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Abstract

We consider a Hop�eld neural network system containing discrete as
well as distributed delays. A stability result of arbitrary type is proved
under weaker assumptions than the used ones so far. This result includes
exponential and polynomial (or power type) stability as special cases. Our
proof relies on a judicious choice of Lyapunov-type functionals and some
appropriate manipulations.
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1 Introduction

The problem of concern here is the following Hop�eld neural network (HNN)
system with two types of delays: discrete and distributed8<:

x0i(t) = �cixi(t) +
Pn

j=1 aijfj(xj(t)) +
Pn

j=1 bijfj(xj(t� �))
+
Pn

j=1 dij
R1
0
kj(s) fj(xj(t� s)) ds+ Ii; t > 0;

xi(t) = 'i(t); t � 0;
(1)
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for i = 1; 2; : : : ; n; where
n is the number of existing units
xi are the state of the neuron number i at the instant t
ci > 0 are the rates of the passive delay
aij ; bij ; dij denote the connection weight matrices
Ii stand for the external inputs assumed constants
fj are the activation functions
kj are the delay feedback kernels
� > 0 is the discrete delay, and
'i describes the history of the states
The activation functions in the discrete and distributed delays are in general

di¤erent but we are considering them here equal just for simplicity.
The continuous deterministic HNN is a recurrent arti�cial neural network

that is used in many applications to model the dynamics of systems with a large
number of inputs and unknown parameters. The �rst model introduced in [8]
had the form

x0i(t) = �cixi(t) +
nX
j=1

aijfj(xj(t)); t > 0; i = 1; 2; : : : ; n:

Hop�eld [8] introduced this continuous deterministic model to describe the
time evolution of the state of electronic devices with a large number of ampli�ers
in conjunction with feedback circuits made up of wires, resistors and capacitors.
Such circuits have integrative time delays due to capacitance. Since then, HNN
has been used to describe various systems that occur in engineering, biology,
and economy [1-3,7,9-12,15,18,20,21,23].
Many complex processes with delays can be modeled as Hop�eld neural net-

work (HNN) systems with discrete and/or continuously distributed delays. Time
retardation in electronic neural networks occur on account of the �nite switch-
ing speed of ampli�ers and can lead to instabilities in the form of oscillations
[4-6,13,14,17,19,22,24-28].
Guo [6] analyzed the global asymptotic stability for (1) with piecewise con-

tinuous kernels. The global and local stability of the equilibrium states of (1)
has been investigated under various conditions on the di¤erent coe¢ cients, ac-
tivation functions, and delays [4-6,13,14,17,19,22,24-28]. In addition, there is
an interest in determining the speed of convergence to the equilibrium states.
For this purpose, various exponential stability results have been established,
see for example [19]. In all these papers the main condition for exponential
asymptotic stability is

R1
0
e�sK(s)ds < 1 for some � > 0 in addition to the

standard condition of the dominance of the damping on the other coe¢ cients
[13,16,17,19,22,24,28].
Yin and Fu [25] studied the �-stability issue for a class of NNs (1) subject

to impulses with a diagonal K and unbounded time-varying lags. They used a
Lyapunov-Krasovskii functional to derive some conditions in the form of linear
matrix inequalities. The �-stability, roughly, means that the states converge
asymptotically to equilibrium at the rate 1=�(t) in a certain norm. Cui et

2



al. [4] extended (1) to a reaction-di¤usion cellular NN. The delays there were
unbounded and time-varying and the distributed delays were bounded. In both
papers, the function �(t) must satisfy the conditions

�0(t)

�(t)
� �1;

�(t� �)
�(t)

� �2;

R1
0
kj(s)�(t+ s) ds

�(t)
� �3; t > 0

where �1; �2 and �3 are nonnegative scalars.
Zhang and Jin [26] established conditions for existence, uniqueness, and

global asymptotic stability of the stationary state of HNN with �xed or dis-
tributed time delays. The results apply in case the interconnection matrices
are symmetric and nonsymmetric. The activation functions are continuous and
non-monotonic functions.
It is our objective here to derive su¢ cient conditions for stability with gen-

eral rate including as a special case the exponential stability. Our results are
obtained using new suitably selected functionals of Lyapunov-type in this the-
ory and improve the existing results using completely di¤erent arguments. In
view of the previous results we shall assume the existence of continuously dif-
ferentiable solutions.

2 Preliminaries

In this part of the paper we shall present our assumptions, de�nitions, and
useful lemmas.
We start with the presumptions
(B1) The delay kernel functions kj are piecewise continuous nonnegative

functions such that �j :=
R1
0
kj(s) ds <1.

(B2) The functions fi are Lipschitz continuous on R with Li, i = 1; 2; : : : ; n
as Lipschitz constants, that is

jfi(x)� fi(y)j � Lijx� yj; 8x; y 2 R; i = 1; 2; : : : ; n:

(B3) The initial data 'i(t), t � 0 are continuous functions.
De�nition 1: The point x� = (x�1; : : : ; x

�
n)
T is called an equilibrium point

of problem (1) if for i = 1; 2; : : : ; n;

cix
�
i =

Pn
j=1 aijfj(x

�
j ) +

Pn
j=1 bijfj(x

�
j ) +

Pn
j=1 dij

R1
0
kj(s) fj(x

�
j ) ds+ Ii

=
Pn

j=1

�
aij + bij + dij

R1
0
kj(s) ds

�
fj(x

�
j ) + Ii; t > 0:

De�nition 2: The equilibrium point x� is said to be globally �-stable if there
exists a constant A > 0 and a positive function �(t) such that limt!1 �(t) =1
and

kx(t)� x�k � A

�(t)
; t > 0

where k � k denotes any norm in Rn:
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The existence of a unique equilibrium for this kind of problems has been
shown for instance in [26,27] when the functions fj are Lipschitz continuous. It
has been proved also for �Non-Lipschitz�continuous functions (see [5]).
These results apply for our case here. In fact, one can consult any result in

Hop�eld neural network theory even without (discrete and distributed) delays,
as delays do not a¤ect the proofs. As a matter of fact, they do not appear in
the system satis�ed by the equilibrium. However, there will be conditions on
their coe¢ cients.

3 General stability

This part is devoted to the study the stability of the equilibrium state x� for
(1). If we let

z(t) = x(t)� x�;
then it is clear that the stability of x� is equivalent to the stability of the zero
state for the problem8<:

z0i(t) = �cizi(t) +
Pn

j=1 aijgj(zj(t)) +
Pn

j=1 bijgj(zj(t� �))
+
Pn

j=1 dij
R1
0
kj(s) gj(zj(t� s)) ds; t > 0; i = 1; 2; : : : ; n;

zi(t) =  i(t) := 'i(t)� x�i ; t � 0; i = 1; 2; : : : ; n;
(2)

where
gj(zj(t)) = fj(zj(t) + x

�
j )� fj(x�j ); t � 0: (3)

(B4) The initial data 'i(t) are such that  i 2 L2(�1; 0); i = 1; 2; : : : ; n:
To investigate the stability of the system (1), we employ the �energy�func-

tional

E(t) :=
nX
i=1

z2i (t); t � 0: (4)

The �rst lemma is a straightforward consequence of (B2) and (3).
Lemma 3: Let assumption (B2) hold. Then

2jzi(t) gj(zj(t))j � z2i (t) + L
2
jz
2
j (t); t > 0; i; j = 1; 2; : : : ; n;

and

2jzi(t) gj(zj(t� �))j � z2i (t) + L
2
jz
2
j (t� �); t > 0; i; j = 1; 2; : : : ; n:

Lemma 4: Let presumptions (B1)-(B3) hold. Then

E0(t) �
Pn

i=1

n
�2ci +

Pn
j=1

�
aij + L

2
i aji + bij + dij

�o
z2i (t)

+
Pn

j=1 �1j z
2
j (t� �) +

Pn
j=1 �2j

R1
0
kj(s) z

2
j (t� s) ds; t � 0;

where

�1j =

 
nX
i=1

bij

!
L2j ; �2j =

 
nX
i=1

dij

!
L2j�j ; j = 1; 2; : : : ; n: (5)
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Proof : The di¤erentiation of E(t) in (4), along solutions of (2), yields for
t � 0

E0(t) = 2
Pn

i=1

h
�ciz2i (t) +

Pn
j=1 aij zi(t) gj(zj(t))

+
Pn

j=1 bij zi(t) gj(zj(t� �)) +
Pn

j=1 dij zi(t)
R1
0
kj(s) gj(zj(t� s)) ds

i
:

By Lemma 4 we can write

E0(t) � �2
Pn

i=1 ciz
2
i (t) +

Pn
i;j=1 aij [z

2
i (t) + L

2
j z

2
j (t)]

+
Pn

i;j=1 bij [z
2
i (t) + L

2
j z

2
j (t� �)]

+
Pn

i;j=1 dij

h
z2i (t) +

�R1
0
kj(s)Lj jzj(t� s)j ds

�2i
; t � 0:

From Cauchy-Schwartz inequality we have the bound�R1
0
kj(s) Lj zj(t� s) ds

�2 � R1
0
kj(s) ds

R1
0
kj(s)L

2
j z

2
j (t� s) ds

� L2j�j
R1
0
kj(s) z

2
j (t� s) ds; t � 0:

Consequently,

E0(t) �
Pn

i=1

h
�2ci +

Pn
j=1 aij + L

2
i

Pn
j=1 aji +

Pn
j=1 bij +

Pn
j=1 dij

i
�z2i (t) +

Pn
i;j=1 bij L

2
j z

2
j (t� �) +

Pn
i;j=1 dijL

2
j�j

R1
0
kj(s) z

2
j (t� s) ds

=
Pn

i=1

h
�2ci +

Pn
j=1 aij + L

2
i

Pn
j=1 aji +

Pn
j=1 bij +

Pn
j=1 dij

i
z2i (t)

+
Pn

j=1 (
Pn

i=1 bij) L
2
j z

2
j (t� �)

+
Pn

j=1 (
Pn

i=1 dij)L
2
j�j

R1
0
kj(s) z

2
j (t� s) ds

=
Pn

i=1

h
�2ci +

Pn
j=1 aij + L

2
i

Pn
j=1 aji +

Pn
j=1 bij +

Pn
j=1 dij

i
z2i (t)

+
Pn

j=1 �1j z
2
j (t� �) +

Pn
j=1 �2j

R1
0
kj(s) z

2
j (t� s) ds; t � 0:

Theorem 5: Let assumptions (B1)-(B4) hold. If

nX
j=1

�
aij + bij + dij + L

2
i

�
aji + bji + �

2
i dji

��
< 2ci; i = 1; 2; : : : ; n;

then E(t) is uniformly bounded.
Proof : Consider the functionals

V1(t) :=
nX
j=1

�1j

Z t

t��
z2j (s)ds; t � 0; (6)

and
V2(t) :=

P1
j=1 �2j

R t
�1

�R1
t
kj(� � s) d�

�
z2j (s) ds

=
P1

j=1 �2j
R1
0
kj(s)

R t
t�s z

2
j (�) d� ds; t � 0:

(7)

Note that

V1(0) =
nX
j=1

�1j

Z 0

��
z2j (s) ds =

nX
j=1

�1j

Z 0

��
 2j (s) ds <1;
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and

V2(0) =
1X
j=1

�2j

Z 1

0

kj(s)

Z 0

�s
 2j (�) d� ds <1:

Moreover,

V 01(t) =
nX
j=1

�1j
�
z2j (t)� z2j (t� �)

�
; t � 0; (8)

and

V 02(t) =
Pn

j=1 �2j
�R1
t
kj(� � t) d�

�
z2j (t)�

Pn
j=1 �2j

R t
�1 kj(t� s) z2j (s) ds

=
Pn

j=1 �2j
�R1
0
kj(s) ds

�
z2j (t)�

Pn
j=1 �2j

R1
0
kj(s) z

2
j (t� s) ds

=
Pn

j=1 �2j�j z
2
j (t)�

Pn
j=1 �2j

R1
0
kj(s) z

2
j (t� s) ds; t � 0:

(9)
Let

E(t) = E(t) + V1(t) + V2(t); t � 0: (10)

Then, E(0) <1 and

E 0(t) = E0(t) + V 01(t) + V
0
2(t)

�
Pn

i=1

h
�2ci +

Pn
j=1 aij + L

2
i

Pn
j=1 aji +

Pn
j=1 bij +

Pn
j=1 dij

i
z2i (t)

+
Pn

j=1 �1j z
2
j (t� �) +

Pn
j=1 �2j

R1
0
kj(s) z

2
j (t� s) ds

+
Pn

j=1 �1j
�
z2j (t)� z2j (t� �)

�
+
Pn

j=1 �2j�j z
2
j (t)

�
Pn

j=1 �2j
R1
0
kj(s) z

2
j (t� s) ds

or
E 0(t) �

Pn
i=1

h
�2ci +

Pn
j=1

�
aij + L

2
i aji + bij + dij

�i
z2i (t)

+
Pn

i=1 �1iz
2
i (t) +

Pn
i=1 �2i�i z

2
i (t); t � 0:

This may be rewritten simply as

E 0(t) �
Pn

i=1

n
�2ci +

Pn
j=1

�
aij + L

2
i aji + bij + dij + L

2
i bji + L

2
i�
2
i dji

�o
z2i (t)

=
Pn

i=1

n
�2ci +

Pn
j=1

�
aij + bij + dij + L

2
i

�
aji + bji + �

2
i dji

��o
z2i (t); t � 0:

(11)
From the condition stated in the theorem and (11) we see that E 0(t) � 0,

t � 0. Therefore,
E(t) � E(t) � E(0); t � 0:

The proof is complete.
We now specify our main condition on the kernels
(B5) There are nonnegative continuous functions �j(t) such that limt!1 �(t) :=

limt!1min1�j�n �j(t) = �� and

kj(t� s) � �j(t)

Z 1

t

kj(� � s) d�; j = 1; 2; : : : ; n; 0 � s � t:
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Theorem 6: Let assumptions (B1)-(B5) hold and

2ci >
nX
j=1

�
aij + bij + dij + L

2
i

�
aji + (1 + ")bji + 2�

2
i dji

�	
; i = 1; 2; : : : ; n;

for some " > 0: Then, if limt!1 �(t) = �� = 0 we have

E(t) � C1 e
�C2

R t
0
�(s)ds; t � 0

and
E(t) � C3e

�C4t; t � 0

in case 0 < �� � 1; for some positive constants Ci; i = 1; 2; 3; 4:
Remark: If �(t) = �0(t)

�(t) for some di¤erentiable function �(t); then we obtain

E(t) � A

j�(t)j� ; t � 0

for some positive constants A and �:
Proof (of Theorem 6): For 0 < � < 1=2, consider the functional

~E(t) := E(t) + V3(t) +
1

1� � V2(t); t � 0; (12)

where

V3(t) := e��t
nX
j=1

�1j

Z t

t��
e�(s+�) z2j (s) ds; t � 0; � > 0;

�1j as in (5), and V2 as in (7). Here � is selected so small that e�� � 1 + " ("
is in the statement of the theorem).
By direct di¤erentiation we have

V 02(t) = �� V3(t) + e��
nX
j=1

�1j z
2
j (t)�

nX
j=1

�1j z
2
j (t� �); t � 0: (13)

Next, we estimate V 02(t) in light of our new assumption (B5) on the kernels.
Clearly, for t � 0

V 02(t) =
Pn

j=1 �2j�j z
2
j (t)�

Pn
j=1 �2j

R t
�1 kj(t� s) z2j (s) ds

=
Pn

j=1 �2j�j z
2
j (t)� �

Pn
j=1 �2j

R t
�1 kj(t� s) z2j (s) ds

� (1� �)
Pn

j=1 �2j
R t
�1 kj(t� s) z2j (s) ds

�
Pn

j=1 �2j �j z
2
j (t)� �

Pn
j=1 �2j �j(t)

R t
�1

�R1
t
kj(� � s) d�

�
z2j (s) ds

� (1� �)
Pn

j=1 �2j
R t
�1 kj(t� s) z2j (s) ds

�
Pn

j=1 �2j �j z
2
j (t)� � �(t)V3(t)� (1� �)

Pn
j=1 �2j

R t
�1 kj(t� s) z2j (s) ds:

(14)
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Taking into account (12)-(14), the di¤erentiation along solutions of (2) yields

~E 0(t) �
Pn

i=1

h
�2ci +

Pn
j=1

�
aij + L

2
i aji + bij + dij

�i
z2i (t)

+
Pn

j=1 �1j z
2
j (t� �) +

Pn
j=1 �2j

R1
0
kj(s) z

2
j (t� s) ds+ e��

Pn
j=1 �1j z

2
j (t)

�� V2(t)�
Pn

j=1 �1j z
2
j (t� �) + 1

1��

nPn
j=1 �2j �j z

2
j (t)� � �(t)V3(t)

o
�
Pn

j=1 �2j
R t
�1 kj(t� s) z2j (s) ds; t � 0

or

~E 0(t) �
Pn

i=1

h
�2ci +

Pn
j=1

�
aij + L

2
i aji + bij + dij

�i
z2i (t)

+
Pn

j=1

h
e���1j +

�2j �j
1��

i
z2j (t)� � V3(t)� �

1�� �(t)V2(t); t � 0:

In view of (5), we �nd

~E 0(t) �
Pn

i=1

h
�2ci +

Pn
j=1

�
aij + L

2
i aji + bij + dij

�i
z2i (t)

+
Pn

j=1

h
e�� (

Pn
i=1 bij) L

2
j +

�j
1�� (

Pn
i=1 dij)L

2
j�j

i
z2j (t)

�� V3(t)� �
1�� �(t)V2(t); t � 0

or

~E 0(t) �
Pn

i=1

n
�2ci +

Pn
j=1

h
aij + bij + dij + L

2
i

�
aji + e

�� bji +
�2i
1��dji

�io
�z2i (t)� � V3(t)� �

1�� �(t)V2(t)

� ��E(t)� � V3(t)� �
1�� �(t)V2(t); t � 0

(15)
where

� = min
1�i�n

8<:2ci �
nX
j=1

�
aij + bij + dij + L

2
i

�
aji + e

�� bji +
�2i
1� � dji

��9=; :

From the hypotheses we have � > 0.
We discuss two cases:
Case 1: limt!1 �(t) = 0
Let t� > 0 be large enough so that

�(t) � 1

�
minf�; �g; t � t�: (16)

Therefore
~E 0(t) � ��E(t)� � V3(t)� �

1�� �(t)V2(t)

� ���(t)E(t)� ��(t)V3(t)� �
1�� �(t)V2(t)

� ���(t) ~E(t); t � t�:

This implies that
~E(t) � ~E(t�) e��

R t
t� �(s)ds; t � t�:

By continuity and Theorem 5, we may derive a similar estimate on [0; t�].

8



Case 2: 0 < �� � 1
In this case

9 t� > 0 s:t: �(t) � ��

2
; 8t � t�: (17)

In case �� = +1, we consider any positive constant �, �(t) � �.
In view of (15) and (17), we see that

~E 0(t) � ��E(t)� �V3(t)�
�

1� �
��

2
V2(t) � �
 ~E(t); t � t�;

where


 = min

�
�; �;

���

2

�
> 0:

Therefore,
~E(t) � ~E(t�) e�
(t�t�); t � t�:

A continuity argument and Theorem 5 gives a similar estimates on [0; t�]: The
proof is complete.
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