Appendix
For qPCR, we used the sets of primers listed in Table S1. In order to validate the chosen housekeeping genes as reference, we confirmed that these genes were indeed expressed consistently across the treatments (ANOVA, Tub: Hours after mating,F 3,11 = 0.33, P = 0.806, Exp:F 1,11 = 0.98, P = 0.344, Hours after mating × Exp, F 3,11 = 0.39, P = 0.760, UbiE: Hours after mating, F 3,11 = 0.62, P= 0.618, Exp: F 1,11 = 0.47, P = 0.509, Hours after mating × Exp, F 3,11 = 0.22, P= 0.880: Fig. S1). To see the overall pattern of SFP expression after mating, we conducted PCA and found that PC1 is mostly corresponding to Hour after mating, and PC2 is for SFP genes (Fig. S2, Table S2)
Acknowledgements
We appreciate the support from Carool Popelier and Omar Bellaoui for maintaining the lab culture of snails, and two anonymous reviewers for insightful comments. This work was supported by NWO Open Competition Grant OCENW.KLEIN.062 (JMK, YN).
Author contribution
JMK conceived and designed the study. YK and JM conducted experiments and processed the samples. YN and JMK analysed the data and wrote the manuscript with input from JM and YK.
Data accessibility
All data of this research will be deposited in an open-access and permanent data depository (e.g., Dryad), upon the acceptance of publication.
Competing interests.
None.
Reference
Abraham, S., Moyano, A., Murillo Dasso, S., Van Nieuwenhove, G., Ovruski, S., & Pérez-Staples, D. 2020. Male accessory gland depletion in a Tephritid fly affects female fecundity independently of sperm depletion. Behav. Ecol. Sociobiol. 74 : 60.
Alvarez-Fernandez, A., Borziak, K., McDonald, G. C., Dorus, S., & Pizzari, T. 2019. Female novelty and male status dynamically modulate ejaculate expenditure and seminal fluid proteome over successive matings in red junglefowl. Scientific Reports 9 : 5852.
Avila, F.W., Sirot, L.K., LaFlamme, B. a, Rubinstein, C.D. & Wolfner, M.F. 2011. Insect seminal fluid proteins: identification and function.Annu. Rev. Entomol. 56 : 21–40.
Bartlett, M.J., Steeves, T.E., Gemmell, N.J. & Rosengrave, P.C. 2017. Sperm competition risk drives rapid ejaculate adjustments mediated by seminal fluid. elife 6 : 1–24.
Baumann, H. 1974. The isolation, partial characterization, and biosynthesis of the paragonial substances, PS-1 and PS-2, ofDrosophila funebris . J. Insect Physiol. 20 : 2181–2194.
Bertram, M. J., Akerkar, G. A., Ard, R. L., Gonzalez, C., & Wolfner, M. F. 1992. Cell type-specific gene expression in the Drosophila melanogaster male accessory gland. Mechanisms of Development38 : 33–40.
Bromfield, J.J. 2014. Seminal fluid and reproduction: Much more than previously thought. J. Assist. Reprod. Genet. 31 : 627–636.
Claydon, A. J., Ramm, S. A., Pennington, A., Hurst, J. L., Stockley, P., & Beynon, R. 2012. Heterogenous turnover of sperm and seminal vesicle proteins in the mouse revealed by dynamic metabolic labeling.Molecular & cellular proteomics 11 : M111.014993.
Coleman, S., Drähn, B., Petersen, G., Stolorov, J., & Kraus, K. 1995. ADrosophila male accessory gland protein that is a member of the serpin superfamily of proteinase inhibitors is transferred to females during mating. Insect Biochem. Mol. Biol. 25 : 203–207.
Currier, R.B., Calvete, J.J., Sanz, L., Harrison, R.A., Rowley, P.D. & Wagstaff, S.C. 2012. Unusual stability of messenger RNA in snake venom reveals gene expression dynamics of venom replenishment. PLoS One7 : 1–10.
De Boer, P., Jansen, R., Koene, J.M. & Ter Maat, A. 1997. Nervous control of male sexual drive in the hermaphroditic snail Lymnaea stagnalis . J. Exp. Biol. 951 : 941–951.
DiBenedetto, A. J., Harada, H. A., & Wolfner, M. F. 1990. Structure, cell-specific expression, and mating-induced regulation of aDrosophila melanogaster male accessory gland gene. Dev. Biol. 139 : 134–148.
Fedorka, K.M., Winterhalter, W.E. & Ware, B. 2011. Perceived sperm competition intensity influences seminal fluid protein production prior to courtship and mating. Evolution (N. Y). 65 : 584–590.
Fiumera, A. C., Dumont, B. L., & Clark, A. G. 2007. Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster.Genetics 176 : 1245–1260.
Futcher, B., Latter, G.I., Monardo, P., McLaughlin, C.S. & Garrels, J.I. 1999. A sampling of the yeast proteome. Mol. Cell. Biol.19 : 7357–7368.
Herndon, L.A., Chapman, T., Kalb, J.M., Lewin, S., Partridge, L. & Wolfner, M.F. 1997. Mating and hormonal triggers regulate accessory gland gene expression in male Drosophila . J. Insect Physiol. 43 : 1117–1123.
Hopkins, B.R., Sepil, I., Thézénas, M.L., Craig, J.F., Miller, T., Charles, P.D., et al. 2019. Divergent allocation of sperm and the seminal proteome along a competition gradient in Drosophila melanogaster . Proc. Natl. Acad. Sci. U. S. A. 116 : 17925–17933.
Jarne, P., David, P., Pointier, J.-P., Koene, J.M., David, P., Pointier, J.-P., et al. 2010. Basommatophoran Gastropods. In: The Evolution of Primary Sexual Characters in Animals (A. Córdoba-Aguilar & J. L. Leonard, eds), pp. 173–196. Oxford University Press.
Johnson, H.F. & Davison, A. 2019. A new set of endogenous control genes for use in quantitative real-time PCR experiments show thatformin Ldia2dex transcripts are enriched in the early embryo of the pond snail Lymnaea stagnalis (Panpulmonata). J. Molluscan Stud. 85 : 388–396.
Koene, J.M., Sloot, W., Montagne-Wajer, K., Cummins, S.F., Degnan, B.M., Smith, J.S., et al. 2010. Male accessory gland protein reduces egg laying in a simultaneous hermaphrodite. PLoS One 5 : 1–7.
Koene, J. M. & Ter Maat, A. 2007. Coolidge effect in pond snails: male motivation in a simultaneous hermaphrodite. BMC Evol. Biol.7 : 212.
Koene, J.M. & Ter Maat, A. 2005. Sex role alternation in the simultaneously hermaphroditic pond snail Lymnaea stagnalis is determined by the availability of seminal fluid. Anim. Behav.69 : 845–850.
Lefevre Jr, G., & Jonsson, U. B. 1962. Sperm transfer, storage, displacement, and utilization in Drosophila melanogaster .Genetics 47 : 1719.
Leiblich, A., Marsden, L., Gandy, C., Corrigan, L., Jenkins, R., Hamdy, F. et al. 2012. Bone morphogenetic protein- and mating-dependent secretory cell growth and migration in the Drosophila accessory gland. Proc Natl Acad Sci U S A 109 : 19292–19297.
Leiblich, A., Hellberg, J. E. E. U., Sekar, A., Gandy, C., Mendes, C. C., Redhai, S. et al. 2019. Mating induces switch from hormone-dependent to hormone-independent steroid receptor–mediated growth inDrosophila secondary cells. PLoS Biol. 17 : e3000145.
Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25 : 402–408.
Loose, M.J. & Koene, J.M. 2008. Sperm transfer is affected by mating history in the simultaneously hermaphroditic snail Lymnaea stagnalis . Invertebr. Biol. 127 : 162–167.
McGraw, L.A., Suarez, S.S. & Wolfner, M.F. 2016. On a matter of seminal importance: The emerging influence of seminal plasma components on fertility and future progeny. Bioessays 37 : 142–147. Wiley Online Library.
Mohorianu, I., Bretman, A., Smith, D.T., Fowler, E.K., Dalmay, T. & Chapman, T. 2017. Genomic responses to the socio-sexual environment in male Drosophila melanogaster exposed to conspecific rivals.RNA 23 : 1048–1059.
Monsma, S. A., Harada, H. A., & Wolfner, M. F. 1990. Synthesis of twoDrosophila male accessory gland proteins and their fate after transfer to the female during mating. Dev. Biol. 142 : 465–475.
Nakadera, Y., Giannakara, A. & Ramm, S.A. 2019. Plastic expression of seminal fluid protein genes in a simultaneously hermaphroditic snail.Behav. Ecol. 30 : 904–13.
Nakadera, Y., Swart, E.M., Hoffer, J.N.A., den Boon, O., Ellers, J., Koene, J.M.J.M., et al. 2014. Receipt of seminal fluid proteins causes reduction of male investment in a simultaneous hermaphrodite.Curr. Biol. 24 : 859–862.
Nakadera, Y., Swart, E.M., Maas, J.P.A., Montagne-Wajer, K., Ter Maat, A. & Koene, J.M. 2015. Effects of age, size, and mating history on sex role decision of a simultaneous hermaphrodite. Behav. Ecol.26 : 232–241.
Nakadera, Y., Smith, A.T., Daupagne, L., Coutellec, M., Koene, J.M., Ramm, S.A., et al. 2020. Divergence of seminal fluid gene expression and function among natural snail populations. J. Evol. Biol. 1–12.
Pratt, J.M., Petty, J., Riba-Garcia, I., Robertson, D.H.L., Gaskell, S.J., Oliver, S.G., et al. 2002. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics1 : 579–591.
Radhakrishnan, P., & Taylor, P. W. 2008. Ability of male Queensland fruit flies to inhibit receptivity in multiple mates, and the associated recovery of accessory glands. J. Insect Physiol. 54 : 421–428.
Ramm, S. A., Lengerer, B., Arbore, R., Pjeta, R., Wunderer, J., Giannakara, A. et al. 2019. Sex allocation plasticity on a transcriptome scale: Socially sensitive gene expression in a simultaneous hermaphrodite. Mol. Ecol. 28 : 2321–2341.
Ramm, S.A., Edward, D.A., Claydon, A.J., Hammond, D.E., Brownridge, P., Hurst, J.L., et al. 2015. Sperm competition risk drives plasticity in seminal fluid composition. BMC Biol. 13 : 87.
Ramm, S.A., Lengerer, B., Arbore, R., Pjeta, R., Wunderer, J., Giannakara, A., et al. 2019. Sex allocation plasticity on a transcriptome scale: Socially sensitive gene expression in a simultaneous hermaphrodite. Mol. Ecol. 28 : 2321–2341.
Ravi Ram, K., & Ramesh, S. R. 2002. Male accessory gland secretory proteins in nasuta subgroup of Drosophila : synthetic activity of Acp. Zool. Sci. 19 : 513–518.
Redhai, S., Hellberg, J. E., Wainwright, M., Perera, S. W., Castellanos, F., Kroeger, B. et al. 2016. Regulation of dense-core granule replenishment by autocrine BMP signalling in Drosophila secondary cells. PLoS Genet. 12 : e1006366.
Reinhardt, K., Naylor, R., & Siva-Jothy, M. T. 2011. Male mating rate is constrained by seminal fluid availability in bedbugs, Cimex lectularius . PLoS One 6 : e22082.
Rogers, D. W., Chapman, T., Fowler, K., & Pomiankowski, A. 2005. Mating-induced reduction in accessory reproductive organ size in the stalk-eyed fly Cyrtodiopsis dalmanni . BMC Evol. Biol.5 : 37.
Schmidt, T., Stumm-Zollinger, E., & Chen, P. S. 1985. Protein metabolism of Drosophila melanogaster male accessory glands—III: Stimulation of protein synthesis following copulation.Insect Biochem. 15 : 391–401.
Simmons, L.W. & Lovegrove, M. 2017. Socially cued seminal fluid gene expression mediates responses in ejaculate quality to sperm competition risk. Proc. R. Soc. B Biol. Sci. 284 : 20171486.
Sirot, L.K., Wolfner, M.F. & Wigby, S. 2011. Protein-specific manipulation of ejaculate composition in response to female mating status in Drosophila melanogaster . Proc. Natl. Acad. Sci. U. S. A. 108 : 9922–9926.
Sirot, L.K., Buehner, N. a., Fiumera, A.C. & Wolfner, M.F. 2009. Seminal fluid protein depletion and replenishment in the fruit fly,Drosophila melanogaster : An ELISA-based method for tracking individual ejaculates. Behav. Ecol. Sociobiol. 63 : 1505–1513.
Sirot, L.K., Wong, A., Chapman, T. & Wolfner, M.F. 2015. Sexual conflict and seminal fluid proteins: A dynamic landscape of sexual interactions. Cold Spring Harb. Perspect. Biol. 7 : a017533. Cold Spring Harbor Lab Press.
Sloan, N. S., Lovegrove, M., & Simmons, L. W. 2018. Social manipulation of sperm competition intensity reduces seminal fluid gene expression.Biol. Lett. 14 : 20170659.
Swart, E.M., Davison, A., Ellers, J., Filangieri, R.R., Jackson, D.J., Mariën, J., et al. 2019. Temporal expression profile of an accessory-gland protein that is transferred via the seminal fluid of the simultaneous hermaphrodite Lymnaea stagnalis . J. Molluscan Stud. 85 : 177–183.
R Core Team. 2020. R: A Language and Environment for Statistical Computing. https://www.R-project.org/
Van Duivenboden, Y.A. & Ter Maat, A. 1985. Masculinity and receptivity in the hermaphrodite pond snail, Lymnaea stagnalis . Anim. Behav. 33 : 885–891.
Weggelaar, T.A., Commandeur, D. & Koene, J.M. 2019. Increased copulation duration does not necessarily reflect a proportional increase in the number of transferred spermatozoa. Anim. Biol.69 : 95–115.
Wei, D., Feng, Y. C., Wei, D. D., Yuan, G. R., Dou, W., & Wang, J. J. 2015. Female remating inhibition and fitness of Bactrocera dorsalis (Diptera: Tephritidae) associated with male accessory glands.Florida Entomologist 98 : 52–58.
White, M.A., Bonfini, A., Wolfner, M.F. & Buchon, N. 2021. Drosophila melanogaster sex peptide regulates mated female midgut morphology and physiology. Proc. Natl. Acad. Sci. U. S. A. 118 : e2018112118.
Yamamoto, K., Chadarevian, A., & Pellegrini, M. 1988. Juvenile hormone action mediated in male accessory glands of Drosophila by calcium and kinase C. Science 239 : 916-919.
Young, A.P., Landry, C.F., Jackson, D.J., & Wyeth, R.C. 2019. Tissue-specific evaluation of suitable reference genes for RT-qPCR in the pond snail, Lymnaea stagnalis . PeerJ10 :1–17.
Zonneveld, C. & Kooijman, S.A.L.M. 1989. Application of a dynamic energy budget model to Lymnaea stagnalis (L.). Funct. Biol. 3 : 269–278.
Figures and tables