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Abstract

We extend the well-known Halanay inequality to the fractional order case in presence
of distributed delays and delays of neutral type (in the fractional derivative). Both the
discrete and distributed neutral delays are investigated. It is proved that solutions
decay toward zero in a Mittag-Leffler manner under some rather general conditions.
Some large classes of kernels and examples satisfying our assumptions are provided. We
apply our findings to prove Mittag-Leffler stability for solutions of fractional neutral
network systems of Cohen-Grossberg type.
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1 Introduction

In this work we extend an inequality from the integer order case to the fractional order case
and taking into account discrete as well as distributed neutral delays. It is an inequality
named after Halanay.

Lemma 1: Assume that w(t) is a nonnegative solution of

w'(t) < —Aw(t)+ B sup w(s), t > a.

t—7<s<t
If 0 < B < A, then there exist M > 0 and o > 0 such that

w(t) < Me =9t >q,
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It was used first by Halanay [10] to study the stability of the equation
V'(t) = —Av(t) + Bu(t—71), T > 0.

A generalization of this inequality to variable coefficients and variable (bounded and un-
bounded) delay exist in the literature [1] and [24,25]. In particular, they have been used in
the investigation of some Volterra functional equations and also Hopfield Neural Network
problems of the form

{ wi(t) = —cwi(t) + 2001y i fi(@(8)) + 2252, by f(as(t — 7)) + i, £ >0,
xl(t) = ¢i(t)7 -7 <t<0,

with ¢ = 1,...,n, (see [15,26] and also [12] for another problem). These systems have been
applied in many areas such as combinatorial optimization, cryptography, parallel comput-
ing, signal theory, image processing, biological, biomedical, medical (epidemiology), polymer
composite and geology [14,16,17].

Furthermore, Halanay inequality has been generalized to the distributed delays case in
20]

wﬁ)<—A@w®+&%ﬂAmM@w@—Qd&tz&

The authors proved an exponential decay of solutions for kernels satisfying

/ P k(s)ds < oo
0

for some 3 > 0, provided that
B@/‘MgﬁgA@—ab>QteR
0

See also [21].

In the present work, we extend the Halanay inequality from the integer (first order) case
to the fractional order case. The justification of the use of fractional derivatives is traced
back to [2,3]. The second feature is the consideration of delays of neutral type. That is,
delays occurring in the highest derivative. Namely, we discuss the stability of the problem

(1)

{ D¢ [w(t) —pw(t — v)] < —aw(t) + f(f k(t —s)w(s)ds, 0 <a <1, t,v,p>0,
w(t) = (), t € [-v,0].

We find sufficient conditions on the delay kernel £ ensuring the stability of the solutions.
The obtained stability is of Mittag-Leffler type

w(t) < AE,(—at®), t > 0.

Some examples of classes of functions satisfying our conditions are provided. Next, this
result is applied to a problem arising in neural network theory. Namely, we discuss a Cohen-
Grossberg neural network system [9] (which is a generalization of the corresponding Hopfield
neural network system) which is of fractional order and with a delay of neutral type.
Fairly, there is a huge amount of work on the existence, asymptotic behavior and stability
(finite time or not and with or without decay rates) for Cohen—Grossberg neural network
systems. We report here only some of those treating the neutral delay case and/or the
fractional case. For neutral Cohen-Grossberg systems of integer order type (first order) we
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refer the reader to [23,5,7]. The fractional case of Cohen-Grossberg systems with discrete
delays has been studied in [13]. We mention here that the Halanay inequality has been
already extended to the fractional case but only for discrete delays in [4,11]. We are not
aware, however, of any work related to our problem (1).

The previous arguments in the literature which work in the integer order case are no
longer valid in the fractional order case. For instance, the lack of the semi-group property
for the Mittag-Leffler functions does not facilitate the study. The absence of an explicit
appropriate estimation of the expression E,(—a(t — v)*)/E.(—at®) is problematic for the
convergence of the obtained series. Ideally, the rate would be of the form E,(—at®) as is
the case without the neutral delay but here this kind of delay brings some new challenges.
In particular, we face difficulties estimating the delayed term w(¢ — v) nearby v. Passing
rather to t~ (using Mainardi’s conjecture which says roughly that E,(—at®) is between two
functions of the form ¢~*) will not solve the problem completely.

The plan of the paper is as follows: Section 2 contains some preliminaries while Section
3 contains our main result on the fractional Halanay inequality with discrete neutral delay.
In addition we give two possible classes of kernels in Section 4. Section 5 is devoted to a
fractional Halanay inequality with distributed neutral delay. Section 6 contains a result on
the problem studied in Section 3 but for solutions of arbitrary signs. An application to a
Cohen-Grossberg system with delays of neutral type which arises in neural network theory
is provided in Section 7. We conclude in Section 8.

2 Preliminaries

In this section we define the fractional derivative considered here and give some useful lemmas
used in the proof of our results.
Definition 2: The Riemann-Liouville fractional integral of order oo > 0

1
I°f :—F / s)ds, a >0
0

for any measurable function f provided that the right hand side exists. Here I'(«) is the
usual Gamma function.
Definition 3: The fractional derivative of order « in the sense of Caputo is defined by

t

1 —a gt
m/(t—s) fl(s)ds, 0 <a<1

0

D f(t) =

provided that the integral exists.
The one-parametric and two-parametric Mittag-Leffler functions are defined by

) ik

E.(z) = ano Tlan 1)’ Re(a) > 0,

and
n

Bap(z) =Y m, Re(a) > 0, Re(f) > 0

resp. Notice that E,1(z) = E,(2).



Lemma 4: [19] For v, u, b > 0, we have

S /Z(Z _ g)u—lgufle—bﬁdg < b™" max (1721_”) C'(p) <1 + H) , 2> 0.
0

v
For o,v, > 0, we have [§]

17671 By p(at?) (&) = 2517 By g (a0 2)
Mainardi’s conjecture [18]: For all ¢ > 0 and fixed «, 0 < a < 1, we have

1 1
< E, t t>0. 3
1+al'(1 —a)t> — (=at”) < 1+al'(1+ )"t — (3)

has been proved later in [6] and in [22].

3 Fractional Distributed Halanay Inequality with dis-
crete neutral delay

We start by clarifying what we mean by Mittag-Leffler stability
Definition 5: If 0 is an equilibrium, then the solution u(t) is said to be a-Mittag-Leffler
stable (0 < a < 1) if there exist two positive constants M and A such that

lu(t)| < MEL(—\2), ¢ >0

for a certain norm ||.|| .
Theorem 6: Let u(t) be a nonnegative solution of

{Dg[u(t)—pu(t—y)]_—au )+ [ k(t — s)u(s)ds, 0 <a <1, t,y,p>0 (@)
u(t) = ¢(t) 20, t € [-v,0]

with @ > 0 and k a nonnegative summable function. If p > 0 and k are such that the relation

holds for some M > 0 with

M<1- (a%—i-ZoT(l—a))p (6)
" (L rmaw)en "

then there exists a constant C' > 0 such that
w(t) < CE,(—at®), t > 0.
Proof: We shall compare solutions of (4) with those of

{Dg[w(t)—pw(t—u)}:—aw —i—fo (t—s)w(s)ds, 0<a<l1, t>0 (8)
w(t) =¢(t) >0, t € [—v,0]



Writing the equation in (8) in the form

t
D¢ [w(t) — pw(t —v)] = —a w(t) — pw(t — v)] — apw(t — v) + / E(t — s)w(s)ds, t >0
0
allows us to profit from the formulation

w(t) —pw(t —v) = Ea(=at®) [p(0) — pp(—v)]
+ fo )* B (—alt — $)*) (—apw(s —v) + [ k(s — o)w(o)do) ds, t > 0.

As the solution is nonnegative (with nonnegative history), we find

w(t) < ¢(0)Eu(—at®) +pw(t —v)
[fo ‘1 1Eaa( t—S (f() 8—0’ O')dO') d$:| . t>0. (9)

Therefore

%W((’Hﬁ (t=v)

t oa— o a w\o
i Jy (= 97 Eaa(=a(t = $)) (J; k(s = 0) Eal(—a0®) 5 #%5dor ) ds, ¢ >0

(—aoc®)

and

Tt < ©(0) + g amyw(t —v)

t a— o wlo
—|—m fo (t —8)* 1By a0(—a(t — s)* )(f k(s — 0)Es(—ao )da) ds SUPogagtﬁ

< ¢(0) + mw( V) + M suPo<,<; 5 ((az,a) t>0.
We shall use repeatedly the estimation

s = 8 Baalalt = 5)°) (J bls — oYulo)do) ds
Smfot—Sa 1Eaa( t—S (fO S—O' ( ao )E aaf"da>d (]_0)

< M supy<,<; 7 ((027‘") t>0
and
ﬂ<gp(0)+Lw(t—y)+MsupM t>0 (11)
E.(—at®) — E.(—at®) 0<o<t Fo(—ac®)’ '

will be our first reference inequality.
For t € [0,v], by the decreasingness of E,(—at®), we have E,(—at*) > E,(—av®) and
therefore

w(t) p w(o)
Eo(—at) = (1 ! Ea<—aw>> S PO M S Cao)
(1— M)—E:(U_(Zzta) < (1 + T fwa)) jggow(a). (12)

For t € [v,2v], from our reference relation (11) and (12), we find

Fa(cats) = SUP_y<<0 o(o) + 1 (1 + 5 a,,a)> EQE(;EZEZ}ZT) SUP_,<,<0 (0)

_w(o)

+M SUPo<o<t By (—ao®)"



Here, the expression E,(—a(t — 1))/ E,(—at®) is dealt with as follows:

E“E‘Z(ita_taj)a) < Ea(iata) < Ea(—al(Qy)o‘) <14+al(1—a)(20)" = A (13)
Therefore
w(t) A(Eo(—av®) +p)p w(o)
Bl < [ (A Buar ) S, 70+ M o
or (passing to the sup)
w(t) AE,(—av®) A 2
SR RED {1 A=) B T T30 B ] o, #)

(14)
We will write (14) in the more convenient way

w(t) < A

(1= M) E,(—at®) = E.(—av®)

2
p p
1 G
+1—M+(1—M) ]_f;lf@@(g) (15)

For t € [2v,3v], in view of the estimations # < 2% and the relations (3), we infer the
new estimation for E,(—a(t — v)*)/E,(—at®)

Eo(—a(t—v)%) 1+al'(1—a)t™ < I'(1+a) + I'(1+a)'(1—a)t™
Eo(—at®) — 1+aF(1+<ic)*1(t—V)a % (t—v)e (16)
<T(l+a) [ +2T1-a)], t>2v.

Notice that, as I'(1 4+ «) is very close to (and below) 1, we may ignore it.
Back to our reference inequality (11), taking into account (15) and (16), we may write

w(t Eo(—a(t—v)® :
Ea+a)ta) < SUP_ e yeo () + 7557 ]éa(_(atag )Ea(faya) [1 + 1t (1—pM) ] SUP_, <,<0 P(0)
+M supg< ;< %
or

2
p P
1
st () ”_53&&”(”)

(17)

where 1
Vi=—+2T(1 - a).
av®

As EQ(A—ZV‘)‘) > 1, we may rewrite (17) in the form

S Eal(U—(ZZt“) : Ea(jlaVa) {1 1 ZiVM ! (1 ]iVM)Q i <ﬁ>3} wsgfgogp(a)'

Let us prove the following claim.
Claim: For t € [(n — 1)v,nv],

w(t) A n v o\
(= M) ) < Bulmare) 2 iso <1 - M) sup_ (o).



This claim will be proved by recurrence. Clearly, from the above findings, it holds for n = 1,
2 and 3.

Assume that the assertion is true for n i.e. on [(n — 1)v,nv]. Let ¢ € [nv, (n+ 1)v], then
our reference inequality (11) and the fact that ¢t — v € [(n — 1)v, nv], yield

w o v k
Ea(—(gt“) S SUP_,<o<0 (o) + (qEJ\SI)E,(l( a)t"‘ Eul al/o‘ Zk 0( ) SUpP_,<s<0 ©(o)
+M supg<, < m
and by (16)

w k
(1 — M) % ~ [1 + pV Zk 0 ( ) ] Sup—u§0§0 SD(O-)
n k n k
< e aya [1 +y 1 (#££) ] SUP_,<,<0 P(0) = Ea(f‘aua) fa (257) SUP_y<oz0 P(0)-

The claim is proved. Therefore

A o0 v \"
w(t) < [(1 — M) Ea(—aya) Zk:o (1 — M) 7118;1520 Qp(g)

Our assumptions (6) and (7) guarantee the convergence of the series in (18). The proof is
complete.

E.(—at®), t > 0. (18)

4 Examples

Here we give two classes of functions for which our assumptions in the theorem apply.
First class:
We consider the set of all kernels k satisfying

/ E.(—ac®)k(s — o)do < Cy18"71, s >0, Cp,v > 0. (19)
0

The class of functions k() < Cyt~%e~* fulfills this condition for some b and Cy to be
determined. Indeed, as

1 r(1 r(1
Bo(caty< — o _Tta) _Tl+a) (20)
1+m F(1+a)+at at

we see that

Js Ea(—a(s — o))k (o) do < Call+a) Ha fo — o) 0% "do
< wba 1F(l a)s~, s> 0.

Therefore (19) holds with

2“+1CQF(1 + Oé)

Cy = - VIT(1—a), vi=1-a.
Using the formula (2), we get
[t = 8) Egu(—alt — 5)*) (Jo Ea k(s — o)do) ds
<Oy fl = 5) By~ (t - s) ) —ods (21)

S le(l — a)Ea,l(—at“).
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The assumption (6) holds if we choose C (or Cs for the specific example) such that

OTr(1—a)<1- <i +297(1 — a)) p.

av

Second class:
Assume that k(t) < C3t*'E, o(—bt*) for some b > 0 and C3 > 0 to be determined.
Applying twice formula (2) and (20), we obtain

Cs Jo(t = )" Eaa(=alt = 5)) (J5 (s = 0)* 7 Baa(=b(s — 0)*) Ea(—a0®)do) ds
< Glra) iy o lEma( alt — 5)° (fo 5= 0) " Eqa(~b(s — 0)*)odo) ds
< Gal(+a)l(1-a) fo(t— $)* 1By o(—a(t — 5))Ea(—bs®) ds (22)

< O MFTAza) TE) (Hy  g)o—1 B, (—alt — s)*)s™* ds
< G0 g (—at®) .

It appears that M = C?’F2(1+§2F2(17&) and we impose the condition on C3 or/and b so that

the assumption on M in the theorem is fulfilled.

5 Fractional Distributed Halanay Inequality with dis-
tributed neutral delay

In this section we treat the case where the neutral delay is of distributed type. Namely, we
consider the inequality

[ pfo (t—s)u ds]_—au —i—fo (t—s)u(s)ds, 0 <a<1, t,y,p>0
u(t) =ug >0, t € [—v,0]
(23)
which we will compare to
Da[ pfo (t—s)w ds}:—aw —i—fo (t—s)w(s)ds, 0<a<l, tiy,p>0
w(t) =wy =ug >0, t € [—v,0].
(24)

Here, the solutions are supposed to be nonnegative and ¢ is a continuous function which we
will determine below.
Let us rewrite it as

DY [w(t) —p [y gt — s)w(s) ds] =—a [ —p [y gt — s)w(s)ds
—ap [} g(t — s)w(s)ds + [} k(t — s)w(s)ds, 0 < a <1, t,v,p>0
w(t) =wy >0, t € [-v,0].

Therefore

w(t) — pfo (t—s)w )d = Eo(—at®)wy
+fo )" Ego(—a(t — 5)*) (—ap fo o)w(o)do + [ k(s — o)w(o)do) ds
and
w(t) < Eu(— at"‘)w0+pf0t (t — s)w(s)ds
+f0 )2 Ega(—alt — $)*) ([ k(s — o)w(o)do) ds, t > 0.

8



Dividing both sides of (25) by E,(—at®), we find

w t
1 t lEa(—(Zt“) < wo Ea(—iato‘) Jo gt = s)w(s)ds o
tamcam Jo(t = 8)*  Baa(—alt — 5)%) (Jy k(s — 0) Ea(—ac®)do) ds supo<,<; 7 (aga

or

w(t) p
<
E.(—at®) — Wk

m/o g(t—s)Ea(—asa)#z)sa)ds+M sup

0<o<t Eo(—ac®)’

w(o) t > 0.

We assume that

t
P

—_— t—s)E,(—as*)ds < M*
ot J, 90— Ealoas) i <

for some M* > 0. Then

w(t) w(o)

———<wg+(M*"+M) sup ——————, t>0.

Bo(—ape) =0t M) S0 o)
and w

<— % B (—at®
w(t) < T w(—at®), t >0
in case
M*+ M < 1.

Example: If k is as in the previous section and ¢ is such that
g(t) < Cyt* "By o(—ct®)
for some Cy, ¢ > a, then

1+ a)l'(1—a)

¢

r

/ g(t — s)Eo(—as®)ds < Cy E,1(—at®), t > 0.
0

A value for M* would be
~ CpI'(14a)I'(1 — )

a

M*

Therefore, we have proved
Theorem 7: Let u(t) be a nonnegative solution of (23) with a,p > 0 and k, g are
nonnegative continuous functions such that

t
p/ g(t — s)Ey(—as®)ds < M*E,(—at®), t >0,
0

hold for some M, M* > 0 with
M*+ M < 1.

Then, there exists a constant C' > 0 such that

w(t) < CEL(—at®), t > 0.



6 The case of solutions of arbitrary signs

Before we go to the applications, we notice that in all previous Halanay inequality results
(including the above one), it is assumed that solutions are nonnegative. This assumption
is enough in applications, for instance, to neural network systems (without neutral delays).
Indeed, to prove stability of the equilibrium solution, we shift this issue to the stability of
zero by a change of functions. Then, we consider the absolute value of the solutions (or other
appropriate norms). In the present case, the situation is different. In presence of a neutral
delay, working with the norm of the difference operator (u(t) — pu(t —v)) or with the norm of
the solution and move the neutral delay term to the right hand side, both are problematic.
Instead, we shall discuss how to prove directly the stability of the inequality for arbitrary
sign solutions. This task also is not easy because now the delays will be inside convolution
integrals. The estimations in this case are more involved and tedious.
Back to

{Dg[u(t)—pu(t—l/)]_—au +f0 (t—s)u(s)ds, 0 <a <1, t,v,p>0
u(t) =¢(t) >0, t € [-v,0]

with |o(s)| < woEu(—a(s+v)*) for s € [—v, 0], wy > 0. To fix ideas, let us assume 0 < p < 1
and consider the formulation

w(t) —pw(t —v) = Ea(—at®) [p(0) — pp(—v)]

+ fo )* B (—alt — $)*) (—apw(s —v) + [ k(s — o)w(o)do) ds, t > 0.
Then
w(t )| < 2woEo(—at®) + plw(t — v)|
+ap [yt —s)*” 1Eaa( a(t — 8)*) |w(s —v)| ds (26)
—l—fg(t—salEa,a( (t—s)*) (fy k(s — o) |w(o)|do) ds, t > 0.
For t € [0, v],

oy < 3w+ 5y Jo(t = )7 Eaa(—alt = $)*) Ea(—as”) ds

(—at®)
+Msup0<a<t Eh(v(z)o!a)

where M is as in (5). Again, as

[5(t = 8)° By a(—alt — $)*) Eo(—as®) ds
< T (4 — )1 B, o(—alt — s)*)s™* ds (27)
< I'(1+o)I'(1—a) E, 1(—at“)

we may write

% < 3wy 4+ wel'(1 4+ )T'(1 — a)p + M suppc, < EJ?—(ZL)

or

O—Aﬂi§§%§§&m+wﬂﬂ+aﬁﬂ—am. (28)

In case t € [v,2v], we first notice that

-M Eo(—at®)

lw(t —v)| < 3wo+woF§1+Oé) (I—a)p Ea(—a (t_y)a)Ea(—ata)
Bwotwol'(1+a)['(1—« a
<A 0+0§-;V[)( )pEa(—as)

10



where A is as in (13). Using the fact that

3wy + wel'(1 + a)I'(1 — a)p
1-M

U)()SA

and the relations (26) and (28), we get

w(t)] < 2woE,(—at®) +Ap3w°+w0F§1+]§>m—“>pEa(—ata)
+apA3wo+woF(1+a (1—a)p f — 5) 1Eaa( a(t — 8)*) Ey(—as®)ds

+fo )* Ega(—a t—S ) (fy k(s — o) |w(o)] do) ds.

Next, we apply (27), to obtain

0(t)] < 2uoBa(—at®) + ApPuotuolHar=ay g (o)
+apA3w°+w0F§1J§\;) (1—a)p F(1+a)F(1 IR, (—at®)

+ ot = 8)° 7 Eaa(=alt = 5)*) (Jy k(s — o) [w(o)| do) ds

or
(1= M) =201 < 90y + Apwy [1 +T(1 + a)T(1 — o)) LA+

Eq(—at®) ) 1-M (29)
< 2w + 3w0A[1+1_:‘L(71;\r/[a)F(17a)]p + woA[lJrF(llj]\o;)F(lfa)] pZ-

For t € [2v, 3v], according to (16),

(zalt—v)*) - 1 .. _
Fleary S ae T 2T -a) =V >1

and therefore

+pV 1+cx 1 ) [2w n 3w0A[1+F(1+a)F(1—cx)]p+ wo A[14T(14a)I(1—a))? 2] Eo(—at®)

pV Qg + HLoALTT (el (1a)] , woA[1+F(1lj]\o/c[)F(1—a)]2p2:| Eo(—at®)

1—M 1M p
+ fo )* M Eoo(—alt — $)*) ([ k(s — o) [w(o)|do) ds.
So
2
(1 o M)% < 2w + Ii_v 211]0 + 3w0A[1+I;(_1—A&-/IOc)F(1—a)]p+ woA[l-i-l"(ll_-i-]?})F(l—a)} pg
+pV 1+a 1 a) [2w n 3woA[1+F1(i}‘&—/ch)F(1—a)]p+ Awo[1+r(11jﬁ)r(1_a)}2p2}
o [w(®)] 4T+ (1-a)] 2V14T( )( )2
w(t V{[14T'(14+a)'(1—« V[14T'(14+a)'(1—«
(1 - M) Eu(—ato‘) S 2'[1}[) + 2w E 1-M + 3 Ap (1— M) (30)
+w AV 1+F(1+a)F(1 a)] 3
(1-M)? '

Writing (30) in the form

2
(1— M) Eo‘f(u—(z)tla) < 2w + 2wOpV[1+F(1lj—]<\x4)F(1—o¢)} 4 3upA (pV[1+r(11j§2)r(1—a)}>

3
V1+TI'(1+a)'(1—«
+wA (p [+ (1:\/1) ( ”) (31)
2 3
< 3w0A{ X pV[1+1"(11+;I) (1—a)] n (pV[l—O—F(llj-]o\;I)F(l—a)}) i <pV[1+1"(11;|-](\1/[)1"(1—a)]> }

allows us to make the claim

11



Claim: On [(n — 1)v,nv], we have

(11_UOM) E\w Ty AZ " (Vp 1+r(11_+;;)r(1_a)])’j

By (28), (29) and (31), the claim is true for n = 1,2 and 3. Let ¢ € [nv, (n + 1)v], then from
(26)

k
w(t)] < 2wpEa(—at®) + 3ApV 1447 31, (Vp“”““’”m‘a”) Eo(—at®)

1-M
k
+3Aer<1 +a)T(1 - a) Si, ( 1*”3*?;}”1*“”) Eo(—at®)
ot = 8)  Bya(—a(t — 8)*) (Jo k(s — 0) |w(o)| do) ds
or
— w(t 3A |4 Vp[l+I'(1+o)'(1—«
(154) plshy < 2+ 488 o, (Heengzgrazal)’
FIUD(1 4 a)P(1 — 0) T (VT era-al)
Then
<5M> lw(®)]
wo Eo(—at®)
k
§3A{L+U+Fu+aﬁu—aﬂ%% Zﬂ<wﬂ”$ﬁmlﬂ>}
i.e. .
11— M\ |uw(t) Vpl+TA+a)l(1—a)\""
<3A¢1 :
(wo )E(at) +Z 1-M
Thus

(1 - M) Elt(vft)tla) <34 an (Vp[l + r(11_+;2)r(1 - a)])k

and the claim is proved. The series is convergent if
1+T(1+a)l(1— )
1-M

We just proved the following result
Theorem 8: Let u(t) be a solution of

Vp < 1.

{D%[u(t)—pu(t—y)]_—au —i—fo (t—s)u(s)ds, 0 <a <1, t,v,p>0
u(t) = p(t), t € [-v,0]

with |p(t)| < Eo(—a(t +v)*), t € [-v,0], a > 0, p > 0 and k is a nonnegative function such
that

t s
/ (t —8)* ' Eya(—alt —s)%) </ E.(—ac®)k(s — U)da) ds < ME,(—at"), t >0
0 0
holds for some M such that
M<1-1+TQ+a)l(1—-a)]Vp

with
1+T1+a)(1—-a)Vp<l1.

Then, there exists a constant C' > 0 such that

lw(t)| < CEL(—at®), t > 0.

12



7 Application in neural network theory
An important component of artificial intelligence is neural network systems. They are used

extensively nowadays to solve complex problems in different areas. Here we apply our findings
to neural network systems of Cohen-Grossberg type. Namely, we consider the problems

Dg [xi(t) — pxi(t — v)] = —h; (2 (1)) lgi (i (1)) — éaijfj (z; (1) — EZII bijly (z; (t — 7))

_defo ] 30_7 l‘]( ))dS—I], t7p7V>07

T2 (t) =z (t), t€[-v,0], i=1,2,..,n,

and

.

D2 [a(t) = p Jy 6t = 9)2:(3)ds] = —h (2 (1) [gm )= 2 e (a (1)

_Zlbijlj (x; (t—71)) Zdw fo i ( goj (xj(t—s))ds —1 ] t,p >0,
]:
L .%',L(O):l'lo(t), tSO, 2—1,2,..., n,

where n is the number of neurons in the network, x; (t) corresponds to the state of the ith
neuron at time t; h; represents an amplification function; g; is an appropriately behaved
function; I; denotes external input to the ithe neuron, a;;, b;;, d;; denote the connection
strengths of the jth neuron on the ith neuron, respectively; f;,1;,p,; denote the activation
functions, v, are the neutral delay kernels, 7 corresponds to the transmission delay, v is the
neutral delay, k; denotes the delay kernel function, ¢, is the pre-history of the ith state.
This is a quite general Cohen-Grossberg neural network (CGNNs) system which involves
discrete and continuously distributed delays. Of course we may also consider different discrete
delays or even variable discrete delays. We refrained to go to more general systems to avoid
distracting the attention of the reader from the main contribution here. In fact we will
consider the simpler problem

Dg [x:(t) = pri(t = v)] = —hi (2: (1)) | i (i (1)) Z dij Jo~ k; () fi (j (¢ = 8)) ds = L] ,

zi(t) =mp (), t € [-v,0], i=1,2,...,n.
(32)

for t,p,v > 0.

The following assumptions are somewhat standard

(A1) The delay kernel functions k; are piecewise continuous nonnegative functions such
that x; = [ k;(s)ds < o0, j=1,2,..,n

(A2) The funct1ons fi are Lipschitz continuous on R with Lipschitz constants L;, i =
1,2,....n, that is

(A3) Each function h; is positive, continuous and there exist constants «; and @;, such
that
0<a; <hi(u) <@, i=12..n,forall uelR.

13



(A4) The functions g; are differentiable with derivatives bounded by G.

For simplicity, we will assume zero history, i.e. z; (t) =0, t < 0.

Definition 9: The point z* = (x7, 23, ..., xZ)T is called an equilibrium if, for: = 1,2, ..., n,
x* is a solution of the system

g (z7) = i%m()+2¢ug £ (a) ds+ 1,

Z (aij + dijlﬁlj) fj (xj) + Ii, t > 0.

The existence and uniqueness of an equilibrium is guaranteed and has been proved in the
previous works. We first shift the equilibrium to zero by the substitution x (t) = wu (¢) + z*.
We obtain

D [ui(t) = pui(t = v)] = =hi (u; (t) + 27) [g; (wi (t) + 27)
_idz]‘fotk](s)f] (U](t—S)—Fl’;)dS—IZ , t>0,1=1,2,...,n
i (8) = by (1) = &, (1) — %, L€ [=1,0], i=1,2,.m

" D2 [us(t) — pus(t — v)] = —H; (us (1)) [Gi (s ()
f%% (uy (t — D%Lt>&hﬂ%wn
u (t) =1, (t) :==¢; (t) —af, t € [-v,0], i=1,2,...,n
where

H; (ui (1)) = hi (ui (t) +27), Gi(ui (t)) = gi (wi (¢) +27) — gi (z¥)
Fi(ui () = fi (wi (t) +27) — fi(z}), ¢ =1 :

Next, by the mean value theorem, we see that
D |ui(t) — pui(t — v)| < sgn [ui(t) — pui(t — v)] D¢ [ui(t) — pui(t — v)]

:—m@@mmwwWwwwqwam S (1) Z%A Fy (u; (t — s)) ds

and adding and subtracting pg; (z; (t)) u;(t — v), we get
D |ui(t) = pui(t = v)| < —H; (uq (1)) sgn [ui(t) — pus(t = v)] [g; (7: (1)) [wi(t) — pua(t — v)]

+pg; (T (t)) wi(t —v) — Zd@] Ik V(uy (t—8))ds|, t>0,i=1,2,..n,

or

D ui(t) = pua(t — v)| < —Hi (i (8)) G uit) — pui(t — v)| + pGH; (ui () [uilt — v)]
+H; (u; (t) 3 dij [3° ki (s) Ly Juj (t = s)|ds, t>0,i=1,2,..,n

j=1
Therefore
D Jui(t) — pui(t — v)| < =Gay |ui(t) — pui(t — v)| + pGa |ui(t — v)|
+aZZLdZJfO s)|u; (t—s)|ds, t>0,i=1,2,...,n

14



Finally we pass to the identity in w; and write the formulation

[wit) = pwi(t = v)| = Ea(=Gait®) [9;(0) = poi(—v)| + [y (t = 5)* " Eaa(—alt = 5)?)

X (pG&Z \wl(t — V)’ + q; Z Ljdz'j fooo kj (8) "U}j (t — 8)‘ ds dS, t > 0, 1= 1, 2, oy N
j=1
Now we can apply the previous result to obtain the Mittag-Leffler stability of this problem.

8 Conclusion

We have studied a general Halanay inequality of fractional order with distributed delays and
involving delays of neutral type. General sufficient conditions have been found guaranteeing
the Mittag-Leffler stability of the solutions and some examples were given. It seems that
this is the best rate we can obtain as is the case in previous fractional problems. Finally,
an application to a problem arising in neural networks theory has been presented. It is
clear from our argument that these results may be extended to more general situations such
variable delays and also for problems involving other terms. It is also important to mention
that the conditions on the different parameters involved in the systems may be considerably
improved as we managed no efforts in choosing the best estimations and bounds. In this
regards, it would be nice to look for possibly optimal bounds on delay coefficient p and the
kernel k.
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provided by King Fahd University of Petroleum and Minerals.
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