References
1. Colilla S, Crow A, Petkun W, Singer DE, Simon T, Liu X. Estimates of current and future incidence and prevalence of atrial fibrillation in the U.S. adult population. Am J Cardiol. 2013;112(8):1142-1147.
2. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1(1):62-73.
3. Benjamin EJ, Chen PS, Bild DE, et al. Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation. 2009;119(4):606-618.
4. Dobrev D, Nattel S. New antiarrhythmic drugs for treatment of atrial fibrillation. Lancet. 2010;375(9721):1212-1223.
5. Piccini JP, Fauchier L. Rhythm control in atrial fibrillation.Lancet. 2016;388(10046):829-840.
6. Grieger JC, Samulski RJ. Packaging capacity of adeno-associated virus serotypes: impact of larger genomes on infectivity and postentry steps.J Virol. 2005;79(15):9933-9944.
7. Nierman WC, Feldblyum TV. Genomic Library. In: Brenner S, ed.Encyclopedia of Genetics. : Elsevier.; 2001:865–872.
8. Schmeer M, Buchholz T, Schleef M. Plasmid DNA Manufacturing for Indirect and Direct Clinical Applications. Hum Gene Ther.2017;28(10):856-861.
9. Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23(3):421-429.
10. Su CH, Wu YJ, Wang HH, Yeh HI. Nonviral gene therapy targeting cardiovascular system. Am J Physiol Heart Circ Physiol.2012;303(6):H629-638.
11. Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorg Med Chem Lett.2015;25(6):1171-1176.
12. Lin H, Parmacek MS, Morle G, Bolling S, Leiden JM. Expression of recombinant genes in myocardium in vivo after direct injection of DNA.Circulation. 1990;82(6):2217-2221.
13. Kunamalla A, Ng J, Parini V, et al. Constitutive Expression of a Dominant-Negative TGF-beta Type II Receptor in the Posterior Left Atrium Leads to Beneficial Remodeling of Atrial Fibrillation Substrate.Circ Res. 2016;119(1):69-82.
14. Huang M, Chan DA, Jia F, et al. Short hairpin RNA interference therapy for ischemic heart disease. Circulation. 2008;118(14 Suppl):S226-233.
15. Levi B, Hyun JS, Nelson ER, et al. Nonintegrating knockdown and customized scaffold design enhances human adipose-derived stem cells in skeletal repair. Stem Cells. 2011;29(12):2018-2029.
16. Eefting D, Grimbergen JM, de Vries MR, et al. Prolonged in vivo gene silencing by electroporation-mediated plasmid delivery of small interfering RNA. Hum Gene Ther. 2007;18(9):861-869.
17. Escoffre JM, Debin A, Reynes JP, et al. Long-lasting in vivo gene silencing by electrotransfer of shRNA expressing plasmid. Technol Cancer Res Treat. 2008;7(2):109-116.
18. Yew NS, Przybylska M, Ziegler RJ, Liu D, Cheng SH. High and sustained transgene expression in vivo from plasmid vectors containing a hybrid ubiquitin promoter. Mol Ther. 2001;4(1):75-82.
19. Turnbull IC, Eltoukhy AA, Fish KM, et al. Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression. Mol Ther. 2016;24(1):66-75.
20. Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Therapy.2017;24(8):441-452.
21. Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19(35):6315-6329.
22. Jirikowski GF, Sanna PP, Maciejewski-Lenoir D, Bloom FE. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science. 1992;255(5047):996-998.
23. Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science. 1990;247(4949 Pt 1):1465-1468.
24. McIvor RS. Therapeutic delivery of mRNA: the medium is the message.Mol Ther. 2011;19(5):822-823.
25. Kariko K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity.2005;23(2):165-175.
26. Kaur K, Zangi L. Modified mRNA as a Therapeutic Tool for the Heart.Cardiovasc Drugs Ther. 2020;34(6):871-880.
27. Hadas Y, Vincek AS, Youssef E, et al. Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation. 2020;141(11):916-930.
28. Sultana N, Magadum A, Hadas Y, et al. Optimizing Cardiac Delivery of Modified mRNA. Mol Ther. 2017;25(6):1306-1315.
29. Zangi L, Oliveira MS, Ye LY, et al. Insulin-Like Growth Factor 1 Receptor-Dependent Pathway Drives Epicardial Adipose Tissue Formation After Myocardial Injury. Circulation. 2017;135(1):59-72.
30. Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol. 2013;31(10):898-907.
31. Hinderer C, Katz N, Buza EL, et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum Gene Ther. 2018;29(3):285-298.
32. Carter BJ. Adeno-associated virus and the development of adeno-associated virus vectors: a historical perspective. Mol Ther. 2004;10(6):981-989.
33. Atchison RW, Casto BC, Hammon WM. Adenovirus-Associated Defective Virus Particles. Science. 1965;149(3685):754-756.
34. Tilemann L, Ishikawa K, Weber T, Hajjar RJ. Gene therapy for heart failure. Circ Res. 2012;110(5):777-793.
35. Kieserman JM, Myers VD, Dubey P, Cheung JY, Feldman AM. Current Landscape of Heart Failure Gene Therapy. Journal of the American Heart Association. 2019;8(10).
36. Liu Z, Donahue JK. The Use of Gene Therapy for Ablation of Atrial Fibrillation. Arrhythmia & Electrophysiology Review.2014;3(3):139.
37. Rotundo IL, Lancioni A, Savarese M, et al. Use of a lower dosage liver-detargeted AAV vector to prevent hamster muscular dystrophy.Hum Gene Ther. 2013;24(4):424-430.
38. Yang L, Jiang J, Drouin LM, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc Natl Acad Sci U S A. 2009;106(10):3946-3951.
39. Yang L, Jiang J, Drouin LM, et al. A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection. Proceedings of the National Academy of Sciences.2009;106(10):3946-3951.
40. Ni L, Scott L, Jr., Campbell HM, et al. Atrial-Specific Gene Delivery Using an Adeno-Associated Viral Vector. Circ Res.2019;124(2):256-262.
41. Goswami R, Subramanian G, Silayeva L, et al. Gene Therapy Leaves a Vicious Cycle. Frontiers in Oncology. 2019;9.
42. Rincon MY, Vandendriessche T, Chuah MK. Gene therapy for cardiovascular disease: advances in vector development, targeting, and delivery for clinical translation. Cardiovascular Research.2015;108(1):4-20.
43. Pleger ST, Shan C, Ksienzyk J, et al. Cardiac AAV9-S100A1 Gene Therapy Rescues Post-Ischemic Heart Failure in a Preclinical Large Animal Model. Science Translational Medicine.2011;3(92):92ra64-92ra64.
44. Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. Journal of Virology.1996;70(5):3227-3234.
45. Greener I, Donahue JK. Gene therapy strategies for cardiac electrical dysfunction. J Mol Cell Cardiol. 2011;50(5):759-765.
46. Hajjar RJ. Potential of gene therapy as a treatment for heart failure. J Clin Invest. 2013;123(1):53-61.
47. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab.2003;80(1-2):148-158.
48. Williams P, Ranjzad P, Kakar S, Kingston P. Development of Viral Vectors for Use in Cardiovascular Gene Therapy. Viruses.2010;2(2):334-371.
49. Milone MC, O’Doherty U. Clinical use of lentiviral vectors.Leukemia. 2018;32(7):1529-1541.
50. Di Pasquale E, Latronico MVG, Jotti GS, Condorelli G. Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Therapy.2012;19(6):642-648.
51. Bonci D, Cittadini A, Latronico MV, et al. ’Advanced’ generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther. 2003;10(8):630-636.
52. Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther.2001;12(15):1893-1905.
53. Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol. 2007;36(3):184-204.
54. Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Molecular Genetics and Metabolism. 2003;80(1-2):148-158.
55. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses.J Infect Dis. 2009;199(3):381-390.
56. Ronzitti G, Gross D-A, Mingozzi F. Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology.2020;11.
57. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23-36.
58. Shirley JL, De Jong YP, Terhorst C, Herzog RW. Immune Responses to Viral Gene Therapy Vectors. Molecular Therapy.2020;28(3):709-722.
59. Yla-Herttuala S. Gene Therapy for Heart Failure: Back to the Bench.Mol Ther. 2015;23(10):1551-1552.
60. Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet.2016;387(10024):1178-1186.
61. Zincarelli C, Soltys S, Rengo G, Koch WJ, Rabinowitz JE. Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart.Clin Transl Sci. 2010;3(3):81-89.
62. Boekstegers P, Von Degenfeld G, Giehrl W, et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy. 2000;7(3):232-240.
63. Hatori N, Sjöquist P-O, Regårdh C, Rydén L. Pharmacokinetic analysis of coronary sinus retroinfusion in pigs. Cardiovascular Drugs and Therapy. 1991;5(6):1005-1010.
64. Karagueuzian HS, Ohta M, Drury JK, et al. Coronary venous retroinfusion of procainamide: A new approach for the management of spontaneous and inducible sustained ventricular tachycardia during myocardial infarction. 1986;7(3):551-563.
65. Kikuchi K, McDonald AD, Sasano T, Donahue JK. Targeted modification of atrial electrophysiology by homogeneous transmural atrial gene transfer. Circulation. 2005;111(3):264-270.
66. Donahue JK, McDonald AD, Kikuchi K, Inventors; The Johns Hopkins University, assignee. Gene delivery to organs. 2004.
67. Luderitz B. Historical perspectives of cardiac electrophysiology.Hellenic J Cardiol. 2009;50(1):3-16.
68. Ishikawa K, Weber T, Hajjar RJ. Human Cardiac Gene Therapy.Circ Res. 2018;123(5):601-613.
69. Katz MG, Fargnoli AS, Pritchette LA, Bridges CR. Gene delivery technologies for cardiac applications. Gene Ther.2012;19(6):659-669.
70. Katz MG, Swain JD, White JD, Low D, Stedman H, Bridges CR. Cardiac gene therapy: optimization of gene delivery techniques in vivo.Hum Gene Ther. 2010;21(4):371-380.
71. Marshall WG, Jr., Boone BA, Burgos JD, et al. Electroporation-mediated delivery of a naked DNA plasmid expressing VEGF to the porcine heart enhances protein expression. Gene Ther.2010;17(3):419-423.
72. van Es R, Konings MK, Du Pre BC, et al. High-frequency irreversible electroporation for cardiac ablation using an asymmetrical waveform.Biomed Eng Online. 2019;18(1):75.
73. Donahue JK. Current state of the art for cardiac arrhythmia gene therapy. Pharmacol Ther. 2017;176:60-65.
74. Hucker WJ, Hanley A, Ellinor PT. Improving Atrial Fibrillation Therapy: Is There a Gene for That? J Am Coll Cardiol.2017;69(16):2088-2095.
75. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol. 2014;63(22):2335-2345.
76. Perlstein I, Burton DY, Ryan K, et al. Posttranslational control of a cardiac ion channel transgene in vivo: clarithromycin-hMiRP1-Q9E interactions. Hum Gene Ther. 2005;16(7):906-910.
77. Amit G, Kikuchi K, Greener ID, Yang L, Novack V, Donahue JK. Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation. 2010;121(21):2263-2270.
78. Soucek R, Thomas D, Kelemen K, et al. Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm. 2012;9(2):265-272.
79. Schmidt C, Wiedmann F, Beyersdorf C, et al. Genetic Ablation of TASK-1 (Tandem of P Domains in a Weak Inward Rectifying K(+) Channel-Related Acid-Sensitive K(+) Channel-1) (K2P3.1) K(+) Channels Suppresses Atrial Fibrillation and Prevents Electrical Remodeling.Circ Arrhythm Electrophysiol. 2019;12(9):e007465.
80. Voigt N, Heijman J, Wang Q, et al. Cellular and molecular mechanisms of atrial arrhythmogenesis in patients with paroxysmal atrial fibrillation. Circulation. 2014;129(2):145-156.
81. Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation.Circulation. 2012;125(17):2059-2070.
82. Li N, Chiang DY, Wang S, et al. Ryanodine receptor-mediated calcium leak drives progressive development of an atrial fibrillation substrate in a transgenic mouse model. Circulation. 2014;129(12):1276-1285.
83. Li N, Wang T, Wang W, et al. Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice. Circ Res. 2012;110(3):465-470.
84. Brunello L, Slabaugh JL, Radwanski PB, et al. Decreased RyR2 refractoriness determines myocardial synchronization of aberrant Ca2+ release in a genetic model of arrhythmia. Proc Natl Acad Sci U S A. 2013;110(25):10312-10317.
85. Loaiza R, Benkusky NA, Powers PP, et al. Heterogeneity of ryanodine receptor dysfunction in a mouse model of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 2013;112(2):298-308.
86. Liu B, Walton SD, Ho HT, et al. Gene Transfer of Engineered Calmodulin Alleviates Ventricular Arrhythmias in a Calsequestrin-Associated Mouse Model of Catecholaminergic Polymorphic Ventricular Tachycardia. J Am Heart Assoc. 2018;7(10).
87. Arora R, Ulphani JS, Villuendas R, et al. Neural substrate for atrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am J Physiol Heart Circ Physiol.2008;294(1):H134-H144.
88. Chen PS, Chen LS, Fishbein MC, Lin SF, Nattel S. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ Res. 2014;114(9):1500-1515.
89. Nergardh AK, Rosenqvist M, Nordlander R, Frick M. Maintenance of sinus rhythm with metoprolol CR initiated before cardioversion and repeated cardioversion of atrial fibrillation: a randomized double-blind placebo-controlled study. Eur Heart J. 2007;28(11):1351-1357.
90. Machida T, Hashimoto N, Kuwahara I, et al. Effects of a highly selective acetylcholine-activated K+ channel blocker on experimental atrial fibrillation. Circ Arrhythm Electrophysiol.2011;4(1):94-102.
91. Donahue JK, Heldman AW, Fraser H, et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med. 2000;6(12):1395-1398.
92. Murata M, Cingolani E, McDonald AD, Donahue JK, Marban E. Creation of a genetic calcium channel blocker by targeted gem gene transfer in the heart. Circ Res. 2004;95(4):398-405.
93. Lugenbiel P, Thomas D, Kelemen K, et al. Genetic suppression of Galphas protein provides rate control in atrial fibrillation.Basic Res Cardiol. 2012;107(3):265.
94. Aistrup GL, Cokic I, Ng J, et al. Targeted nonviral gene-based inhibition of Galpha(i/o)-mediated vagal signaling in the posterior left atrium decreases vagal-induced atrial fibrillation. Heart Rhythm.2011;8(11):1722-1729.
95. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999;79(3):917-1017.
96. Tuomi JM, Tyml K, Jones DL. Atrial tachycardia/fibrillation in the connexin 43 G60S mutant (Oculodentodigital dysplasia) mouse. Am J Physiol Heart Circ Physiol. 2011;300(4):H1402-1411.
97. Chaldoupi SM, Loh P, Hauer RN, de Bakker JM, van Rijen HV. The role of connexin40 in atrial fibrillation. Cardiovasc Res.2009;84(1):15-23.
98. Igarashi T, Finet JE, Takeuchi A, et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation.Circulation. 2012;125(2):216-225.
99. Bikou O, Thomas D, Trappe K, et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model.Cardiovasc Res. 2011;92(2):218-225.
100. Doetschman T, Barnett JV, Runyan RB, et al. Transforming growth factor beta signaling in adult cardiovascular diseases and repair.Cell Tissue Res. 2012;347(1):203-223.
101. Kunamalla A, Ng J, Parini V, et al. Constitutive Expression of a Dominant-Negative TGF-beta Type II Receptor in the Posterior Left Atrium Leads to Beneficial Remodeling of Atrial Fibrillation Substrate.Circ Res. 2016;119(1):69-82.
102. Nattel S, Heijman J, Zhou L, Dobrev D. Molecular Basis of Atrial Fibrillation Pathophysiology and Therapy: A Translational Perspective.Circ Res. 2020;127(1):51-72.
103. Sirish P, Li N, Timofeyev V, et al. Molecular Mechanisms and New Treatment Paradigm for Atrial Fibrillation. Circ Arrhythm Electrophysiol. 2016;9(5).
104. Hu YF, Chen YJ, Lin YJ, Chen SA. Inflammation and the pathogenesis of atrial fibrillation. Nat Rev Cardiol. 2015;12(4):230-243.
105. Yao C, Veleva T, Scott L, Jr., et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation.2018;138(20):2227-2242.
106. Sovari AA. Cellular and Molecular Mechanisms of Arrhythmia by Oxidative Stress. Cardiol Res Pract. 2016;2016:9656078.
107. Dudley SC, Jr., Hoch NE, McCann LA, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation.2005;112(9):1266-1273.
108. Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24(9):471-478.
109. Cai H. Hydrogen peroxide regulation of endothelial function: origins, mechanisms, and consequences. Cardiovasc Res.2005;68(1):26-36.
110. Sesso HD, Buring JE, Christen WG, et al. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA.2008;300(18):2123-2133.
111. Thiele H, Hildebrand L, Schirdewahn C, et al. Impact of high-dose N-acetylcysteine versus placebo on contrast-induced nephropathy and myocardial reperfusion injury in unselected patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. The LIPSIA-N-ACC (Prospective, Single-Blind, Placebo-Controlled, Randomized Leipzig Immediate PercutaneouS Coronary Intervention Acute Myocardial Infarction N-ACC) Trial. J Am Coll Cardiol. 2010;55(20):2201-2209.
112. Forman HJ, Davies KJ, Ursini F. How do nutritional antioxidants really work: nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic Biol Med. 2014;66:24-35.
113. Yoo S, Pfenniger A, Hoffman J, et al. Attenuation of Oxidative Injury With Targeted Expression of NADPH Oxidase 2 Short Hairpin RNA Prevents Onset and Maintenance of Electrical Remodeling in the Canine Atrium: A Novel Gene Therapy Approach to Atrial Fibrillation.Circulation. 2020;142(13):1261-1278.
114. Li Y, Gong ZH, Sheng L, et al. Anti-apoptotic effects of a calpain inhibitor on cardiomyocytes in a canine rapid atrial fibrillation model.Cardiovasc Drugs Ther. 2009;23(5):361-368.
115. Trappe K, Thomas D, Bikou O, et al. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. Eur Heart J. 2013;34(2):147-157.
116. Zhang Y, Zheng S, Geng Y, et al. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1. PLoS One.2015;10(3):e0122674.
117. Li D, Fareh S, Leung TK, Nattel S. Promotion of Atrial Fibrillation by Heart Failure in Dogs. Circulation. 1999;100(1):87-95.
118. Daccarett M, Badger TJ, Akoum N, et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 2011;57(7):831-838.
119. Han FT, Akoum N, Marrouche N. Value of Magnetic Resonance Imaging in Guiding Atrial Fibrillation Management. Canadian Journal of Cardiology. 2013;29(10):1194-1202.
120. Cuculich PS, Wang Y, Lindsay BD, et al. Noninvasive Characterization of Epicardial Activation in Humans With Diverse Atrial Fibrillation Patterns. Circulation. 2010;122(14):1364-1372.
121. Narayan SM, Krummen DE, Shivkumar K, Clopton P, Rappel WJ, Miller JM. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012;60(7):628-636.
122. Banovic M, Ostojic MC, Bartunek J, Nedeljkovic M, Beleslin B, Terzic A. Brachial approach to NOGA-guided procedures: electromechanical mapping and transendocardial stem-cell injections. Tex Heart Inst J. 2011;38(2):179-182.