon sources, please refer to1135

acknowledgements.1136

Figure 71137

Assimilation efficiency is the proportion of ingested energy that is taken up through the gut walls, i.e. that1138

is not egested. In trophic ecology, it is commonly ascribed based on the resource type. Panel a shows1139

examples for assimilation efficiency (ea) for carnivores (eating heterotrophs), herbivores (eating autotrophs),1140

and detritivores (eating detritus) taken from Lang et al. 2017. Diagonal arrows out of the flux arrow illustrate1141

proportional losses due to assimilation efficiency (1 − ea). b and c show two examples of reported drivers1142

of assimilation efficiency, namely temperature (Lang et al. 2017) and diet nitrogen content (Jochum et al.1143

2017). For icon sources, please refer to acknowledgements.1144
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