References
1. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of
current and future incidence and prevalence of atrial fibrillation in
the U.S. adult population. Am J Cardiol. 2013;112(8):1142-1147.
2. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial
fibrillation: mechanisms and implications. Circ Arrhythm
Electrophysiol. 2008;1(1):62-73.
3. Benjamin EJ, Chen PS, Bild DE, et al. Prevention of atrial
fibrillation: report from a national heart, lung, and blood institute
workshop. Circulation. 2009;119(4):606-618.
4. Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial
fibrillation. Lancet. 2010;375(9721):1212-1223.
5. Piccini JP, Fauchier L. Rhythm control in atrial fibrillation.Lancet. 2016;388(10046):829-840.
6. Grieger JC, Samulski RJ. Packaging capacity of adeno-associated virus
serotypes: impact of larger genomes on infectivity and postentry steps.J Virol. 2005;79(15):9933-9944.
7. Nierman WC, Feldblyum TV. Genomic Library. In: Brenner S, ed.Encyclopedia of Genetics. : Elsevier.; 2001:865–872.
8. Schmeer M, Buchholz T, Schleef M. Plasmid DNA Manufacturing for
Indirect and Direct Clinical Applications. Hum Gene Ther.2017;28(10):856-861.
9. Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines:
prospects for success. Curr Opin Immunol. 2011;23(3):421-429.
10. Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting
cardiovascular system. Am J Physiol Heart Circ Physiol.2012;303(6):H629-638.
11. Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of
transfection and gene delivery. Bioorg Med Chem Lett.2015;25(6):1171-1176.
12. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of
recombinant genes in myocardium in vivo after direct injection of DNA.Circulation. 1990;82(6):2217-2221.
13. Kunamalla A, Ng J, Parini V, et al. Constitutive Expression of a
Dominant-Negative TGF-beta Type II Receptor in the Posterior Left Atrium
Leads to Beneficial Remodeling of Atrial Fibrillation Substrate.Circ Res. 2016;119(1):69-82.
14. Huang M, Chan DA, Jia F, et al. Short hairpin RNA interference
therapy for ischemic heart disease. Circulation. 2008;118(14
Suppl):S226-233.
15. Levi B, Hyun JS, Nelson ER, et al. Nonintegrating knockdown and
customized scaffold design enhances human adipose-derived stem cells in
skeletal repair. Stem Cells. 2011;29(12):2018-2029.
16. Eefting D, Grimbergen JM, de Vries MR, et al. Prolonged in vivo gene
silencing by electroporation-mediated plasmid delivery of small
interfering RNA. Hum Gene Ther. 2007;18(9):861-869.
17. Escoffre JM, Debin A, Reynes JP, et al. Long-lasting in vivo gene
silencing by electrotransfer of shRNA expressing plasmid. Technol
Cancer Res Treat. 2008;7(2):109-116.
18. Yew NS, Przybylska M, Ziegler RJ, Liu D, Cheng SH. High and
sustained transgene expression in vivo from plasmid vectors containing a
hybrid ubiquitin promoter. Mol Ther. 2001;4(1):75-82.
19. Turnbull IC, Eltoukhy AA, Fish KM, et al. Myocardial Delivery of
Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient
Expression. Mol Ther. 2016;24(1):66-75.
20. Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering
liposomal nanoparticles for targeted gene therapy. Gene Therapy.2017;24(8):441-452.
21. Friedman AD, Claypool SE, Liu R. The smart targeting of
nanoparticles. Curr Pharm Des. 2013;19(35):6315-6329.
22. Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE. Reversal of
diabetes insipidus in Brattleboro rats: intrahypothalamic injection of
vasopressin mRNA. Science. 1992;255(5047):996-998.
23. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into
mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465-1468.
24. McIvor RS. Therapeutic delivery of mRNA: the medium is the message.Mol Ther. 2011;19(5):822-823.
25. Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA
recognition by Toll-like receptors: the impact of nucleoside
modification and the evolutionary origin of RNA. Immunity.2005;23(2):165-175.
26. Kaur K, Zangi L. Modified mRNA as a Therapeutic Tool for the Heart.Cardiovasc Drugs Ther. 2020;34(6):871-880.
27. Hadas Y, Vincek AS, Youssef E, et al. Altering Sphingolipid
Metabolism Attenuates Cell Death and Inflammatory Response After
Myocardial Infarction. Circulation. 2020;141(11):916-930.
28. Sultana N, Magadum A, Hadas Y, et al. Optimizing Cardiac Delivery of
Modified mRNA. Mol Ther. 2017;25(6):1306-1315.
29. Zangi L, Oliveira MS, Ye LY, et al. Insulin-Like Growth Factor 1
Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation
After Myocardial Injury. Circulation. 2017;135(1):59-72.
30. Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate
of heart progenitor cells and induces vascular regeneration after
myocardial infarction. Nat Biotechnol. 2013;31(10):898-907.
31. Hinderer C, Katz N, Buza EL, et al. Severe Toxicity in Nonhuman
Primates and Piglets Following High-Dose Intravenous Administration of
an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene
Ther. 2018;29(3):285-298.
32. Carter BJ. Adeno-associated virus and the development of
adeno-associated virus vectors: a historical perspective. Mol
Ther. 2004;10(6):981-989.
33. Atchison RW, Casto BC, Hammon WM. Adenovirus-Associated Defective
Virus Particles. Science. 1965;149(3685):754-756.
34. Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart
failure. Circ Res. 2012;110(5):777-793.
35. Kieserman JM, Myers VD, Dubey P, Cheung JY, Feldman AM. Current
Landscape of Heart Failure Gene Therapy. Journal of the American
Heart Association. 2019;8(10).
36. Liu Z, Donahue JK. The Use of Gene Therapy for Ablation of Atrial
Fibrillation. Arrhythmia & Electrophysiology Review.2014;3(3):139.
37. Rotundo IL, Lancioni A, Savarese M, et al. Use of a lower dosage
liver-detargeted AAV vector to prevent hamster muscular dystrophy.Hum Gene Ther. 2013;24(4):424-430.
38. Yang L, Jiang J, Drouin LM, et al. A myocardium tropic
adeno-associated virus (AAV) evolved by DNA shuffling and in vivo
selection. Proc Natl Acad Sci U S A. 2009;106(10):3946-3951.
39. Yang L, Jiang J, Drouin LM, et al. A myocardium tropic
adeno-associated virus (AAV) evolved by DNA shuffling and in vivo
selection. Proceedings of the National Academy of Sciences.2009;106(10):3946-3951.
40. Ni L, Scott L, Jr., Campbell HM, et al. Atrial-Specific Gene
Delivery Using an Adeno-Associated Viral Vector. Circ Res.2019;124(2):256-262.
41. Goswami R, Subramanian G, Silayeva L, et al. Gene Therapy Leaves a
Vicious Cycle. Frontiers in Oncology. 2019;9.
42. Rincon MY, Vandendriessche T, Chuah MK. Gene therapy for
cardiovascular disease: advances in vector development, targeting, and
delivery for clinical translation. Cardiovascular Research.2015;108(1):4-20.
43. Pleger ST, Shan C, Ksienzyk J, et al. Cardiac AAV9-S100A1 Gene
Therapy Rescues Post-Ischemic Heart Failure in a Preclinical Large
Animal Model. Science Translational Medicine.2011;3(92):92ra64-92ra64.
44. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand
synthesis is a rate-limiting step for efficient transduction by
recombinant adeno-associated virus vectors. Journal of Virology.1996;70(5):3227-3234.
45. Greener I, Donahue JK. Gene therapy strategies for cardiac
electrical dysfunction. J Mol Cell Cardiol. 2011;50(5):759-765.
46. Hajjar RJ. Potential of gene therapy as a treatment for heart
failure. J Clin Invest. 2013;123(1):53-61.
47. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory
response syndrome in a ornithine transcarbamylase deficient patient
following adenoviral gene transfer. Mol Genet Metab.2003;80(1-2):148-158.
48. Williams P, Ranjzad P, Kakar S, Kingston P. Development of Viral
Vectors for Use in Cardiovascular Gene Therapy. Viruses.2010;2(2):334-371.
49. Milone MC, O’Doherty U. Clinical use of lentiviral vectors.Leukemia. 2018;32(7):1529-1541.
50. Di Pasquale E, Latronico MVG, Jotti GS, Condorelli G. Lentiviral
vectors and cardiovascular diseases: a genetic tool for manipulating
cardiomyocyte differentiation and function. Gene Therapy.2012;19(6):642-648.
51. Bonci D, Cittadini A, Latronico MV, et al. ’Advanced’ generation
lentiviruses as efficient vectors for cardiomyocyte gene transduction in
vitro and in vivo. Gene Ther. 2003;10(8):630-636.
52. Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of
the packaging limit of lentiviral vectors. Hum Gene Ther.2001;12(15):1893-1905.
53. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol
Biotechnol. 2007;36(3):184-204.
54. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory
response syndrome in a ornithine transcarbamylase deficient patient
following adenoviral gene transfer. Molecular Genetics and
Metabolism. 2003;80(1-2):148-158.
55. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide
epidemiology of neutralizing antibodies to adeno-associated viruses.J Infect Dis. 2009;199(3):381-390.
56. Ronzitti G, Gross D-A, Mingozzi F. Human Immune Responses to
Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology.2020;11.
57. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming
barriers to successful gene therapy. Blood. 2013;122(1):23-36.
58. Shirley JL, De Jong YP, Terhorst C, Herzog RW. Immune Responses to
Viral Gene Therapy Vectors. Molecular Therapy.2020;28(3):709-722.
59. Yla-Herttuala S. Gene Therapy for Heart Failure: Back to the Bench.Mol Ther. 2015;23(10):1551-1552.
60. Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by
percutaneous administration of gene therapy in patients with cardiac
disease (CUPID 2): a randomised, multinational, double-blind,
placebo-controlled, phase 2b trial. Lancet.2016;387(10024):1178-1186.
61. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative
cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals
that AAV6 mediates the most efficient transduction in mouse heart.Clin Transl Sci. 2010;3(3):81-89.
62. Boekstegers P, Von Degenfeld G, Giehrl W, et al. Myocardial gene
transfer by selective pressure-regulated retroinfusion of coronary
veins. Gene Therapy. 2000;7(3):232-240.
63. Hatori N, Sjöquist P-O, Regårdh C, Rydén L. Pharmacokinetic analysis
of coronary sinus retroinfusion in pigs. Cardiovascular Drugs and
Therapy. 1991;5(6):1005-1010.
64. Karagueuzian HS, Ohta M, Drury JK, et al. Coronary venous
retroinfusion of procainamide: A new approach for the management of
spontaneous and inducible sustained ventricular tachycardia during
myocardial infarction. 1986;7(3):551-563.
65. Kikuchi K, McDonald AD, Sasano T, Donahue JK. Targeted modification
of atrial electrophysiology by homogeneous transmural atrial gene
transfer. Circulation. 2005;111(3):264-270.
66. Donahue JK, McDonald AD, Kikuchi K, Inventors; The Johns Hopkins
University, assignee. Gene delivery to organs. 2004.
67. Luderitz B. Historical perspectives of cardiac electrophysiology.Hellenic J Cardiol. 2009;50(1):3-16.
68. Ishikawa K, Weber T, Hajjar RJ. Human Cardiac Gene Therapy.Circ Res. 2018;123(5):601-613.
69. Katz MG, Fargnoli AS, Pritchette LA, Bridges CR. Gene delivery
technologies for cardiac applications. Gene Ther.2012;19(6):659-669.
70. Katz MG, Swain JD, White JD, Low D, Stedman H, Bridges CR. Cardiac
gene therapy: optimization of gene delivery techniques in vivo.Hum Gene Ther. 2010;21(4):371-380.
71. Marshall WG, Jr., Boone BA, Burgos JD, et al.
Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF
to the porcine heart enhances protein expression. Gene Ther.2010;17(3):419-423.
72. van Es R, Konings MK, Du Pre BC, et al. High-frequency irreversible
electroporation for cardiac ablation using an asymmetrical waveform.Biomed Eng Online. 2019;18(1):75.
73. Donahue JK. Current state of the art for cardiac arrhythmia gene
therapy. Pharmacol Ther. 2017;176:60-65.
74. Hucker WJ, Hanley A, Ellinor PT. Improving Atrial Fibrillation
Therapy: Is There a Gene for That? J Am Coll Cardiol.2017;69(16):2088-2095.
75. Nattel S, Harada M. Atrial remodeling and atrial fibrillation:
recent advances and translational perspectives. J Am Coll
Cardiol. 2014;63(22):2335-2345.
76. Perlstein I, Burton DY, Ryan K, et al. Posttranslational control of
a cardiac ion channel transgene in vivo: clarithromycin-hMiRP1-Q9E
interactions. Hum Gene Ther. 2005;16(7):906-910.
77. Amit G, Kikuchi K, Greener ID, Yang L, Novack V, Donahue JK.
Selective molecular potassium channel blockade prevents atrial
fibrillation. Circulation. 2010;121(21):2263-2270.
78. Soucek R, Thomas D, Kelemen K, et al. Genetic suppression of atrial
fibrillation using a dominant-negative ether-a-go-go-related gene
mutant. Heart Rhythm. 2012;9(2):265-272.
79. Schmidt C, Wiedmann F, Beyersdorf C, et al. Genetic Ablation of
TASK-1 (Tandem of P Domains in a Weak Inward Rectifying K(+)
Channel-Related Acid-Sensitive K(+) Channel-1) (K2P3.1) K(+) Channels
Suppresses Atrial Fibrillation and Prevents Electrical Remodeling.Circ Arrhythm Electrophysiol. 2019;12(9):e007465.
80. Voigt N, Heijman J, Wang Q, et al. Cellular and molecular mechanisms
of atrial arrhythmogenesis in patients with paroxysmal atrial
fibrillation. Circulation. 2014;129(2):145-156.
81. Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+
leak and increased Na+-Ca2+ exchanger function underlie delayed
afterdepolarizations in patients with chronic atrial fibrillation.Circulation. 2012;125(17):2059-2070.
82. Li N, Chiang DY, Wang S, et al. Ryanodine receptor-mediated calcium
leak drives progressive development of an atrial fibrillation substrate
in a transgenic mouse model. Circulation. 2014;129(12):1276-1285.
83. Li N, Wang T, Wang W, et al. Inhibition of CaMKII phosphorylation of
RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout
mice. Circ Res. 2012;110(3):465-470.
84. Brunello L, Slabaugh JL, Radwanski PB, et al. Decreased RyR2
refractoriness determines myocardial synchronization of aberrant Ca2+
release in a genetic model of arrhythmia. Proc Natl Acad Sci U S
A. 2013;110(25):10312-10317.
85. Loaiza R, Benkusky NA, Powers PP, et al. Heterogeneity of ryanodine
receptor dysfunction in a mouse model of catecholaminergic polymorphic
ventricular tachycardia. Circ Res. 2013;112(2):298-308.
86. Liu B, Walton SD, Ho HT, et al. Gene Transfer of Engineered
Calmodulin Alleviates Ventricular Arrhythmias in a
Calsequestrin-Associated Mouse Model of Catecholaminergic Polymorphic
Ventricular Tachycardia. J Am Heart Assoc. 2018;7(10).
87. Arora R, Ulphani JS, Villuendas R, et al. Neural substrate for
atrial fibrillation: implications for targeted parasympathetic blockade
in the posterior left atrium. Am J Physiol Heart Circ Physiol.2008;294(1):H134-H144.
88. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the
autonomic nervous system in atrial fibrillation: pathophysiology and
therapy. Circ Res. 2014;114(9):1500-1515.
89. Nergardh AK, Rosenqvist M, Nordlander R, Frick M. Maintenance of
sinus rhythm with metoprolol CR initiated before cardioversion and
repeated cardioversion of atrial fibrillation: a randomized double-blind
placebo-controlled study. Eur Heart J. 2007;28(11):1351-1357.
90. Machida T, Hashimoto N, Kuwahara I, et al. Effects of a highly
selective acetylcholine-activated K+ channel blocker on experimental
atrial fibrillation. Circ Arrhythm Electrophysiol.2011;4(1):94-102.
91. Donahue JK, Heldman AW, Fraser H, et al. Focal modification of
electrical conduction in the heart by viral gene transfer. Nat
Med. 2000;6(12):1395-1398.
92. Murata M, Cingolani E, McDonald AD, Donahue JK, Marban E. Creation
of a genetic calcium channel blocker by targeted gem gene transfer in
the heart. Circ Res. 2004;95(4):398-405.
93. Lugenbiel P, Thomas D, Kelemen K, et al. Genetic suppression of
Galphas protein provides rate control in atrial fibrillation.Basic Res Cardiol. 2012;107(3):265.
94. Aistrup GL, Cokic I, Ng J, et al. Targeted nonviral gene-based
inhibition of Galpha(i/o)-mediated vagal signaling in the posterior left
atrium decreases vagal-induced atrial fibrillation. Heart Rhythm.2011;8(11):1722-1729.
95. Carmeliet E. Cardiac ionic currents and acute ischemia: from
channels to arrhythmias. Physiol Rev. 1999;79(3):917-1017.
96. Tuomi JM, Tyml K, Jones DL. Atrial tachycardia/fibrillation in the
connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse. Am J
Physiol Heart Circ Physiol. 2011;300(4):H1402-1411.
97. Chaldoupi SM, Loh P, Hauer RN, de Bakker JM, van Rijen HV. The role
of connexin40 in atrial fibrillation. Cardiovasc Res.2009;84(1):15-23.
98. Igarashi T, Finet JE, Takeuchi A, et al. Connexin gene transfer
preserves conduction velocity and prevents atrial fibrillation.Circulation. 2012;125(2):216-225.
99. Bikou O, Thomas D, Trappe K, et al. Connexin 43 gene therapy
prevents persistent atrial fibrillation in a porcine model.Cardiovasc Res. 2011;92(2):218-225.
100. Doetschman T, Barnett JV, Runyan RB, et al. Transforming growth
factor beta signaling in adult cardiovascular diseases and repair.Cell Tissue Res. 2012;347(1):203-223.
101. Kunamalla A, Ng J, Parini V, et al. Constitutive Expression of a
Dominant-Negative TGF-beta Type II Receptor in the Posterior Left Atrium
Leads to Beneficial Remodeling of Atrial Fibrillation Substrate.Circ Res. 2016;119(1):69-82.
102. Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial
Fibrillation Pathophysiology and Therapy: A Translational Perspective.Circ Res. 2020;127(1):51-72.
103. Sirish P, Li N, Timofeyev V, et al. Molecular Mechanisms and New
Treatment Paradigm for Atrial Fibrillation. Circ Arrhythm
Electrophysiol. 2016;9(5).
104. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis
of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230-243.
105. Yao C, Veleva T, Scott L, Jr., et al. Enhanced Cardiomyocyte NLRP3
Inflammasome Signaling Promotes Atrial Fibrillation. Circulation.2018;138(20):2227-2242.
106. Sovari AA. Cellular and Molecular Mechanisms of Arrhythmia by
Oxidative Stress. Cardiol Res Pract. 2016;2016:9656078.
107. Dudley SC, Jr., Hoch NE, McCann LA, et al. Atrial fibrillation
increases production of superoxide by the left atrium and left atrial
appendage: role of the NADPH and xanthine oxidases. Circulation.2005;112(9):1266-1273.
108. Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as
therapeutic targets in cardiovascular diseases. Trends Pharmacol
Sci. 2003;24(9):471-478.
109. Cai H. Hydrogen peroxide regulation of endothelial function:
origins, mechanisms, and consequences. Cardiovasc Res.2005;68(1):26-36.
110. Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the
prevention of cardiovascular disease in men: the Physicians’ Health
Study II randomized controlled trial. JAMA.2008;300(18):2123-2133.
111. Thiele H, Hildebrand L, Schirdewahn C, et al. Impact of high-dose
N-acetylcysteine versus placebo on contrast-induced nephropathy and
myocardial reperfusion injury in unselected patients with ST-segment
elevation myocardial infarction undergoing primary percutaneous coronary
intervention. The LIPSIA-N-ACC (Prospective, Single-Blind,
Placebo-Controlled, Randomized Leipzig Immediate PercutaneouS Coronary
Intervention Acute Myocardial Infarction N-ACC) Trial. J Am Coll
Cardiol. 2010;55(20):2201-2209.
112. Forman HJ, Davies KJ, Ursini F. How do nutritional antioxidants
really work: nucleophilic tone and para-hormesis versus free radical
scavenging in vivo. Free Radic Biol Med. 2014;66:24-35.
113. Yoo S, Pfenniger A, Hoffman J, et al. Attenuation of Oxidative
Injury With Targeted Expression of NADPH Oxidase 2 Short Hairpin RNA
Prevents Onset and Maintenance of Electrical Remodeling in the Canine
Atrium: A Novel Gene Therapy Approach to Atrial Fibrillation.Circulation. 2020;142(13):1261-1278.
114. Li Y, Gong ZH, Sheng L, et al. Anti-apoptotic effects of a calpain
inhibitor on cardiomyocytes in a canine rapid atrial fibrillation model.Cardiovasc Drugs Ther. 2009;23(5):361-368.
115. Trappe K, Thomas D, Bikou O, et al. Suppression of persistent
atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical
pilot study. Eur Heart J. 2013;34(2):147-157.
116. Zhang Y, Zheng S, Geng Y, et al. MicroRNA profiling of atrial
fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic
nerve remodeling by regulating SOD1. PLoS One.2015;10(3):e0122674.
117. Li D, Fareh S, Leung TK, Nattel S. Promotion of Atrial Fibrillation
by Heart Failure in Dogs. Circulation. 1999;100(1):87-95.
118. Daccarett M, Badger TJ, Akoum N, et al. Association of left atrial
fibrosis detected by delayed-enhancement magnetic resonance imaging and
the risk of stroke in patients with atrial fibrillation. J Am Coll
Cardiol. 2011;57(7):831-838.
119. Han FT, Akoum N, Marrouche N. Value of Magnetic Resonance Imaging
in Guiding Atrial Fibrillation Management. Canadian Journal of
Cardiology. 2013;29(10):1194-1202.
120. Cuculich PS, Wang Y, Lindsay BD, et al. Noninvasive
Characterization of Epicardial Activation in Humans With Diverse Atrial
Fibrillation Patterns. Circulation. 2010;122(14):1364-1372.
121. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller
JM. Treatment of atrial fibrillation by the ablation of localized
sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or
Without Focal Impulse and Rotor Modulation) trial. J Am Coll
Cardiol. 2012;60(7):628-636.
122. Banovic M, Ostojic MC, Bartunek J, Nedeljkovic M, Beleslin B,
Terzic A. Brachial approach to NOGA-guided procedures: electromechanical
mapping and transendocardial stem-cell injections. Tex Heart Inst
J. 2011;38(2):179-182.