References
ávan der Meer, A. D., JungáKim, H., ávan der Helm, M. W., & den Berg, A. (2015). Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems.Lab on a Chip, 15 (3), 745-752.
Asfaha, S., Dubeykovskiy, A. N., Tomita, H., Yang, X., Stokes, S., Shibata, W., . . . Muthupalani, S. (2013). Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology, 144 (1), 155-166.
Ashammakhi, N., Nasiri, R., De Barros, N. R., Tebon, P., Thakor, J., Goudie, M., . . . Khademhosseni, A. (2020). Gut-on-a-chip: Current progress and future opportunities.Biomaterials , 120196.
Banks, W. A., & Erickson, M. A. (2010). The blood–brain barrier and immune function and dysfunction.Neurobiology of disease, 37 (1), 26-32.
Bedford, A., & Gong, J. (2018). Implications of butyrate and its derivatives for gut health and animal production. Animal Nutrition, 4 (2), 151-159.
Booth, R., & Kim, H. (2012). Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab on a Chip, 12 (10), 1784-1792.
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., . . . Kundu, P. (2014). The gut microbiota influences blood-brain barrier permeability in mice.Science translational medicine, 6 (263), 263ra158-263ra158.
Carobolante, G., Mantaj, J., Ferrari, E., & Vllasaliu, D. (2020). Cow Milk and Intestinal Epithelial Cell-Derived Extracellular Vesicles as Systems for Enhancing Oral Drug Delivery. Pharmaceutics, 12 (3), 226.
Chen, P., Shibata, M., Zidovetzki, R., Fisher, M., Zlokovic, B., & Hofman, F. (2001). Endothelin-1 and monocyte chemoattractant protein-1 modulation in ischemia and human brain-derived endothelial cell cultures. Journal of neuroimmunology, 116 (1), 62-73.
Chi, M., Yi, B., Oh, S., Park, D.-J., Sung, J. H., & Park, S. (2015). A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomedical microdevices, 17 (3), 58.
Choe, A., Ha, S. K., Choi, I., Choi, N., & Sung, J. H. (2017). Microfluidic Gut-liver chip for reproducing the first pass metabolism. Biomedical microdevices, 19 (1), 4.
Colgan, O. C., Ferguson, G., Collins, N. T., Murphy, R. P., Meade, G., Cahill, P. A., & Cummins, P. M. (2007). Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress.American Journal of Physiology-Heart and Circulatory Physiology, 292 (6), H3190-H3197.
Dinan, T. G., & Cryan, J. F. (2017). Brain–gut–microbiota axis—mood, metabolism and behaviour.Nature Reviews Gastroenterology & Hepatology, 14 (2), 69-70.
Ehrlich, L. C., Hu, S., Sheng, W. S., Sutton, R. L., Rockswold, G. L., Peterson, P. K., & Chao, C. C. (1998). Cytokine regulation of human microglial cell IL-8 production. The Journal of Immunology, 160 (4), 1944-1948.
Elbrecht, D. H., Long, C. J., & Hickman, J. J. (2016). Transepithelial/endothelial Electrical Resistance (TEER) theory and ap-plications for microfluidic body-on-a-chip devices.tc, 1 (1), 1.
Evrensel, A., & Ceylan, M. E. (2015). The gut-brain axis: the missing link in depression.Clinical Psychopharmacology and Neuroscience, 13 (3), 239.
Ghosh, S. S., Wang, J., Yannie, P. J., & Ghosh, S. (2020). Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society, 4 (2), bvz039.
Gorecki, A. M., Dunlop, S. A., Rodger, J., & Anderton, R. S. (2020). The gut-brain axis and gut inflammation in Parkinson’s disease: stopping neurodegeneration at the toll gate: Taylor & Francis.
Haas-Neill, S., & Forsythe, P. (2020). A Budding Relationship: Bacterial Extracellular Vesicles in the Microbiota–Gut–Brain Axis. International Journal of Molecular Sciences, 21 (23), 8899.
Hirotani, Y., Ikeda, K., Kato, R., Myotoku, M., Umeda, T., Ijiri, Y., & Tanaka, K. (2008). Protective effects of lactoferrin against intestinal mucosal damage induced by lipopolysaccharide in human intestinal Caco-2 cells. Yakugaku Zasshi, 128 (9), 1363-1368.
Iannone, L. F., Preda, A., Blottière, H. M., Clarke, G., Albani, D., Belcastro, V., . . . Ferraris, C. (2019). Microbiota-gut brain axis involvement in neuropsychiatric disorders.Expert review of neurotherapeutics, 19 (10), 1037-1050.
Jiang, L., Li, S., Zheng, J., Li, Y., & Huang, H. (2019). Recent progress in microfluidic models of the blood-brain barrier. Micromachines, 10 (6), 375.
Kim, H. J., Huh, D., Hamilton, G., & Ingber, D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab on a Chip, 12 (12), 2165-2174.
Lauritzen, K. H., Morland, C., Puchades, M., Holm-Hansen, S., Hagelin, E. M., Lauritzen, F., . . . Bergersen, L. H. (2014). Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cerebral cortex, 24 (10), 2784-2795.
Lee, D. W., Ha, S. K., Choi, I., & Sung, J. H. (2017). 3D gut-liver chip with a PK model for prediction of first-pass metabolism. Biomedical microdevices, 19 (4), 1-13.
Lee, S. H., & Sung, J. H. (2018). Organ‐on‐a‐chip technology for reproducing multiorgan physiology.Advanced healthcare materials, 7 (2), 1700419.
Lee, S. Y., & Sung, J. H. (2018). Gut–liver on a chip toward an in vitro model of hepatic steatosis.Biotechnology and bioengineering, 115 (11), 2817-2827.
Li, H., Sun, J., Wang, F., Ding, G., Chen, W., Fang, R., . . . Liu, J. (2016). Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice. Brain research, 1642 , 70-78.
Ma, C., Peng, Y., Li, H., & Chen, W. (2020). Organ-on-a-Chip: A New Paradigm for Drug Development.Trends in Pharmacological Sciences .
Maheshwari, R., Gupta, A., Ganeshpurkar, A., Chourasiya, Y., Tekade, M., & Tekade, R. K. (2018). Guiding Principles for Human and Animal Research During Pharmaceutical Product Development Dosage Form Design Parameters (pp. 621-664): Elsevier.
Manca, S., Upadhyaya, B., Mutai, E., Desaulniers, A. T., Cederberg, R. A., White, B. R., & Zempleni, J. (2018). Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Scientific reports, 8 (1), 1-11.
Martin, C. R., Osadchiy, V., Kalani, A., & Mayer, E. A. (2018). The brain-gut-microbiome axis.Cellular and molecular gastroenterology and hepatology, 6 (2), 133-148.
McAllister, M. S., Krizanac-Bengez, L., Macchia, F., Naftalin, R. J., Pedley, K. C., Mayberg, M. R., . . . Janigro, D. (2001). Mechanisms of glucose transport at the blood–brain barrier: an in vitro study. Brain research, 904 (1), 20-30.
Mutai, E., Zhou, F., & Zempleni, J. (2017). Depletion of dietary bovine milk exosomes impairs sensorimotor gating and spatial learning in C57BL/6 mice. The FASEB Journal, 31 (1_supplement), 150.154-150.154.
Oddo, A., Peng, B., Tong, Z., Wei, Y., Tong, W. Y., Thissen, H., & Voelcker, N. H. (2019). Advances in microfluidic blood–brain barrier (BBB) models. Trends in biotechnology, 37 (12), 1295-1314.
Papademetriou, I., Vedula, E., Charest, J., & Porter, T. (2018). Effect of flow on targeting and penetration of angiopep-decorated nanoparticles in a microfluidic model blood-brain barrier. PloS one, 13 (10), e0205158.
Parker, A., Fonseca, S., & Carding, S. R. (2020). Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes, 11 (2), 135-157.
Peng, H., Ji, W., Zhao, R., Yang, J., Lu, Z., Li, Y., & Zhang, X. (2020). Exosome: a significant nano-scale drug delivery carrier. Journal of Materials Chemistry B, 8 (34), 7591-7608.
Peng, L., He, Z., Chen, W., Holzman, I. R., & Lin, J. (2007). Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier.Pediatric research, 61 (1), 37-41.
Puscas, I., Bernard-Patrzynski, F., Jutras, M., Lécuyer, M.-A., Bourbonnière, L., Prat, A., . . . Roullin, V. G. (2019). IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug Screening. Pharmaceutics, 11 (11), 587.
Qin, L., Wu, X., Block, M. L., Liu, Y., Breese, G. R., Hong, J. S., . . . Crews, F. T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration.Glia, 55 (5), 453-462.
Raimondi, I., Izzo, L., Tunesi, M., Comar, M., Albani, D., & Giordano, C. (2020). Organ-on-a-chip in vitro models of the brain and the blood-brain barrier and their value to study the Microbiota-Gut-Brain Axis in neurodegeneration. Frontiers in Bioengineering and Biotechnology, 7 , 435.
Saeedi, S., Israel, S., Nagy, C., & Turecki, G. (2019). The emerging role of exosomes in mental disorders.Translational psychiatry, 9 (1), 1-11.
Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Translational Research, 179 , 223-244.
Schumann, R. (1992). Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Research in immunology, 143 (1), 11-15.
Sharma, G., Sharma, A. R., Lee, S.-S., Bhattacharya, M., Nam, J.-S., & Chakraborty, C. (2019). Advances in nanocarriers enabled brain targeted drug delivery across blood brain barrier. International Journal of Pharmaceutics, 559 , 360-372.
Shemesh, J., Jalilian, I., Shi, A., Yeoh, G. H., Tate, M. L. K., & Warkiani, M. E. (2015). Flow-induced stress on adherent cells in microfluidic devices. Lab on a Chip, 15 (21), 4114-4127.
Shimizu, F., Nishihara, H., & Kanda, T. (2018). Blood–brain barrier dysfunction in immuno-mediated neurological diseases. Immunological Medicine, 41 (3), 120-128.
Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L., & Hickman, J. J. (2015). TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation, 20 (2), 107-126.
Sung, J. H., Wang, Y. I., Narasimhan Sriram, N., Jackson, M., Long, C., Hickman, J. J., & Shuler, M. L. (2018). Recent advances in body-on-a-chip systems. Analytical chemistry, 91 (1), 330-351.
Verma, S., Nakaoke, R., Dohgu, S., & Banks, W. A. (2006). Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain, behavior, and immunity, 20 (5), 449-455.
Voelkl, B., Altman, N. S., Forsman, A., Forstmeier, W., Gurevitch, J., Jaric, I., . . . Van de Casteele, T. (2020). Reproducibility of animal research in light of biological variation. Nature Reviews Neuroscience , 1-10.
Wang, X., Hou, Y., Ai, X., Sun, J., Xu, B., Meng, X., . . . Zhang, S. (2020). Potential applications of microfluidics based blood brain barrier (BBB)-on-chips for in vitro drug development. Biomedicine & Pharmacotherapy, 132 , 110822.
Zempleni, J., Sukreet, S., Zhou, F., Wu, D., & Mutai, E. (2019). Milk-derived exosomes and metabolic regulation. Annual review of animal biosciences, 7 , 245-262.
Zhang, B., Korolj, A., Lai, B. F. L., & Radisic, M. (2018). Advances in organ-on-a-chip engineering.Nature Reviews Materials, 3 (8), 257-278.
Zhu, X., Han, Y., Du, J., Liu, R., Jin, K., & Yi, W. (2017). Microbiota-gut-brain axis and the central nervous system. Oncotarget, 8 (32), 53829.
Zucco, F., Batto, A.-F., Bises, G., Chambaz, J., Chiusolo, A., Consalvo, R., . . . Fabre, G. (2005). An inter-laboratory study to evaluate the effects of medium composition on the differentiation and barrier function of Caco-2 cell lines.Alternatives to laboratory animals, 33 (6), 603-618.