loading page

A computational study of the interface interaction between SARS-CoV-2 RBD and ACE2 from human, cat, dog and ferret.
  • +1
  • William Sote,
  • Eduardo Franca,
  • Aline Hora,
  • Moacyr Comar
William Sote
Universidade Federal de Uberlandia

Corresponding Author:sotewilliam@gmail.com

Author Profile
Eduardo Franca
Universidade Federal de Uberlandia
Author Profile
Aline Hora
Federal University of Uberlandia
Author Profile
Moacyr Comar
Universidade Federal de Uberlandia
Author Profile


The total impact of the worldwide COVID-19 pandemic is still emerging, changing all relationships as a result, including those with pet animals. In the infection process, the use of Angiotensin-converting enzyme 2 (ACE2) as a cellular receptor to the spike protein of the new coronavirus is a fundamental step. In this sense, understanding which residue plays what role in the interaction between SARS-CoV-2 spike glycoprotein and ACE2 from cats, dogs, and ferrets is an important guide for helping to choose which animal model can be used to study the pathology of COVID-19 and if there are differences between these interactions and those occurring in the human system. Hence, trying to help to answer these questions, we performed classical molecular dynamics simulations to evaluate, from an atomistic point of view, the interactions in these systems. Our results show that there are significant differences in the interacting residues between the systems from different animal species, and the role of ACE2 key residues are different in each system and can assist in the search for different inhibitors for each animal.
01 Mar 2021Submitted to Transboundary and Emerging Diseases
01 Mar 2021Assigned to Editor
01 Mar 2021Submission Checks Completed
10 Mar 2021Reviewer(s) Assigned
21 May 2021Review(s) Completed, Editorial Evaluation Pending
21 May 2021Editorial Decision: Revise Major
22 Jul 2021Published in Transboundary and Emerging Diseases. 10.1111/tbed.14234