References
Alström, P. et al. 2015. Dramatic niche shifts and morphological change in two insular bird species. – R. Soc. Open Sci. 2: 140364.
Angilletta, M. J. et al. 2003. Tradeoffs and the evolution of thermal reaction norms. – Trends Ecol. Evol. 18: 234–240.
Angilletta, M. J. 2009. Thermal Adaptation: A Theoretical and Empirical Synthesis. – Oxford University Press.
Bartels, P. et al. 2012. Water Transparency Drives Intra-Population Divergence in Eurasian Perch (Perca fluviatilis). – PLoS ONE 7 (8): e43641. Blomberg, S. P. et al. 2003. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. – Evolution 57: 717–745. Bonte, D. and Saastamoinen, M. A. K. 2012. Dispersal syndromes in butterflies and spiders. – In: Clobert, J. et al. (ed.), Dispersal Ecology and Evolution, Oxford University Press, pp. 161–170.
Boria, R. A. et al. 2014. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. – Ecol. Model. 275: 73–77.
Broennimann, O. and Guisan, A. 2008. Predicting current and future biological invasions: Both native and invaded ranges matter. – Biol. Lett. 4: 585–589.
Broennimann, O. et al. 2007. Evidence of climatic niche shift during biological invasion. – Ecol. Lett. 10: 701–709.
Broennimann, O. et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. – Global Ecol. Blogeogr. 21 (4): 481–497. Butler, M. A. and King, A. A. 2004. Phylogenetic comparative analysis: A modeling approach for adaptive evolution. – Am. Nat. 164 (6): 683–695.
Callaway, R. M. and Maron, J. L. 2006. What have exotic plant invasions taught us over the past 20 years? – Trends Ecol. Evol. 21: 369–374.
Chen, W. et al. 2009. Frequent Mitochondrial Gene Introgression among High Elevation Tibetan Megophryid Frogs Revealed by Conflicting Genegenealogies. – Mol. Ecol. 18: 2856–2876.
Cooper, N. W. et al. 2010. Reproductive correlates of spring arrival date in the eastern kingbird Tyrannus tyrannus . – J. Ornithol. 152: 143–152.
Crisp, M. D. et al. 2009. Phylogenetic biome conservatism on a global scale. – Nature 458: 754–758.
Davis, M. B. and Shaw, R. G. 2001. Range shifts and adaptive responses to quaternary climate change. – Science 292: 673–679.
Dormann, C. F. et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. – Ecography 36, 27–46.
Elith, J. et al. 2011. A statistical explanation of MaxEnt for ecologists. – Divers. Distrib. 17 (1): 43–57.
Evans, M. E. K. et al. 2009. Climate, Niche Evolution, and Diversification of the “Bird-Cage” Evening Primroses (Oenothera , Sections Anogra and Kleinia ). – Am. Nat. 173: 225–240.
Favre, A. et al. 2015. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. – Biol. Rev. 90: 236–253.
Fei, L. et al. 2005. An illustrated Key to Chinese Amphibians. – Chengdu: Sichuan Publishing House of Science and Technology.
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. – Evolution: 783–791.
Freckleton, R. et al. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. – Am. Nat. 160: 712–726. Fu, J. Z. et al. 2007. A phylogeny of the high-elevation Tibetan megophryid frogs and evidence for the multiple origins of reversed sexual size dimorphism. – J. Zool. 273: 315–325. Grafen, A. 1989. The phylogenetic regression. – Philos. Trans. R. Soc. Lond. B Biol. Sci. 326: 119–157.
Graham, C. H. et al. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. – Evolution 58: 1781–1793.
Guisan, A. et al. 2014. Unifying niche shift studies: Insights from biological invasions. – Trends Ecol. Evol. 29: 260–269.
Guo, W. Y. et al. 2013. Invasion of Old World Phragmites australis in the New World: Precipitation and temperature patterns combined with human influences redesign the invasive niche. – Glob. Change Biol. 19: 3406–3422.
Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. –Evolution 51 (5): 1341–1351. Harmon, L. J. et al. 2007. GEIGER: Investigating evolutionary radiations. – Bioinfor- matics 24 (1): 129–131. Harmon, L. J. et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. – Evolution 64 (8): 2385–2396.
Harrison, T. M. et al. 1992. Raising Tibet. – Science 255: 1663–1670.
Harvey, P. H. and Rambaut, A. 2000. Comparative analyses for adaptive radiations. – Philos. Trans. R. Soc. Lond. B. Biol. Sci. 355: 1599–1605.
Hierro, J. L. et al. 2005. A biogeographical approach to plant invasions: The importance of studying exotics in their introduced and native range. – J. Ecol. 93: 5–15.
Hijmans, R. J. et al. 2005a. WorldClim, Version 2.1. – <https://www.worldclim.org /data/worldclim21.html>.
Hijmans, R. J. et al. 2005b. Very high resolution interpolated climate surfaces for global land areas. – Int. J. Climatol. 25: 1965–1978.
Hofmann, S. et al. 2017. Molecular Phylogenies Indicate a Paleo-Tibetan Origin of Himalayan Lazy Toads (Scutiger ). – Sci. Rep. 7: 3308.
Hu, J. H. et al. 2015. Niche divergence accelerates evolution in Asian endemic Procapra gazelles. – Sci. Rep. 5: 10069.
Hudson, C. M. et al. 2015. Virgins in the vanguard: low reproductive frequency in invasion front cane toads. – Biol. J. Linnean Soc. 116: 743–747.
Kalyaanamoorthy, et al. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. – Nat. Methods 14: 587–589.
Knouft, J. H. et al. 2006. Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. – Ecology 87: 29–38.
Kolbe, J. J. et al. 2010. Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. – Ecol. Appl. 20 (8): 2273–2285.
Kooyers, N. J. and Olsen K. M. 2012. Rapid evolution of an adaptive cyanogenesis cline in introduced North American white clover (Trifolium repens L. ). – Mol. Ecol. 21: 2455–2468.
Kozak, K. H. and Wiens, J. J. 2010. Accelerated rates of climatic-niche evolution underlie rapid species diversification. – Ecol. Lett. 13: 1378–1389.
Kozak, K. H. and Wiens, J. J. 2006. Does niche conservatism promote speciation? A case study in North American salamanders. – Evolution 60: 2604–2621.
Kumar, S. et al. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. – Mol. Biol. Evol. 35 (6): 1547–1549.
Li, R. 2009. Rivers as barriers for high elevation amphibians: a phylogeographic analysis of the alpine stream frog of the Hengduan Mountains, – J. Zool. 277 (4): 309–316.
Liu, C. L. et al. 2020. Most invasive species largely conserve their climatic niche. – Proc. Natl Acad. Sci. USA 117: 23643–23651.
Losos, J. B. and Queiroz, K. D. 1997. Evolutionary consequences of ecological release in Caribbean Anolis lizards. – Biol. J. Linnean Soc. 61: 459–483.
Martins, E. P. and Hansen, T. F. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. – Am. Nat. 149: 646–667.
Mautz, W. J. 1982. Patterns of evaporative water loss. – In Gans, C. and Pough, F. H. (ed.), Biology of the reptilian. Academic Press, pp. 443–481. Molnar, P. et al. 1993. Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. – Rev. Geophys. 31: 357–96.
Mulch, A. and Chamberlain, C. P. 2006. Earth science – The rise and growth of Tibet. – Nature 439: 670–671.
Muscarella, R. et al. 2014. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. – Methods Ecol. Evol. 5: 1198–1205.
Oufiero, et al. 2011. Swimming performance trade-offs across a gradient in community composition in Trinidadian killifish (Rivulus hartii ). – Ecology 92: 170–179.
Parent, C. E. and Crespi, B. J. 2009. Ecological opportunity in adaptive radiation of Galapagos endemic land snails. – Am. Nat. 174: 898–905.
Peterson, A. T. and Holt, R. D. 2003. Niche differentiation in Mexican birds: Using point occurrences to detect ecological innovation. – Ecol. Lett. 6: 774–782.
Petitpierre, B. et al. 2012. Climatic niche shifts are rare among terrestrial plant invaders. – Science 335: 1344–1348.
Phillips, B. L. et al. 2006. Invasion and the evolution of speed in toads. – Nature 439: 803.
Phillips, B. L. et al. 2010. Evolutionarily accelerated invasions: The rate of dispersal evolves upwards during the range advance of cane toads. – J. Evol. Biol. 23 (12): 2595–2601.
Phillips, S. J. and Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. – Ecography 31: 161–175.
Rabosky, D. L. and Adams, D. C. 2012. Rates of morphological evolution are correlated with species richness in salamanders. – Evolution 66: 1807–1818.
Revell, L. J. 2013. Two new graphical methods for mapping trait evolution on phylogenies. – Methods Ecol. Evol. 4: 754–759. Revell, L. J. 2020. Package phytools, Version 0.7–70. – <https://github.com /liamrevell/phytools>.
Rollins, L. A. et al. 2015. Genetic perspective on rapid evolution in cane toads (Rhinella marina ). – Mol. Ecol. 24: 2264–2276.
Rowley, D. and Currie, B. S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. – Nature 439: 677–681.
Schluter, D. 2000. The ecology of adaptive radiation. – Oxford Univ. Press.
Seebacher, F. and Franklin, C. E. 2011. Physiology of invasion: cane toads are constrained by thermal effects on physiological mechanisms that support locomotor performance. – J. Exp. Biol. 214: 1437–1444.
Sexton, J. P. et al. 2017. Evolution of ecological niche breadth. – Annu. Rev. Ecol. Evol. Syst. 48: 183–206.
Sherratt, E. et al. 2017. Rates of morphological evolution, asymmetry and morphological integration of shell shape in scallops, – BMC Evol. Biol. 17: 248.
Strubbe, D. et al. 2015. Niche conservatism among non-native vertebrates in Europe and North America. – Ecography 38: 321–329.
Strubbe, D. et al. 2013. Niche conservatism in non-native birds in Europe: niche unfilling rather than niche expansion. – Global Ecol. Biogeogr. 22: 962–970.
Subba, B. et al. 2015. Scaling new heights: first record of Boulenger’s Lazy Toad Scutiger boulengeri (Amphibia: Anura: Megophryidae) from high altitude lake in Sikkim Himalaya, India. – J. Threatened Taxa 7 (10): 7655–7663. Swets, J. 1988. Measuring the accuracy of diagnostic systems. – Science 240 (4857): 1285–1293.
Thomas, C. D. et al. 2001. Ecological and evolutionary processes at expanding range margins. – Nature 411: 577–581.
Tingley, R. et al. 2014. Realized niche shift during a global biological invasion. – Proc. Natl Acad. Sci. USA 111: 10233–10238.
Tingley, R. et al. 2016. Patterns of niche filling and expansion across the invaded ranges of an Australian lizard. – Ecography (Cop.) 39: 270–280.
Tuanmu, M. N. and Jetz, W. 2015. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. – Glob Ecol. Biogeogr. 24: 1329–1339.
Vanhooydonck, B. and Van Damme, R. 1999. Evolutionary relationships between body shape and habitat use in lacertid lizards. – Evol. Ecol. Res. 1: 785–805.
Veloz, S. D. 2009. Spatially autocorrelated sampling falsely inflates measures of accuracy for presenceonly niche models. – J. Biogeography 36: 2290–2299.
Wagenmakers, E. J. and Farrell, S. 2004. AIC Model Selection Using Akaike Weights. – Psychon. Bull. Rev. 11: 192–196.
Warren, D. L. et al. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. – Ecography 33: 607–611.
Warren, et al. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. – Evolution 62 (11): 2868–2883. Wiens, J. J. 2004. Speciation and Ecology Revisited: Phylogenetic Niche Conservatism and the Origin of Species. – Evolution 58 (1): 193–197.
Wiens, J. J. et al. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. – Evolution 62: 2868–2883.
Yoder, J. B. et al. 2010. Ecological opportunity and the origin of adaptive radiations. – J. Evol. Biol. 23: 1581–1596.
Zaaf, A. and Van Damme, R. 2001. Limb proportions in climbing and ground-dwelling geckoes (Lepidosauria, Gekkonidae): a phylogenetically informed analysis. – Zoomorphology 121: 45–53.
Zhang, D. et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. – Mol. Ecol. Resour. 20: 348–355.
Supplementary material Appendix at <www.oikosoffice.lu.se/appendix>.
Acknowledgements – We thank Chunlong Liu from Freie Universität Berlin & Université Paris Saclay for help on conception of the earlier draft. We thank Dr. Cheng Li, Dr. Yin Qi, Dr. Guocheng Shu and Professor Dajie Gong, Shengchao Shi and Xiancheng Xu for their kind help in field work.
Funding – This study was funded by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK05010503), the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China 2019HJ2096001006, Construction of Basic Conditions Platform of Sichuan Science and Technology Department 2019JDPT0020 and China Biodiversity Observation Networks (Sino BON).
Author contributions – XQL and FX conceived the idea; XQL and FX collected the data with assistance from YMH, XXS, MHZ, JHH and JPJ; XQL and FX processed the raw data; XQL and CKS analyzed the data; XQL, CKS and FX leaded the writing. All authors contributed with edits and comments toward the final manuscript.