Reference
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of
species distribution models: prevalence, kappa and the true skill
statistic (TSS). Journal of Applied Ecology, 43 , 1223-1232.
doi:10.1111/j.1365-2664.2006.01214.x
Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M.,
Dormann, C. F., Early, R., . . . Naimi, B. (2019). Standards for
distribution models in biodiversity assessments. Science Advances,
5 , eaat4858. doi:10.1126/sciadv.aat4858
Araújo, M. B., & New, M. (2007). Ensemble forecasting of species
distributions. Trends in ecology & evolution, 22 , 42-47.
doi:10.1016/j.tree.2006.09.010
Asase, A., & Peterson, A. T. (2019). Predicted impacts of global
climate change on the geographic distribution of an invaluable African
medicinal plant resource, Alstonia boonei De Wild. Journal
of Applied Research on Medicinal and Aromatic Plants, 14 , 100206.
doi:10.1016/j.jarmap.2019.100206
Austin, M. (2007). Species distribution models and ecological theory: a
critical assessment and some possible new approaches. Ecological
Modelling, 200 , 1-19. doi:10.1016/j.ecolmodel.2006.07.005
Balaji, V., Taylor, K. E., Juckes, M., Lawrence, B. N., Durack, P. J.,
Lautenschlager, M., . . . Williams, D. (2018). Requirements for a global
data infrastructure in support of CMIP6. Geosci. Model Dev., 11 ,
3659-3680. doi:10.5194/gmd-11-3659-2018
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp,
F. (2012). Impacts of climate change on the future of biodiversity.Ecology Letters, 15 , 365-377.
doi:10.1111/j.1461-0248.2011.01736.x
Brown, J. L. (2014). SDMtoolbox: a python-based GIS toolkit for
landscape genetic, biogeographic and species distribution model
analyses. Methods in Ecology & Evolution, 5 , 694–700.
doi:10.1111/2041-210X.12200
Comer, A., Fenech, A., & Gough, W. (2007). Selecting a global climate
model for understanding future scenarios of climate change. In A. Fenech
& J. MacLellan (Eds.), Linking Climate Models to Policy and
Decision-Making (pp. 133-145). Tornnto,Ontario: Environment Canada.
Ding, F., Ma, T., Hao, M., Wang, Q., Chen, S., Wang, D., . . . Jiang, D.
(2020). Mapping Worldwide Environmental Suitability for Artemisia
annua L. Sustainability, 12 , 1-10. doi:10.3390/su12041309
Efferth, T. (2006). Molecular pharmacology and pharmacogenomics of
artemisinin and its derivatives in cancer cells. Current drug
targets, 7 , 407-421. doi:10.2174/138945006776359412
Elith, J., & Franklin, J. (2013). Species Distribution Modeling. In S.
A. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition)(pp. 692-705). Waltham: Academic Press.
Elith, J., & Leathwick, J. R. (2009). Species Distribution Models:
Ecological Explanation and Prediction Across Space and Time.Annual Review of Ecology Evolution and Systematics, 40 , 677-697.
doi:10.1146/annurev.ecolsys.110308.120159
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B.,
Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model
Intercomparison Project Phase 6 (CMIP6) experimental design and
organization. geoscientific Model Development, 9 , 1937-1958.
doi:10.5194/gmd-9-1937-2016
Farhi, M., Kozin, M., Duchin, S., & Vainstein, A. (2013). Metabolic
engineering of plants for artemisinin synthesis. Biotechnology and
Genetic Engineering Reviews, 29 , 135-148.
doi:10.1080/02648725.2013.821283
Ferreira, J. F. S., Laughlin, J. C., Delabays, N., & de Magalhães, P.
M. (2005). Cultivation and genetics of Artemisia annua L. for
increased production of the antimalarial artemisinin. Plant
Genetic Resources, 3 , 206-229. doi:10.1079/PGR200585
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology, 37 . doi:10.1002/joc.5086
Guisan, A., Thuiller, W., & Zimmermann, N. (2017). Habitat
suitability and distribution models: With applications in R . Cambridge,
United Kingdom: Cambridge University Press.
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis-Lewis, I.,
Sutcliffe, P. R., Tulloch, A. I., . . . Buckley, Y. M. (2013).
Predicting species distributions for conservation decisions.Ecology Letters, 16 , 1424-1435. doi:10.1111/ele.12189
Hao, T., Elith, J., Guillera-Arroita, G., & Lahoz-Monfort, J. J.
(2019). A review of evidence about use and performance of species
distribution modelling ensembles like BIOMOD. Diversity and
distributions, 25 , 839-852. doi:10.1111/ddi.12892
Hao, T., Elith, J., Lahoz-Monfort, J. J., & Guillera-Arroita, G.
(2020). Testing whether ensemble modelling is advantageous for
maximising predictive performance of species distribution models.Ecography, 43 , 549-558. doi:10.1111/ecog.04890
IPCC. (2013). Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change . Cambridge, United Kingdom
and New York, NY, USA: Cambridge University Press.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H.,
Soria-Auza, R. W., . . . Kessler, M. (2017). Climatologies at high
resolution for the earth’s land surface areas. Scientific Data,
4 , 170122. doi:10.1038/sdata.2017.122
Kayani, W. K., Kiani, B. H., Dilshad, E., & Mirza, B. (2018).
Biotechnological approaches for artemisinin production in Artemisia.World Journal of Microbiology & Biotechnology, 34 , 54.
doi:10.1007/s11274-018-2432-9
Klayman, D. L. (1985). Qinghaosu (artemisinin): an antimalarial drug
from China. Science, 228 , 1049-1055. doi:10.1126/science.3887571
Klayman, D. L., Lin, A. J., Acton, N., Scovill, J. P., Hoch, J. M.,
Milhous, W. K., . . . Dobek, A. S. (1984). Isolation of artemisinin
(qinghaosu) from Artemisia annua growing in the United States.Journal of Natural Products, 47 , 715-717. doi:10.1021/np50034a027
Knudsmark Jessing, K., Duke, S. O., & Cedergreeen, N. (2014). Potential
ecological roles of artemisinin produced by Artemisia annua L.Journal of Chemical Ecology, 40 , 100-117.
doi:10.1007/s10886-014-0384-6
Kunwar, R. M., Rimal, B., Sharma, H. P., Poudel, R. C., Pyakurel, D.,
Tiwari, A., . . . Bussmann, R. W. (2020). Distribution and habitat
modeling of Dactylorhiza hatagirea (D. Don) Soo, Paris polyphylla
Sm. and Taxus species in Nepal Himalaya. Journal of Applied
Research on Medicinal and Aromatic Plants , 100274.
doi:10.1016/j.jarmap.2020.100274
Kurpis, J., Serrato-Cruz, M. A., & Feria Arroyo, T. P. (2019). Modeling
the effects of climate change on the distribution of Tagetes
lucida Cav. (Asteraceae). Global Ecology and Conservation, 20 ,
e00747. doi:10.1016/j.gecco.2019.e00747
Laughlin, J. C., Heazlewood, G. N., & Beattie, B. (2002). Cultivation
of Artemisia annua L. . In C. W. Wright (Ed.), Artemisia(pp. 159 -195). London: Taylor & Francis.
Lin, Y., Humphries, C. J., & Gilbert, M. G. (2011). Artemisia. In Z. Y.
Wu, P. H. Raven, & D. Y. Hong (Eds.), Flora of China Volume 20-21
(Asteraceae). (pp. 676-737). Beijing: Science Press and St. Louis:
Missouri Botanical Garden Press.
Lydon, J., Teasdale, J. R., & Chen, P. K. (1997). Allelopathic activity
of annual wormwood (Artemisia annua ) and the role of artemisinin.Weed Science, 45 , 807-811. doi:10.1007/s12032-013-0675-8
Mendlik, T., & Gobiet, A. (2016). Selecting climate simulations for
impact studies based on multivariate patterns of climate change.Climatic Change, 135 , 381-393. doi:10.1007/s10584-015-1582-0
Merow, C., Smith, M. J., & Silander, J. A. (2013). A practical guide to
MaxEnt for modeling species’ distributions what it does, and why inputs
and settings matter. Ecography, 36 , 1058-1069.
doi:10.1111/j.1600-0587.2013.07872.x
Miller, J. (2010). Species distribution modeling. Geography
Compass, 4 , 490-509. doi:10.1111/j.1749-8198.2010.00351.x
Miller, L. H., & Su, X. (2011). Artemisinin: Discovery from the Chinese
Herbal Garden. Cell, 146 , 855-858. doi:10.1016/j.cell.2011.08.024
Moseid, K., Michael, S., Storelvmo, T., Julsrud, I., Olivié, D., Nabat,
P., . . . Gastineau, G. (2020). Bias in CMIP6 models as compared to
observed regional dimming and brightening. Atmospheric Chemistry
and Physics, 20 , 16023-16040. doi:10.5194/acp-20-16023-2020
Naimi, B., & Araújo, M. B. (2016). sdm: a reproducible and extensible R
platform for species distribution modelling. Ecography, 39 ,
368-375. doi:10.1111/ecog.01881
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
Modelling, 190 , 231-259. doi:10.1016/j.ecolmodel.2005.03.026
Pierce, D. W., Barnett, T. P., Santer, B. D., & Gleckler, P. J. (2009).
Selecting global climate models for regional climate change studies.Proceedings of the National Academy of Sciences of the United
States of America, 106 , 8441-8446. doi:10.1073/pnas.0900094106
Qin, Z., Jian, W., Jie, G., Chengzhong, S., & Caixiang, X. (2018).
Production regionalization of medicinal sweet wormwood Artemisia
annua . Journal of Plant Protection .
doi:10.13802/j.cnki.zwbhxb.2018.2017029
Shen, L., Li, X.-W., Meng, X.-X., Wu, J., Tang, H., Huang, L.-F., . . .
Chen, S.-L. (2019). Prediction of the globally ecological suitability ofPanax quinquefolius by the geographic information system for
global medicinal plants (GMPGIS). Chinese Journal of Natural
Medicines, 17 , 481-489. doi:10.1016/S1875-5364(19)30069-X
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems.Science, 240 , 1285-1293. doi:10.1126/science.3287615
Tang, W., & Eisenbrand, G. (1992). Artemisia annua l L. InChinese drugs of plant origin (pp. 159-174). Berling, Heidelberg,
New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest:
Springer-Verlag.
Thuiller, W., Georges, D., Engler, R., & Breiner, F. (2016). biomod2:
Ensemble Platform for Species Distribution Modeling.
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N., & Zimmermann, N.
E. (2019). Uncertainty in ensembles of global biodiversity scenarios.nature communications, 10 , 1446. doi:10.1038/s41467-019-09519-w
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T., & Prentice, I.
C. (2005). Climate change threats to plant diversity in Europe.Proceedings of the National Academy of Sciences, 102 , 8245-8250.
doi:10.1073/pnas.0409902102
Urban, M. C. (2015). Climate change. Accelerating extinction risk from
climate change. Science, 348 , 571-573.
doi:10.1126/science.aaa4984
van Zonneveld, M., Castaneda, N., Scheldeman, X., van Etten, J., & Van
Damme, P. (2014). Application of consensus theory to formalize expert
evaluations of plant species distribution models. Applied
Vegetation Science, 17 , 528-542. doi:10.1111/avsc.12081
Wang, H., Li, H., Zeng, F. L., & Xie, C. X. (2015). Spatial
Distribution and Global Potential Suitability Regions of Artemisia
annua . Zhong Yao Cai, 38 , 460-466.
doi:10.13863/j.issn1001-4454.2015.03.009
WHO. (2018). World malaria report 2018 . Geneva: World Health
Organization.
Woerdenbag, H. J., Pras, N., Chan, N. G., Bang, B. T., Bos, R., van
Uden, W., . . . Lugt, C. B. (1994). Artemisinin, Related Sesquiterpenes,
and Essential Oil in Artemisia annua During a Vegetation Period
in Vietnam. Planta Medica, 60 , 272-275. doi:10.1055/s-2006-959474
Xie, Y.-F., Yang, L., Deng, R.-Y., Chen, M.-H., Luan, X.-F., Gottardi,
E., & Zhang, Z.-X. (2018). Changes in the range of the medicinal herbEriocaulon buergerianum Körnicke. (Eriocaulaceae) under climate
change. Plant Biology, 20 , 771-779. doi:10.1111/plb.12836
Zhang, J., Nielsen, S. E., Chen, Y., Georges, D., Qin, Y., Wang, S. S.,
. . . Thuiller, W. (2017). Extinction risk of North American seed plants
elevated by climate and land-use change. Journal of Applied
Ecology, 54 , 303-312. doi:10.1111/1365-2664.12701
Zhao, Z., Guo, Y., Wei, H., Ran, Q., Liu, J., Zhang, Q., & Gu, W.
(2020). Potential distribution of Notopterygium incisum Ting ex
H. T. Chang and its predicted responses to climate change based on a
comprehensive habitat suitability model. Ecology and Evolution,
10 , 3004-3016. doi:10.1002/ece3.6117