Reference
Abhilash, P. C., Dubey, R. K., Tripathi, V., Gupta, V. K., & Singh, H.
B. (2016). Plant growth-promoting microorganisms for environmental
sustainability. Trends in Biotechnology , 34(11), 847-850.
https://doi.org/10.1016/j.tibtech.2016.05.005
Akintokun, A. K., & Taiwo, M. O. (2016). Biocontrol potentials of
individual specie of rhizobacteria and their consortium against
phytopathogenic Fusarium oxysporum and Rhizoctonia solani .International Journal of Scientific Research in Environmental
Sciences , 4 (7), 0219-0227.
doi.org/10.12983/ijsres-2016-p0219-0227
Berg, G. (2009). Plant–microbe interactions promoting plant growth and
health: perspectives for controlled use of microorganisms in
agriculture. Applied Microbiology and Biotechnology ,84 (1), 11-18. doi.org/10.1007/s00253-009-2092-7
Berg, G., & Zachow, C. (2011). PGPR interplay with rhizosphere
communities and effect on plant growth and health. In Bacteria in
Agrobiology: Crop Ecosystems (pp. 97-109). Springer, Berlin,
Heidelberg. doi.org/10.1007/978-3-642-18357-7_4
Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014).
Biofertilizers function as key player in sustainable agriculture by
improving soil fertility, plant tolerance and crop productivity.Microbial Cell Factories , 13 (1), 1-10.
doi.org/10.1186/1475-2859-13-66
Casida Jr, L. E., Klein, D. A., & Santoro, T. (1964). Soil
dehydrogenase activity. Soil Science , 98 (6), 371-376.
Chopra, S.L. and Kanwar, J.S. (1982). Analytical Agri-cultural
Chemistry, Kalyani Publishers, NewDelhi.
Dubey, R. K., Dubey, P. K., Chaurasia, R., Singh, H. B., & Abhilash, P.
C. (2020). Sustainable agronomic practices for enhancing the soil
quality and yield of Cicer arietinum L. under diverse
agroecosystems. Journal of Environmental Management , 262, 110284.
https://doi.org/10.1016/j.jenvman.2020.110284
Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils.Soil Biology and Biochemistry , 9 (3), 167-172.
doi.org/10.1016/0038-0717(77)90070-0
Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases
in soils. Soil Biology and Biochemistry , 20 (5), 601-606.
doi.org/10.1016/0038-0717(88)90141-1
Eleiwa, M. E., Hamed, E. R., & Shehata, H. S. (2012). The role of
biofertilizers and/or some micronutrients on wheat plant (Triticum
aestivum L.) growth in newly reclaimed soil. Journal of Medicinal
Plants Research , 6 (17), 3359-3369. doi.org/10.5897/JMPR12.216
Guo, J. H., Zhang, L., Wang, D., Hu, Q., Dai, X., Xie, Y., … & Liu,
H. (2019). Consortium of plant growth-promoting rhizobacteria strains
suppresses sweet pepper disease by altering the rhizosphere microbiota.Frontiers In Microbiology , 10 , 1668.
doi.org/10.3389/fmicb.2019.01668
Hanway JJ, Heidel H (1952) Soil analysis methods as used in Iowastate
college soil testing laboratory. Iowa Agric 57:1–31
Hepperly, P., Lotter, D., Ulsh, C. Z., Seidel, R., & Reider, C. (2009).
Compost, manure and synthetic fertilizer influences crop yields, soil
properties, nitrate leaching and crop nutrient content. Compost
Science & Utilization , 17 (2), 117-126.
doi.org/10.1080/1065657X.2009.10702410
Jackson, M.L. (1958). Organic matter determination forsoils. In: Soil
chemical analysis. Prentice-Hall,Englewood Cliffs, NJ, pp 205-226.
Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease
activity using colorimetric determination of ammonium. Biology and
Fertility of Soils , 6 (1), 68-72. doi.org/10.1007/BF00257924
Krouk, G., Crawford, N. M., Coruzzi, G. M., & Tsay, Y. F. (2010).
Nitrate signaling: adaptation to fluctuating environments. Current
Opinion in Plant Biology , 13 (3), 265-272.
doi.org/10.1016/j.pbi.2009.12.003
Lucy, M., Reed, E., & Glick, B. R. (2004). Applications of free living
plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek ,86 (1), 1-25. doi.org/10.1023/B:ANTO.0000024903.10757.6e
Maathuis, F. J. (2009). Physiological functions of mineral
macronutrients. Current Opinion in Plant Biology , 12 (3),
250-258. doi.org/10.1016/j.pbi.2009.04.003
Malik, D. K., & Sindhu, S. S. (2011). Production of indole acetic acid
by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer
on nodulation and plant growth of chickpea (Cicer arietinum).Physiology and Molecular Biology of Plants , 17 (1), 25-32.
doi.org/10.1007/s12298-010-0041-7
Mbarki, S., Sytar, O., Cerda, A., Zivcak, M., Rastogi, A., He, X., …
& Brestic, M. (2018). Strategies to mitigate the salt stress effects on
photosynthetic apparatus and productivity of crop plants. InSalinity Responses and Tolerance in Plants, Volume 1 (pp.
85-136). Springer, Cham. doi.org/10.1007/978-3-319-75671-4_4
Mohamed, H. I., & Gomaa, E. Z. (2012). Effect of plant growth promoting
Bacillus subtilis and Pseudomonas fluorescens on growth and pigment
composition of radish plants (Raphanus sativus) under NaCl stress.Photosynthetica , 50 (2), 263-272.
doi.org/10.1007/s11099-012-0032-8
Mukherjee, A., & Patel, J. S. (2020a). Seaweed extract: biostimulator
of plant defense and plant productivity. International Journal of
Environmental Science and Technology , 17 (1), 553-558.
doi.org/10.1007/s13762-019-02442-z
Mukherjee, A., Singh, B., & Verma, J. P. (2020b). Harnessing chickpea
(Cicer arietinum L.) seed endophytes for enhancing plant growth
attributes and bio-controlling against Fusarium sp.Microbiological Research , 126469.
doi.org/10.1016/j.micres.2020.126469
Mukherjee, A., Chouhan, G. K., Gaurav, A. K., Jaiswal, D. K., & Verma,
J. P. (2020c). Development of indigenous microbial consortium for
biocontrol management. In: New and Future Developments in
Microbial Biotechnology and Bioengineering -Phytomicrobiome for
Sustainable Agriculture (Eds. Verma, J.P., Macdonald, C., Gupta, V.K.,
Podile, A.R.) (pp. 91-104). Elsevier.
doi.org/10.1016/B978-0-444-64325-4.00009-2
Mukherjee, A., Gaurav, A. K., Singh, S., Chouhan, G. K., Kumar, A., &
Das, S. (2019). Role of Potassium (K) Solubilising Microbes (KSM) in
Growth and Induction of Resistance against Biotic and Abiotic Stress in
Plant: A Book Review. Climate Change and Environmental Sustainability,
7(2), 212-214.
Olsen, S. R., Cole, C. V., Watanake, F. S., & Dean, C. A. (1954).
Estimation of available P in soil by extraction with sodium bicarbonate:
Circ US. Dept Agric , 939 .
Patel, B. N., Solanki, M. P., Patel, S. R., & Desai, J. R. (2011).
Effect of bio-fertilizers growth, physiological parameters, yield and
quality of brinjal cv. Surati Ravaiya. Indian Journal of
Horticulture , 68 (3), 370-374.
Qiu, Z., Egidi, E., Liu, H., Kaur, S., & Singh, B. K. (2019). New
frontiers in agriculture productivity: Optimised microbial inoculants
and in situ microbiome engineering. Biotechnology Advances ,37 (6), 107371. doi.org/10.1016/j.biotechadv.2019.03.010
Raklami, A., Bechtaoui, N., Tahiri, A. I., Anli, M., Meddich, A., &
Oufdou, K. (2019). Use of rhizobacteria and mycorrhizae consortium in
the open field as a strategy for improving crop nutrition, productivity
and soil fertility. Frontiers in Microbiology , 10 , 1106.
doi.org/10.3389/fmicb.2019.01106
Ryu, C. M., Murphy, J. F., Reddy, M. S., & Kloepper, J. W. (2007). A
two-strain mixture of rhizobacteria elicits induction of systemic
resistance against Pseudomonas syringae and Cucumber mosaic virus
coupled to promotion of plant growth on Arabidopsis thaliana.Journal of Microbiology and Biotechnology , 17 (2), 280-286.
Saha, S., Prakash, V., Kundu, S., Kumar, N., & Mina, B. L. (2008). Soil
enzymatic activity as affected by long term application of farm yard
manure and mineral fertilizer under a rainfed soybean–wheat system in
NW Himalaya. European Journal of Soil Biology , 44 (3),
309-315. doi.org/10.1016/j.ejsobi.2008.02.004
Singh, S. P., Singh, H. B., & Singh, D. K. (2013). Trichoderma
harzianum and Pseudomonas sp. mediated management of sclerotium
rolfsii rot in tomato (Lycopersicon esculentum mill.). Life
sciences , 8 (3), 801-804.
Singh, S., Jaiswal, D. K., Krishna, R., Mukherjee, A., & Verma, J. P.
(2020). Restoration of degraded lands through bioenergy plantations.Restoration Ecology , 28 (2), 263-266.
doi.org/10.1111/rec.13095
Sood, M. C., & Sharma, R. C. (2001). Value of growth promoting
bacteria, vermicompost and Azotobacter on potato production in Shimla
hills. Journal of Indian Potato Association , 28 (1),
52-53.
Subbiah, B., & Asija, G. L. (1956). Alkaline permanganate method of
available nitrogen determination. Current Science , 25 ,
259.
Verma, J. P., Yadav, J., Tiwari, K. N., & Jaiswal, D. K. (2014).
Evaluation of plant growth promoting activities of microbial strains and
their effect on growth and yield of chickpea (Cicer arietinum L.)
in India. Soil Biology and Biochemistry , 70 , 33-37.
doi.org/10.1016/j.soilbio.2013.12.001
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff
method for determining soil organic matter, and a proposed modification
of the chromic acid titration method. Soil Science , 37 (1),
29-38.
Yadav, S. K., Singh, S., Singh, H. B., & Sarma, B. K. (2017).
Compatible rhizosphere-competent microbial consortium adds value to the
nutritional quality in edible parts of chickpea. Journal of
Agricultural and Food Chemistry , 65 (30), 6122-6130.
doi.org/10.1021/acs.jafc.7b01326