Reference
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43 , 1223-1232. doi:10.1111/j.1365-2664.2006.01214.x
Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., . . . Naimi, B. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5 , eaat4858. doi:10.1126/sciadv.aat4858
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species distributions. Trends in ecology & evolution, 22 , 42-47. doi:10.1016/j.tree.2006.09.010
Asase, A., & Peterson, A. T. (2019). Predicted impacts of global climate change on the geographic distribution of an invaluable African medicinal plant resource, Alstonia boonei De Wild. Journal of Applied Research on Medicinal and Aromatic Plants, 14 , 100206. doi:10.1016/j.jarmap.2019.100206
Austin, M. (2007). Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling, 200 , 1-19. doi:10.1016/j.ecolmodel.2006.07.005
Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J., Lautenschlager, M., . . . Williams, D. (2018). Requirements for a global data infrastructure in support of CMIP6. Geosci. Model Dev., 11 , 3659-3680. doi:10.5194/gmd-11-3659-2018
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of climate change on the future of biodiversity.Ecology Letters, 15 , 365-377. doi:10.1111/j.1461-0248.2011.01736.x
Brown, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology & Evolution, 5 , 694–700. doi:10.1111/2041-210X.12200
Comer, A., Fenech, A., & Gough, W. (2007). Selecting a global climate model for understanding future scenarios of climate change. In A. Fenech & J. MacLellan (Eds.), Linking Climate Models to Policy and Decision-Making (pp. 133-145). Tornnto,Ontario: Environment Canada.
Ding, F., Ma, T., Hao, M., Wang, Q., Chen, S., Wang, D., . . . Jiang, D. (2020). Mapping Worldwide Environmental Suitability for Artemisia annua L. Sustainability, 12 , 1-10. doi:10.3390/su12041309
Efferth, T. (2006). Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Current drug targets, 7 , 407-421. doi:10.2174/138945006776359412
Elith, J., & Franklin, J. (2013). Species Distribution Modeling. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition)(pp. 692-705). Waltham: Academic Press.
Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time.Annual Review of Ecology Evolution and Systematics, 40 , 677-697. doi:10.1146/annurev.ecolsys.110308.120159
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. geoscientific Model Development, 9 , 1937-1958. doi:10.5194/gmd-9-1937-2016
Farhi, M., Kozin, M., Duchin, S., & Vainstein, A. (2013). Metabolic engineering of plants for artemisinin synthesis. Biotechnology and Genetic Engineering Reviews, 29 , 135-148. doi:10.1080/02648725.2013.821283
Ferreira, J. F. S., Laughlin, J. C., Delabays, N., & de Magalhães, P. M. (2005). Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin. Plant Genetic Resources, 3 , 206-229. doi:10.1079/PGR200585
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 . doi:10.1002/joc.5086
Guisan, A., Thuiller, W., & Zimmermann, N. (2017). Habitat suitability and distribution models: With applications in R . Cambridge, United Kingdom: Cambridge University Press.
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I., Sutcliffe, P. R., Tulloch, A. I., . . . Buckley, Y. M. (2013). Predicting species distributions for conservation decisions.Ecology Letters, 16 , 1424-1435. doi:10.1111/ele.12189
Hao, T., Elith, J., Guillera-Arroita, G., & Lahoz-Monfort, J. J. (2019). A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and distributions, 25 , 839-852. doi:10.1111/ddi.12892
Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G. (2020). Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models.Ecography, 43 , 549-558. doi:10.1111/ecog.04890
IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., . . . Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4 , 170122. doi:10.1038/sdata.2017.122
Kayani, W. K., Kiani, B. H., Dilshad, E., & Mirza, B. (2018). Biotechnological approaches for artemisinin production in Artemisia.World Journal of Microbiology & Biotechnology, 34 , 54. doi:10.1007/s11274-018-2432-9
Klayman, D. L. (1985). Qinghaosu (artemisinin): an antimalarial drug from China. Science, 228 , 1049-1055. doi:10.1126/science.3887571
Klayman, D. L., Lin, A. J., Acton, N., Scovill, J. P., Hoch, J. M., Milhous, W. K., . . . Dobek, A. S. (1984). Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States.Journal of Natural Products, 47 , 715-717. doi:10.1021/np50034a027
Knudsmark Jessing, K., Duke, S. O., & Cedergreeen, N. (2014). Potential ecological roles of artemisinin produced by Artemisia annua L.Journal of Chemical Ecology, 40 , 100-117. doi:10.1007/s10886-014-0384-6
Kunwar, R. M., Rimal, B., Sharma, H. P., Poudel, R. C., Pyakurel, D., Tiwari, A., . . . Bussmann, R. W. (2020). Distribution and habitat modeling of Dactylorhiza hatagirea (D. Don) Soo, Paris polyphylla Sm. and Taxus species in Nepal Himalaya. Journal of Applied Research on Medicinal and Aromatic Plants , 100274. doi:10.1016/j.jarmap.2020.100274
Kurpis, J., Serrato-Cruz, M. A., & Feria Arroyo, T. P. (2019). Modeling the effects of climate change on the distribution of Tagetes lucida Cav. (Asteraceae). Global Ecology and Conservation, 20 , e00747. doi:10.1016/j.gecco.2019.e00747
Laughlin, J. C., Heazlewood, G. N., & Beattie, B. (2002). Cultivation of Artemisia annua L. . In C. W. Wright (Ed.), Artemisia(pp. 159 -195). London: Taylor & Francis.
Lin, Y., Humphries, C. J., & Gilbert, M. G. (2011). Artemisia. In Z. Y. Wu, P. H. Raven, & D. Y. Hong (Eds.), Flora of China Volume 20-21 (Asteraceae). (pp. 676-737). Beijing: Science Press and St. Louis: Missouri Botanical Garden Press.
Lydon, J., Teasdale, J. R., & Chen, P. K. (1997). Allelopathic activity of annual wormwood (Artemisia annua ) and the role of artemisinin.Weed Science, 45 , 807-811. doi:10.1007/s12032-013-0675-8
Mendlik, T., & Gobiet, A. (2016). Selecting climate simulations for impact studies based on multivariate patterns of climate change.Climatic Change, 135 , 381-393. doi:10.1007/s10584-015-1582-0
Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to MaxEnt for modeling species’ distributions what it does, and why inputs and settings matter. Ecography, 36 , 1058-1069. doi:10.1111/j.1600-0587.2013.07872.x
Miller, J. (2010). Species distribution modeling. Geography Compass, 4 , 490-509. doi:10.1111/j.1749-8198.2010.00351.x
Miller, L. H., & Su, X. (2011). Artemisinin: Discovery from the Chinese Herbal Garden. Cell, 146 , 855-858. doi:10.1016/j.cell.2011.08.024
Moseid, K., Michael, S., Storelvmo, T., Julsrud, I., Olivié, D., Nabat, P., . . . Gastineau, G. (2020). Bias in CMIP6 models as compared to observed regional dimming and brightening. Atmospheric Chemistry and Physics, 20 , 16023-16040. doi:10.5194/acp-20-16023-2020
Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R platform for species distribution modelling. Ecography, 39 , 368-375. doi:10.1111/ecog.01881
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190 , 231-259. doi:10.1016/j.ecolmodel.2005.03.026
Pierce, D. W., Barnett, T. P., Santer, B. D., & Gleckler, P. J. (2009). Selecting global climate models for regional climate change studies.Proceedings of the National Academy of Sciences of the United States of America, 106 , 8441-8446. doi:10.1073/pnas.0900094106
Qin, Z., Jian, W., Jie, G., Chengzhong, S., & Caixiang, X. (2018). Production regionalization of medicinal sweet wormwood Artemisia annua . Journal of Plant Protection . doi:10.13802/j.cnki.zwbhxb.2018.2017029
Shen, L., Li, X.-W., Meng, X.-X., Wu, J., Tang, H., Huang, L.-F., . . . Chen, S.-L. (2019). Prediction of the globally ecological suitability ofPanax quinquefolius by the geographic information system for global medicinal plants (GMPGIS). Chinese Journal of Natural Medicines, 17 , 481-489. doi:10.1016/S1875-5364(19)30069-X
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems.Science, 240 , 1285-1293. doi:10.1126/science.3287615
Tang, W., & Eisenbrand, G. (1992). Artemisia annua l L. InChinese drugs of plant origin (pp. 159-174). Berling, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest: Springer-Verlag.
Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). biomod2: Ensemble Platform for Species Distribution Modeling.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N. E. (2019). Uncertainty in ensembles of global biodiversity scenarios.nature communications, 10 , 1446. doi:10.1038/s41467-019-09519-w
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I. C. (2005). Climate change threats to plant diversity in Europe.Proceedings of the National Academy of Sciences, 102 , 8245-8250. doi:10.1073/pnas.0409902102
Urban, M. C. (2015). Climate change. Accelerating extinction risk from climate change. Science, 348 , 571-573. doi:10.1126/science.aaa4984
van Zonneveld, M., Castaneda, N., Scheldeman, X., van Etten, J., & Van Damme, P. (2014). Application of consensus theory to formalize expert evaluations of plant species distribution models. Applied Vegetation Science, 17 , 528-542. doi:10.1111/avsc.12081
Wang, H., Li, H., Zeng, F. L., & Xie, C. X. (2015). Spatial Distribution and Global Potential Suitability Regions of Artemisia annua . Zhong Yao Cai, 38 , 460-466. doi:10.13863/j.issn1001-4454.2015.03.009
WHO. (2018). World malaria report 2018 . Geneva: World Health Organization.
Woerdenbag, H. J., Pras, N., Chan, N. G., Bang, B. T., Bos, R., van Uden, W., . . . Lugt, C. B. (1994). Artemisinin, Related Sesquiterpenes, and Essential Oil in Artemisia annua During a Vegetation Period in Vietnam. Planta Medica, 60 , 272-275. doi:10.1055/s-2006-959474
Xie, Y.-F., Yang, L., Deng, R.-Y., Chen, M.-H., Luan, X.-F., Gottardi, E., & Zhang, Z.-X. (2018). Changes in the range of the medicinal herbEriocaulon buergerianum Körnicke. (Eriocaulaceae) under climate change. Plant Biology, 20 , 771-779. doi:10.1111/plb.12836
Zhang, J., Nielsen, S. E., Chen, Y., Georges, D., Qin, Y., Wang, S. S., . . . Thuiller, W. (2017). Extinction risk of North American seed plants elevated by climate and land-use change. Journal of Applied Ecology, 54 , 303-312. doi:10.1111/1365-2664.12701
Zhao, Z., Guo, Y., Wei, H., Ran, Q., Liu, J., Zhang, Q., & Gu, W. (2020). Potential distribution of Notopterygium incisum Ting ex H. T. Chang and its predicted responses to climate change based on a comprehensive habitat suitability model. Ecology and Evolution, 10 , 3004-3016. doi:10.1002/ece3.6117