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ABSTRACT

Mutations in PRPH2, encoding peripherin-2, are associated with the development of a wide

variety of inherited retinal diseases (IRDs). To determine the causality of the many PRPH2

variants that have been discovered over the last decades, we surveyed all published PRPH2

variants  up to  July  2020,  describing  720  index  patients  that  in  total  carried  245  unique

variants.  In  addition,  we identified  seven novel  PRPH2 variants  in  eight  additional  index

patients. The pathogenicity of all variants was determined using the ACMG guidelines. With

this, 107 variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and

two as likely  benign.  The remaining  50 variants  were classified  as  variants of  uncertain

significance. Interestingly, of the in total 252 PRPH2 variants, more than half (n=137) were

missense  variants.  All  variants  were  uploaded  into  the  Leiden  Open  source  Variation

Database. Our study underscores the need of experimental assays for variants of unknown

significance to improve pathogenicity classification,  which is needed to better  understand

genotype-phenotype  correlations,  and  in  the  long-term,  hopefully  also  support  the

development of therapeutic strategies for patients with PRPH2-associated IRD. 

Key  words: inherited  retinal  disease,  in  silico assessment,  LOVD,  molecular  genetics,

PRPH2
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1|  INTRODUCTION

PRPH2,  also  known  as  retinal  degeneration  slow  (RDS),  was  first  described  in  1991

(Kajiwara et al., 1991). The gene encodes peripherin-2, a 346 amino-acid long glycoprotein

that spans the membrane four times, and is located primarily in the rim regions of rod and

cone outer segment (OS) discs and lamellae. Besides the four transmembrane domains, the

protein  contains  a  cytoplasmic  (C)  loop  and two intra-discal  (D1 and D2)  loops  (Travis,

Brennan, Danielson, Kozak, & Sutcliffe, 1989; Travis et al., 1991; Travis, Groshan, Lloyd, &

Bok, 1992). Its exact molecular function inside photoreceptor cells is not yet fully understood,

but  it  is  hypothesized that  the protein plays an essential  role in  the initiation of  OS disc

formation, as well as in disc stabilization, maintenance, and disc size alignment, mainly by

forming oligomers with other PRPH2 molecules and/or Retinal Outer Segment Membrane

Protein 1 (ROM1) (Chakraborty et al., 2020; Zulliger, Conley, Mwoyosvi, Al-Ubaidi, & Naash,

2018).  For  instance,  Prph2-/- mice  failed  to  initiate  OS  disc  formation,  whereas  Prph2

p.C150S+/- mice did not support proper OS formation, interacted abnormally with Rom1, and

showed reduced Prph2 protein levels (Zulliger et al., 2018). In addition, it was shown that in

Prph2 p.C213Y-/- mice, mutant Prph2 could not oligomerize with ROM1 and was mislocalized,

being retained in the inner segments  (Chakraborty et al.,  2020). Based on these studies,

PRPH2 seems indeed to be critical for proper OS formation as well as for its function. 

To date, over 200 different PRPH2 variants have been described to be associated with the

development of a wide variety of inherited retinal diseases (IRD) such as retinitis pigmentosa

(RP),  cone-rod  dystrophy,  and  macular  dystrophies.  The  group  of  PRPH2-associated

macular dystrophies encompasses a wide variety of phenotypes, including pseudo-Stargardt

pattern  dystrophy,  butterfly-shaped  pigment  dystrophy  (BPD),  adult-onset  foveomacular

vitelliform dystrophy (AOFVD), and central areolar choroidal dystrophy (CACD) (Boon et al.,

2008; Boon et al., 2009; Boon, van Schooneveld, et al., 2007; Kersten et al., 2018). These

macular dystrophy phenotypes, especially CACD, may be confused with geographic atrophy

in age-related macular degeneration (AMD), and PRPH2 mutations have been described in

patients initially diagnosed with AMD  (Boon et al., 2009; Kersten et al., 2018; Smailhodzic et

al., 2011). PRPH2 mutations are most frequently inherited in an autosomal dominant fashion,

although  autosomal  recessive  and  sporadic  cases  have  also  been  reported,  as  well  as

autosomal dominant cases with reduced penetrance (Alapati et al., 2014; Birtel et al., 2018;

Boon et al.,  2008; Boon et al.,  2009; Coco, Tellería, Sanabria, Rodríguez-Rúa, & García,

2010; Dryja, Hahn, Kajiwara, & Berson, 1997; Khan, Al Rashaed, Neuhaus, Bergmann, &

Bolz, 2016; Manes et al., 2015). Interestingly, heterozygous mutations in both  PRPH2 and

ROM1 can cause digenic RP (Kajiwara, Berson, & Dryja, 1994).
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In this study, we performed a systematic analysis of all 245 PRPH2 variants ever published

in IRD patients. For this purpose, we collected all PRPH2 variants published up to July 2020

that were associated with the development of IRD. In addition, we added  PRPH2  variants

that  were either identified via our routine diagnostics pipeline,  or via a novel sequencing

approach using molecular  inversion probes (MIPs)  (Hiatt,  Pritchard, Salipante,  O'Roak,  &

Shendure, 2013; Neveling et al., 2017; Weisschuh et al., 2018), seven of which have not

been described before. All variants were classified for their pathogenicity using the American

College  of  Medical  Genetics  and  Genomics  (ACMG)  guidelines,  after  which  they  were

uploaded into the Leiden Open source Variation Database (LOVD) for  PRPH2. In addition,

we attempted to establish  genotype-phenotype correlations.  There appears to be a  high

phenotypic variability between different families, as well as between members of the same

family. For this reason, we discuss mechanisms by which this phenotypic variability might be

explained. 

By performing this study, we aim to shed light  on how to experimentally assess the true

causality of  PRPH2 variants in the future, as well  as to explain the observed phenotypic

variability within IRD patients. This will facilitate a better interpretation of the pathogenicity of

variants that are identified in subjects with IRD, and in the long term, hopefully also support

the development of therapeutic strategies for patients with PRPH2-associated IRD.

2|  MATERIAL AND METHODS

2.1 Literature search

We collected all publications from up to July 2020 which report  PRPH2 variants in patients

with  inherited  retinal  disease.  The  following  Pubmed  search  terms  were  used:

“(retinal+degeneration+slow+OR+PRPH2+OR+peripherin)+AND+

(central+areolar+choroidal+dystrophy+OR+cacd+OR+vision+disorders+OR+retinal+dystroph

y)+AND+(mutation+OR+variant+OR+mutations+OR+variants)”.  Additionally,  the  HGMD

professional database was used to search for variants or articles that were possibly missed

with  our  Pubmed  queries.  Variant  detection,  variant  combinations,  patient  age,  patient

gender and age at onset, disease phenotype, segregation analysis, and allele frequencies

(gnomAD)  were  collected.  Obvious  duplicates,  in  some cases following  contact  with  the

corresponding authors of the respective papers, were removed from the dataset.

2.2 Subjects

This  study  was  approved  by  the  institutional  review  boards  of  the  Radboud  University

Medical  Center  (Radboudumc)  and  was  conducted  in  adherence  to  the  tenets  of  the
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Declaration of Helsinki. All Sanger sequencing and/or whole (exome) sequencing data from

the Radboudumc  genome diagnostic laboratory were analysed in order to determine the

causative  genetic  defects  in  patients  with  visual  impairment.  PRPH2  variants  were  also

identified by using a targeted sequencing approach based on molecular inversion probes

(MIPs)  (Hiatt et al., 2013; Neveling et al., 2017; Weisschuh et al., 2018). Single-molecule

MIPs were synthesized to capture and sequence overlapping 110-nt segments of the three

PRPH2 protein-coding exons and flanking splice sites, similarly as described previously for

the  ABCA4  gene  (Khan et al., 2020).  PRPH2  variants identified with MIPs were validated

with Sanger sequencing.

2.3 Variant Analysis

The cDNA was numbered as follows: the A of the ATG translation initiation codon of the

PRPH2 reference sequence (NM_000322) was reported as +1 while the initiation codon was

reported  as  codon  1.  Allele  frequencies  of PRPH2 variants  in  control  populations  were

extracted from the genome aggregation database (gnomAD: v2.1.1 and v3). This database

contains both whole exome, and whole genome sequencing data obtained from 213,158

healthy  individuals  from  all  over  the  world

(https://gnomad.broadinstitute.org/https://gnomad.broadinstitute.org/).

Next, we performed statistical analysis in order to compare allele frequencies in the index

patient group to normal population (gnomAD). This enabled us to assess whether a specific

variant is enriched in patient vs. control groups. For this purpose, the Fisher’s Exact test was

used.  In  order to only  select  true statistical  significant  findings,  a correction by the false

discovery  rate  (FDR)  of  Benjamini-Hochberg,  classical  one  stage  method  with  an  error

margin of 5%, was carried out (Benjamini, Drai, Elmer, Kafkafi, & Golani, 2001).

2.4 In silico predictions

For  PRPH2  missense  variants,  Polyphen-2  scores,  Combined  Annotation  Dependent

Depletion  (CADD),  and  SIFT  scores  were  obtained  from

http://genetics.bwh.harvard.edu/pph2/,  http://cadd.gs.washington.edu/home (Kircher  et  al.,

2014) and   https://sift.bii.a-star.edu.sg/, respectively.  For  splice  site  variants,  software to

gather  splicing  scores  available  via  Alamut  Visual  version  2.13  (Interactive  Biosoftware,

Rouen, France) was used. 

2.5 Variant pathogenicity classification

Pathogenicity of all reported and newly identified  PRPH2 variants was predicted using the

ACMG guidelines  (Richards  et  al.,  2015).  These  guidelines  enabled  us  to  classify  each

variant  into  one  of  the  following  categories:  pathogenic,  likely  pathogenic,  benign,  likely
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benign, or of uncertain significance. In order to do so, we scored the variants based on the

evidence of pathogenicity in different ACMG categories: 

1. Pathogenic, very strong (PVS), for example, this variant is protein truncating.

2. Pathogenic,  strong (PS),  for  example,  this  variant  leads to the same amino acid

being substituted compared to a previously described pathogenic variant.

3. Pathogenic, moderate (PM), for example, this variant is located in a mutational hot

spot and/or well-established functional domain.

4. Pathogenic, supporting (PP), for example, multiple lines of computational evidence

support the variant to be pathogenic.

The scores of each category are combined to come to the final classification in one of the

five pathogenicity categories that are explained in more detail in Suppl. Table 1.

2.6 LOVD submission

The 245 reported, as well as the seven novel PRPH2 variants were uploaded to the LOVD

database,  when  available,  together  with  patient  data  including  the  description  of  the

phenotype,  patient  age,  patient  age of  onset,  and segregation  information.  Pathogenicity

scores of all variants were based on the pathogenicity assessment as described in the “ In

silico predictions” section.

3|  PRPH2 VARIANTS

3.1 PRPH2 mutation spectrum

We collected 245 PRPH2 variants identified in 720 index patients that were described in 165

articles up to July 2020, as well as their phenotypic information  (Abouelhoda, Faquih, El-

Kalioby, & Alkuraya, 2016; Abu-Safieh et al., 2013; Ahmad, Ayyagari, & Zacks, 2010; Alapati

et al., 2014; Anand et al., 2009; Anasagasti et al., 2013; Apfelstedt-Sylla et al., 1995; Arai et

al., 2015; Avela et al., 2019; Avela et al., 2018; Ba-Abbad, Robson, MacPhee, Webster, &

Michaelides, 2019; Ba-Abbad et al., 2014; Barbazetto et al., 2007; Bareil et al., 2000; Bareil,

Hamel, Arnaud, Demaille, & Claustres, 1997; Bayés et al., 1996; Birtel et al., 2018; Boon et

al.,  2009; Boon, Klevering,  et al.,  2007; Boon, van Schooneveld, et al.,  2007; Boulanger-

Scemama et al.,  2015; Budu et al.,  2001; Carss et al.,  2017; Cheng et al.,  2019; Coco-

Martin,  Sanchez-Tocino,  Desco,  Usategui-Martín,  &  Tellería,  2020;  Coco  et  al.,  2010;

Consugar et al., 2015; Coussa et al., 2015; Daftarian et al., 2019; de Breuk et al., 2020; de

Sousa Dias et al., 2015; Donoso et al., 2003; Downes et al., 1999; Downs et al., 2007; Dryja

et al., 1997; Duncan et al., 2011; Duncker et al., 2015; Ekström, Andréasson, et al., 1998;

Ekström, Ponjavic, Abrahamson, et al., 1998; Ekström, Ponjavic, Andréasson, et al., 1998;
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Essilfie,  Sanfilippo, & Sarraf, 2018; Fakin, Zupan, Glavač, & Hawlina, 2012; Farrar et al.,

1992; Farrar et al., 1991; Feist, White, Skalka, & Stone, 1994; Felbor, Schilling, & Weber,

1997; Fernandez-San Jose et al., 2015; Fishman et al., 1994; Fishman et al., 1997; Foote et

al., 2019; Francis et al., 2005; Gamundi et al., 2007; Gao et al., 2019; Glöckle et al., 2014;

Gocho et al., 2016; Gorin et al., 1995; Grover, Fishman, & Stone, 2002; Grüning et al., 1994;

Hanany  & Sharon,  2019;  Hosono  et  al.,  2018;  Hoyng  et  al.,  1996;  Huang  et  al.,  2013;

Jacobson et al.,  1996; Jacobson et al.,  2016; Jespersgaard et al.,  2019; Jin et al.,  2008;

Jones et al., 2017; Kajiwara et al., 1994; Kajiwara et al., 1991; Kajiwara, Sandberg, Berson,

& Dryja, 1993; Kalyanasundaram, Black, O'Sullivan, & Bishop, 2009; Katagiri et al., 2018;

Keen,  Inglehearn,  Kim,  Bird,  & Bhattacharya,  1994;  Keilhauer,  Meigen,  Stöhr,  & Weber,

2006; Keilhauer, Meigen, & Weber, 2006; Kemp et al.,  1994; Kersten et al.,  2018; Khan,

2019; Khan et al., 2016; Khoubian et al., 2005; Kikawa, Nakazawa, Chida, Shiono, & Tamai,

1994; Kim et al., 2012; Kim et al., 1995; Kitiratschky, Glöckner, & Kohl, 2011; Klevering et al.,

2002; Kohl et al., 1997; Kohl et al., 2012; Lam, Vandenburgh, Sheffield, & Stone, 1995; Lee

& Leys, 2020; Lee et al., 2015; Leroy, Kailasanathan, De Laey, Black, & Manson, 2007; Lim

et al., 2009; Maertz, Gloeckle, Nentwich, & Rudolph, 2015; Manes et al., 2015; Martin-Merida

et al., 2018; Meins et al., 1993; Meunier et al., 2011; Michaelides, Holder, Bradshaw, Hunt, &

Moore, 2005; Miyata et al., 2018; Moshfeghi et al., 2006; Nakazawa et al., 1994; Nakazawa

et al., 1996; Nakazawa, Wada, & Tamai, 1995; Nanda, McClements, Clouston, Shanks, &

MacLaren, 2019; Neveling et al., 2012; Nichols, Drack, et al., 1993; Nichols, Sheffield, et al.,

1993; Oishi et al., 2014; Pajic et al., 2006; Palma et al., 2019; Passerini, Sodi, Giambene,

Menchini,  &  Torricelli,  2007;  Patel  et  al.,  2016;  Payne,  Downes,  Bessant,  Bird,  &

Bhattacharya,  1998;  Poloschek  et  al.,  2010;  "Prevalence  and  architecture  of  de  novo

mutations in developmental disorders," 2017; Ramkumar et al., 2017; Reeves et al., 2020;

Reig et al., 1995; Renner et al., 2009; Renner et al., 2004; Richards & Creel, 1995; Saga et

al.,  1993;  Sallevelt  et  al.,  2017;  Schatz, Abrahamson, Eksandh,  Ponjavic,  & Andréasson,

2003;  Schorderet,  Bernasconi,  Tiab,  Favez,  &  Escher,  2014;  Sears,  Aaberg,  Daiger,  &

Moshfeghi,  2001;  Shankar  et  al.,  2015;  Shankar  et  al.,  2016;  Simonelli  et  al.,  2007;

Smailhodzic  et  al.,  2011;  Sohocki  et  al.,  2001;  Souied  et  al.,  1998;  Stone  et  al.,  2017;

Strafella et al., 2019; Strom et al., 2012; Sullivan et al., 2006; Sullivan et al., 2013; Sun et al.,

2015; Testa et al., 2005; Trujillo et al., 1998; Trujillo et al., 2001; Trujillo Tiebas, Giménez

Pardo,  García  Sandoval,  &  Ayuso  García,  2002;  Vaclavik,  Tran,  Gaillard,  Schorderet,  &

Munier, 2012; Van Cauwenbergh et al., 2017; van Lith-Verhoeven et al., 2003; Wang et al.,

2015; Wang et al., 2014; Wang et al., 2013; Wawrocka et al., 2018; Weleber, Carr, Murphey,

Sheffield, & Stone, 1993; Wells et al., 1993; Wolock et al., 2019; Wroblewski et al., 1994a;

Wroblewski et al., 1994b; Xiang, Yan, Song, & Zheng, 2012; Xu et al., 2014; Xue, Zhang,

Wang, Liu, & Xu, 2014; Yanagihashi et al., 2003; Yang et al., 2000; Yang et al., 2004; Yang
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et al., 2003; Yeoh et al., 2010; Yoon et al., 2015; Zaneveld et al., 2015; Zhang, Garibaldi, Li,

Green, & Zack, 2002; Zhao et al., 2015; Zhou, Xiao, Li, Jia, & Zhang, 2018; Zhuk & Edwards,

2006).  Additionally,  139  index  cases  from  either  the  Radboudumc  genome  diagnostic

laboratory  or  that  were  studied  via  MIPs  analysis,  carried  PRPH2 variants  that  were

published before (Table 1). Finally, we also identified seven novel variants in eight additional

index patients that, to our knowledge, were never identified (Table 1; variants depicted in

bold lettering). Of the collective 252 PRPH2 variants, 137 were missense, 85 were protein-

truncating,  10  were  splice  site,  15  were  in-frame  amino  acid  changes,  three  were

synonymous, and two were located in the 5’ or 3’ untranslated regions (UTRs) (Suppl. Figure

1A; Table  2). Of the in  total  720 previously  reported index patients,  686 patients carried

heterozygous  variants,  8  patients  carried  compound  heterozygous  variants,  14  patients

carried homozygous variants, and 11 patients carried digenic variants. There was one patient

that  carried  variants  in  three  different  genes  (PRPH2,  ROM1,  ABCA4).  The  authors

speculated trigenic inheritance, however it still needs to be elucidated to determine whether

this case is truly trigenic.  Of the 139 index cases identified by the Radboudumc genome

diagnostic laboratory or our MIPs analysis, two patients carried homozygous variants while

the  remaining  137  index  cases  were  all  heterozygous  carriers.  Finally,  the  eight  index

patients carrying the seven novel PRPH2 variants, were all heterozygous for the respective

variants.  All  variants,  together  with  a  description  of  the  phenotype  and,  when  available,

segregation  analysis,  were  uploaded  to  the  LOVD  database

(https://databases.lovd.nl/shared/genes/PRPH2). 

 

3.2 Recurrent PRPH2 variants

The most  recurrent  PRPH2 variant  amongst  IRD patients,  is p.R142W. This  variant  was

reported in 95 out of 867 index patients, of which 93 were heterozygous carriers, and two

were homozygous (Suppl. Table S2). The variant was exclusively reported in individuals with

Caucasian  ancestry,  and  in  the  Netherlands,  this  variant  is  mainly  associated  with  the

development  of  CACD.  Analysis  of  single  nucleotide  polymorphisms  (SNPs)  in  close

proximity of the p.R142W variant in three Dutch families revealed the presence of a shared

chromosomal  segment  of  approximately  519  kb,  strongly  suggesting  that  this  particular

variant represents a founder mutation in the Netherlands (Boon et al., 2009). As mentioned

in the introduction section, CACD may be confused with AMD, and besides retinal imaging

modalities (optical coherence tomography and fundus autofluorescence), screening for the

p.R142W may help to better  discriminate between these two phenotypes  (Kersten et al.,

2018; Smailhodzic et al., 2011). One interesting observation in large Dutch CACD families

harbouring this variant, is that there seems to be reduced penetrance  (Boon et al., 2009).

Within these families, some individuals were significantly less severely affected compared to
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age-matched family members also carrying the variant. The molecular mechanisms behind

this phenomenon still  need to be elucidated. Possible explanations could be: (1) reduced

expression  of  the  mutant  allele;  (2)  increased  expression of  the  wild-type allele;  (3)  the

influence of modifier alleles located in other genes; or (4) influence of environmental factors

(e.g. smoking, nutrition). 

Other recurrently reported variants (reported in >10 index patients) are p.R46*, p.Y141C,

p.G148Afs*5,  p.R172W,  p.R172Q,  p.L185P,  p.R195L,  p.G208D,  p.P210R,  p.P216S,

p.P216L,  p.Q239*,  p.S289L,  and c.828+3A>T.  The p.R172W variant  was reported in  60

index patients, and was mainly found in Caucasians with British ancestry. There was only

one  Japanese  index  patient  carrying  this  variant.  Of  the  in  total  60  cases,  58  were

heterozygous for this variant (Suppl. Table S2). Payne and colleagues performed haplotype

analysis in multiple British families carrying the stand-alone p.R172W variant, and revealed

that in Britain, this is a founder mutation (Payne et al., 1998). A German index patient carried

an  additional  pathogenic  heterozygous  ROM1 missense  variant  (p.R229H),  and  another

patient carried two additional heterozygous missense variants, one in ROM1 (p.R229H) and

one in  ABCA4 (p.V2050L) (Suppl. Table S2)  (Poloschek et al., 2010). The authors argued

that the  ROM1 and  ABCA4 variants act as a moderator, worsening the pattern dystrophy

phenotype compared to individuals that only carry the p.R172W variant in PRPH2. However,

when applying the ACMG criteria  to both the  ROM1 and  ABCA4 variants,  the p.V2050L

variant in ABCA4 was classified as likely benign, which makes it unlikely to be a modifier that

worsens the phenotype. 

The splice site variant c.828+3A>T was recurrently found in 57 index patients. This variant is

predicted  to  result  in  aberrant  splicing  of  the  PRPH2 mRNA,  and  consequently  in  the

formation of a non-functional truncated protein (Shankar et al., 2015; Shankar et al., 2016).

The remaining 237 variants were reported in only a single or a few index patients, which

clearly  demonstrates  the  enormous  allelic  heterogeneity  among  patients with  PRPH2-

associated IRD.

4|  PATHOGENICITY ASSESSMENT OF ALL PRPH2 VARIANTS

The  pathogenicity  of  all  PRPH2 variants  was  assessed  using  the  ACMG  classification

system, as described in the Materials and Methods section. According to our analysis, 107

variants were classified as pathogenic, 92 as likely pathogenic, one as benign, and two as

likely benign (Suppl. Figure S1B). The remaining 50 variants were classified as variants of

uncertain significance. Of the collective 199 (likely) pathogenic variants, 93 were missense,
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85  were  protein-truncating,  8  were  splice-site,  and  13  were  in-frame  amino  acid

insertions/deletions (Figure 1A; Suppl. Table S2).

4.1 Missense variants

The vast majority of PRPH2 variants reported in IRD patients represents missense variants.

In total,  137 missense variants have been reported,  corresponding to 605 alleles  (Supp.

Figure  S1B;  Table  2).  Prior  to  assessing  the  pathogenicity  of  these  variants,  in  silico

predictions were performed using PolyPhen2, SIFT, and CADD. To consider a variant as

pathogenic  (supporting  evidence;  PP3),  all  three  in  silico prediction  programmes should

predict a damaging effect (Polyphen2; >1.5, SIFT; <0,05, CADD >15). When combining all

information for the final ACMG pathogenicity assessment, of the 137 missense variants, 93

were classified as pathogenic/likely pathogenic (Figure 1B; Table 3; Suppl. Table S2). One

variant was classified as likely  benign.  The remaining 43 were considered as variants of

uncertain  significance,  mainly  due  to  lack  of  family  history  and  segregation  analysis,  or

because the variant did not co-segregate with disease. 

Next, we compared the position of (likely) pathogenic  PRPH2 missense variants relative to

the protein  structure  of  PRPH2,  to  identify  regions  that  may be  more prone  to  harbour

disease-causing  variants  (Figure  1C).  This  analysis  demonstrated  that  most  missense

variants (83 out of 93; Table 3; Figure 1C), are located within the D2 loop of the protein. It is

hypothesized  that  the  D2  loop  is  important  for  complex  assembly  with  ROM1  and/or

dimerization with other  PRPH2 molecules, in order to both initiate and stabilize OS disc

formation  (Chakraborty,  Conley,  Zulliger,  &  Naash,  2016;  Chakraborty,  Ding,  Conley,

Fliesler,  & Naash,  2009;  Goldberg,  Loewen,  & Molday,  1998).  Furthermore,  the D2 loop

contains numerous highly  conserved cysteine residues (C165,  C166,  C213,  C214,  C222,

C250)  that  form disulphide  bonds in  order  to  maintain  the structure  of  the  loop,  and  to

regulate photoreceptor folding  (Goldberg et  al.,  1998).  For this  reason,  variants affecting

amino acid residues within this loop will likely disrupt the structure or function of this loop, in

turn interfering with PRPH2-PRPH2 and/or PRPH2-ROM1 interactions. Therefore, moderate

evidence (PM1) was assigned if a variant was predicted to change the amino acid within this

loop. Moderate evidence (PM1) was also assigned when missense variants were located in

the one of the transmembrane domains, or in the C-terminus  (Boon et al., 2008; Salinas,

Baker, Gospe, & Arshavsky, 2013).

For most of the missense variants, patient ethnicity was not always mentioned in the studied

papers,  which made it  difficult  to determine whether  some variants might  be specific  for

patients of  a particular  ancestry.  Papers that  did mention the ethnicity  showed that most

variants were reported in patients from Caucasian or Asian ancestry. Some variants seem to

be specific for a certain ethnicity; for instance, the p.C250G variant was exclusively reported
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in  patients  with  Asian  ancestry,  whereas p.R142W and p.R172Q were only  identified  in

patients with Caucasian ancestry. The p.R172W variant was almost exclusively reported in

Caucasians, but  also reported once in a Japanese family (Nakazawa et al., 1995). 

4.2 Protein-truncating variants

In total,  180 out  of  891  PRPH2  alleles (20.2%) can be considered as protein-truncating,

represented  by  85  unique  variants  (Table  2).  Of  these,  55  were  frameshift,  27  were

nonsense, two were fail-to-start, and one was a deletion of exon 1. Most of these variants are

considered rare, and only four of them were present in the gnomAD database. We classified

a protein-truncating  variant  as  damaging  if  the  variant  induces  a  premature  stop  codon

before amino acid 331, since the p.Q331* variant was reported to be pathogenic (Grover et

al., 2002). Moreover, it was determined that the valine residue at position 332 is critical for

targeting PRPH2 towards the OS of photoreceptor cells (Salinas et al., 2013). Based on this

knowledge, we classified all protein-truncating variants as pathogenic or likely pathogenic.

One aspect to take into account is that the annotations of p.Y140ins (1bp), p.S217_dup16bp,

and p.224ins (37bp), as described in the original articles, are not correct. We used Alamut to

check whether we were able to identify the correct cDNA annotation, but this could not be

deduced. For this reason, we kept the protein annotation used in the corresponding articles

and put a question mark for the cDNA change annotation, although each is categorized as

protein-truncating variant. These variants are indicated in red in Suppl. Table S2. 

4.3 Splice variants

Variants that were known to affect the canonical di-nucleotides of the splice acceptor (AG) or

splice donor (GT) site were assigned to be pathogenic (PVS1). For all non-canonical splice

site  variants,  four  different  splice  prediction  tools  in  Alamut  were  used  to  predict

pathogenicity. A variant was classified as pathogenic when an increase or decrease of >10%

in splice scores was observed for all four programmes, as described previously (Messchaert,

Haer-Wigman,  Khan,  Cremers,  & Collin,  2018).  Based on this,  together  with  the ACMG

classification, almost all splice variants were classified as (likely) pathogenic (Suppl. Table

S2). There were two exceptions, namely c.581+4dupA and c.829-4C>G. For these variants,

there was not enough robust evidence for their pathogenicity, and these were thus classified

as variants of uncertain significance (Suppl. Table S2).  

4.4 In-frame amino acid insertions/deletions

Of the 15 in-frame insertions/deletions, 13 were classified as pathogenic or likely pathogenic.

All in-frame amino acid insertions/deletions were assigned with PM4, indicating they might

affect normal protein length and function. In addition, none of these variants were present in
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gnomAD indicating that these variants in fact might be disease-causing (Suppl. Table S2).

Two variants, namely p.M67del and p.M67_G68delinsRHR, were classified as variants of

uncertain significance. 

4.5 Synonymous variants 

Three  synonymous  variants  were  reported,  namely  p.Y101Y  (c.303T>C),  p.Y236Y

(c.708T>C), and p.E335E (c.1005G>A). These variants were exclusively found in patients

with macular dystrophy or pattern dystrophy. All variants were first classified as likely benign,

due  to  the  fact  that  in  silico  prediction  programmes  defined  them  as  benign/tolerated.

Moreover,  no evidence for putative splice defects were predicted.  However,  the p.Y101Y

(c.303T>C) and p.E335E (c.1005G>A) variants were not reported in the gnomAD database,

indicating they are not  commonly found in  control  individuals  (Suppl.  Table S2).  For this

reason, we classified these variants to be of uncertain significance. The p.Y236Y (c.708T>C)

variant was  reported  in  gnomAD,  and  statistical  analysis  showed  that  the  variant  was

significantly  enriched  in  the  healthy  control  group  when  comparing  to  index  patients.

Therefore, this variant was classified as likely benign (Suppl. Table S2).

4.6 Digenic and trigenic variants

In section 3.2, it was shown that in a large German family segregating pattern dystrophy,

p.R172W was present in patients that also carried a  ROM1  (p.R229H) and/or an  ABCA4

(p.V2050L) variant (Poloschek et al., 2010). When looking to the severity of each individual’s

phenotype, it appeared that patients carrying an additional  ROM1 (digenic carriers) variant

were more severely affected compared to patients that only carried the  PRPH2 p.R172W

variant.  The  phenotype  was  even  more  severe  in  patients  carrying  PRPH2, ROM1 and

ABCA4 variants (trigenic carriers). The authors hypothesized that the additional  ROM1 and

ABCA4 variants function as genetic modifiers that worsen the pattern dystrophy phenotype.

However, the p.V2050L variant in  ABCA4 was classified as likely benign, which makes it

unlikely to be a modifier worsening the disease phenotype.  

The p.L185P variant in  PRPH2 was also reported together with  ROM1 variants (p.G80G,

p.G113E or p.L114L) in four large digenic RP families  (Dryja et al., 1997; Kajiwara et al.,

1994).  In these families,  individuals  only  carrying the p.L185P variant  seemed to remain

unaffected by disease, while individuals that also carried one of the ROM1 variants showed

clear  phenotypic  characteristics  of  RP.  The  p.L270del  variant  in PRPH2 was  found  in

combination with the p.M318Afs*17 variant in ROM1 in another digenic RP patient (Dryja et

al., 1997). Recently, PRPH2  p.R46* in combination with the complex p.[(L2027F);(G1977S)]

ABCA4 variant, was identified in a patient with cone-rod dystrophy (Coco-Martin et al., 2020).

Finally,  the  same  group  also  reported  a  patient  with  pattern  dystrophy  carrying  both
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p.K154del in  PRPH2 and p.R2030Q in  ABCA4  (Coco-Martin et al.,  2020). These findings

indicate that besides digenic RP, cone-rod and pattern dystrophy also might be caused by

digenic  variants.  However,  mutations  in  IRD  associated  genes  are  relatively  frequent.

Nishiguchi and Rivolta screened high-quality genome sequences of control individuals from

various ancestries, and estimated that  ~one in 4–5 individuals from the general population

carry  variants  that  are  associated  with  IRD  (Nishiguchi  &  Rivolta,  2012).  Furthermore,

Hanany and colleagues created a database containing 276921 sequence variants that were

identified in 187 autosomal recessive IRD genes, and found that 2.7 billion people worldwide

(36% of  the  population)  are  being  healthy  carriers of  at  least  one IRD variant  (Hanany,

Rivolta, & Sharon, 2020). Thus, patients may carry variants in multiple IRD genes without

any clinical consequences. For this reason, caution is warranted, and studies of large cohorts

are required to  determine if  the  disease in  a patient  is  truly  inherited  in  a  di-or  trigenic

fashion. 

4.7 Reclassified variants

The evaluation of the pathogenicity for some variants resulted in a different outcome when

compared to the original publication. This is partly due to the fact that more specific variant

classification  tools  have  become  available.  For  example,  the  p.Y101Y  (c.303T>C)  and

p.E335E (c.1005G>A) variants were previously classified to be benign by (Dryja et al., 1997),

mainly since they do not change the amino acid sequence, and thus are predicted not to

have a deleterious effects on the final protein. However, we have classified these variants as

being of uncertain significance since they were not present in normal controls reported in

gnomAD, and thus in fact may be disease-causing. Experimental assays are needed to truly

determine the potential causality of these variants. Another example is the c.-11A>C variant,

which  is  located  in  the  5’  UTR  region.  This  variant  was  classified  as  likely  pathogenic

because the it was not present in single nucleotide polymorphism databases, and was not

found in 92 controls (Boon et al., 2007). However, we have classified the variant as benign,

since when comparing the allele frequency in gnomAD to the allele frequency in the reported

index patients, the variant was found to be enriched in the control population (gnomAD). 

There were also some variants that were considered being of uncertain significance in initial

publications,  but  were  classified  as  (likely)  pathogenic  following  our  classification.  For

instance,  the  p.G167S  variant  was  initially  classified  as  being  of  uncertain  significance

(Meunier et al., 2011; Strom et al., 2012), but we classified the variant as pathogenic since it

was located in the D2 loop (mutational  hotspot;  PM1), was absent  in controls (gnomAD;

PM2),  was predicted to be damaging by all  three  in  silico  prediction  programmes (PP3;

Suppl. Table S2), and co-segregated with disease (PP1). Another mis-classified variant was

p.G68R, originally considered to be of uncertain significance  (Dryja et al., 1997), found in
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patients that were suspected to have digenic RP. However, analysis of the segregation of

ROM1 alleles was uninformative. For this reason, the authors could not determine whether

the  p.G68R  defect  is  pathogenic  or  that  it  represents  a  rare  benign  variant.  Upon  our

pathogenicity  classification,  the  variant  was  classified  as  likely  pathogenic  since  it  was

significantly enriched in the patient population compared to controls (gnomAD; PS4), was

located in  the first  TMD (PM1),  and was predicted to be damaging by all  three  in  silico

prediction  programmes  (PP3;  Suppl.  Table  S2).  These  findings  demonstrate  that

pathogenicity classification tools have improved, enabling reclassification of certain variants

that were reported many years ago.

5|  GENOTYPE-PHENOTYPE CORRELATIONS

In order to define genotype-phenotype correlations, we collected information about disease

phenotype,  age  at  onset,  and,  when  available,  segregation  data.  However,  most  of  the

PRPH2 variants show high phenotypic variability, both between different families and within

the  same  family,  which  made  it  difficult  to  draw  proper  and  well-defined  conclusions

regarding the relationship between PRPH2 variants and disease phenotype. For instance, in

an  Italian  family,  the  p.C165R  variant  resulted  in  clinically  different  phenotypes  (fundus

flavimaculatus or butterfly shaped pattern dystrophy) within the same family (Simonelli et al.,

2007).  The  mechanism  behind  this  intrafamilial  phenotypic  variability  remains  to  be

elucidated but the authors suggested the following explanation; since PRPH2 interacts with

other adhesion proteins, the inheritance of genes encoding such proteins may - to some

extent  -  explain  the  enormous  phenotypic  variability  observed  within  families.  A  family

described by Daftarian et al. carries both the p.Q239* and the p.I32V variant (Daftarian et al.,

2019). The proband carried both variants in a homozygous state, indicating that these two

variants  are  on  the  same  allele,  which  resulted  in  the  more  severe  phenotype  Leber

congenital amaurosis (LCA). Family members carrying the variants in a heterozygous state,

developed much milder phenotypes with a later age of onset. The authors concluded that

homozygous variants result in more severe phenotypes compared to heterozygous PRPH2

variants. A family with even higher phenotypic variability is a large Dutch family (family E)

described by Boon et al. Here, similarly-aged family members showed phenotypes ranging

from retinitis pigmentosa, pseudo-Stargardt pattern dystrophy, to only mild foveal pigmentary

changes,  despite  carrying  the  same  frameshift  mutation  (p.G148Afs*5)  (Boon,  van

Schooneveld, et al., 2007). The broad spectrum of phenotypical variability associated with

PRPH2 variants  is  further  highlighted  by a reduction  in  penetrance described in  several

papers.  For  example,  Michaelides  et  al.  described  a  five-generation  family  in  which  two

individuals carrying the p.R172W mutation, a mother (49 years old) and her daughter (24

years old), had an entirely normal phenotype upon detailed testing (Michaelides et al., 2005).

As previously mentioned, Boon et al. also described a normal phenotype in patients carrying
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the p.R142W mutation, even up until the age of 64 years (Boon et al., 2009), illustrating the

reduced penetrance for (at least some) PRPH2 mutations. Another point to address is that

we did not observe obvious indications that individuals with protein-truncating variants had a

more severe phenotype than, for instance, individuals carrying missense variants or in-frame

amino acid  insertions/deletions.  Finally,  when looking  at  the location  of  likely  pathogenic

PRPH2 variants, it  was striking that variants associated with RP were almost exclusively

found in the D2 loop (Figure 1C), suggesting that amino acid changes inside this loop may

exert a pathophysiological mechanism that more often leads to RP, and not to any of the

other phenotypes associated with PRPH2 variants. Taken together, additional genetic data

from  IRD  patients  would  be  of  great  help  in  order  to  determine  genotype-phenotype

correlations and to study the often observed intra- and inter-familiar phenotypic variability.

6|  DISCUSSION

6.1 Improvement of in silico analysis

Before classifying  the pathogenicity  of  PRPH2 missense variants according to ACMG,  in

silico predictions  were  performed  using  Polyphen-2,  SIFT,  and  CADD.  Polyphen2  is  a

software  programme  and  is  accessible  via  a  Web  server.  The  programme predicts  the

possible effects of non-synonymous single nucleotide variants (SNVs) on the stability and

function  of  human  proteins.  It  uses  both  structural  and  comparative  evolutionary

considerations. These properties are then combined in order to estimate the probability of a

particular missense variant being damaging to the protein of interest  (Adzhubei, Jordan, &

Sunyaev,  2013).  SIFT  uses  datasets  of  functionally  related  protein  sequences  that  are

obtained  via  a  protein  database.  The algorithm scans each position  in  the  sequence  of

interest,  after  which  the  probabilities  for  all  possible  20  amino  acids  at  that  position  is

calculated, resulting in one final SIFT score  (Kumar, Henikoff, & Ng, 2009). The CADD  in

silico prediction  software  is  also  available  via  a  webserver.  The  programme  integrates

multiple  lineages  of  data  including  genomic  features within  the surrounding sequence of

interest,  gene  model  annotations,  evolutionary  data  from  multiple  species,  epigenetic

measurements, as well as functional predictions. In contrast to many other in silico prediction

programmes,  CADD is  not  limited  to  the number  of  genomic  variants  of  which  either  a

pathogenic  or  benign  status  is  already  known  (Rentzsch,  Witten,  Cooper,  Shendure,  &

Kircher, 2019). Instead, CADD bases its score on less biased and much larger data sets, and

thus might have an advantage over Polyphen2 and SIFT. 

Some missense variants, including p.A2S, p.K15R, p.R123W, p.S125L, p.E127G, p.R142Q,

p.R172Q, p.D186N,  p.D194E,  p.I196F,  p.P216L,  p.A252P,  p.W316G,  and p.A337T,  gave
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contradictory outcomes upon  in silico pathogenicity predictions. Whilst  different algorithms

may rely on the same type of data to predict pathogenicity, it is known that for some genes,

similar algorithms can have a significantly different outcome  (Richards et al.,  2015). Only

when all of the in silico programs used give the same prediction output, the evidence can be

counted as supporting (PP3) (Richards et al., 2015). Based on this, the in silico predictions

for the aforementioned variants were not considered to be of supporting evidence (PP3). It

would therefore be very helpful if  there were more experimental data available that could

show whether these variants have a deleterious effect on normal protein morphology and/or

function. This will be explained in more detail in the next section.

6.2 Experimental assessment of variants of unknown significance

Approximately  one-third of  the missense variants were classified  as variants of  unknown

significance (Figure 1B). This was due to the fact that these variants did not robustly meet

important ACMG pathogenicity criteria. Furthermore, two splice-site, two in-frame amino acid

insertions/deletions, two synonymous variants, and one 3’ UTR variant also needed to be

classified as variants of uncertain significance for the same reasons as for the missense

variants. Experimental  models would be of great help to classify such variants. However,

experimental  data  are  extremely  limited.  This  is  mainly  due  to  the  fact  that  PRPH2

expression is highly retina-specific. This makes it difficult to use widely used immortalized

lymphoblastoid,  skin  fibroblast,  or  blood cell  lines.  However,  depending on the type and

location  of  each  variant,  this  issue  may  be  circumvented.  For  instance,  when  studying

missense  variants,  one  could  clone  the coding  region  of  PRPH2 (~1.1  kb)  into  specific

expression vectors to create a PRPH2 wildtype vector. Next, site-directed mutagenesis can

be applied to insert the desired mutation. Wildtype and mutant vectors can be transfected

into  widely-used  cell  lines  to  study,  for  example,  expression  patterns  (western  blots)  or

interacting  proteins  (yeast-two-hybrid,  co-immunoprecipitation),  and  compare  mutant  and

wild-type conditions. These vectors can even be administered to neonatal mice in order to

study in vivo localization of wild type or mutant PRPH2. Chakraborty and colleagues created

vectors  containing  wild-type  PRPH2 or  the  PRPH2 p.C213Y  variant,  and  electroporated

these into neonatal mice. Four weeks after injection, retinas were collected and it was seen

that  the  p.C213Y  construct  mislocalized  to  the  inner  segments  and  perinuclear  region

(Chakraborty et al.,  2020).  Another research group showed that constructs containing the

p.P210L  and  p.C214S  missense  variants  mislocalized  to  the  inner  segments  upon

administration to wildtype mice (Becirovic et al., 2016). Interestingly, results differed between

rods and cones, indicating that PRPH2 might have a different function in the two different

photoreceptor cell types.  

Secondly, when one wants to study splice site variants, midi- or minigene splice assays can

be used as described previously  (Sangermano et al., 2018). Mini- or midigenes represent
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plasmids in which the desired PRPH2 splice site variant can be cloned between two exons of

interest. The plasmids are transfected into e.g. HEK293T cells,  and splice effects can be

analysed using RT-PCR in order to determine whether there are differences between RNAs

transcribed  from  wild-type  and  mutant  minigenes.  Becirovic  and  colleagues  constructed

PRPH2 wild-type minigenes as well as minigenes containing the IRD-associated p.R195L,

p.S198R,  p.V209I,  p.P210L,  p.S212T,  p.C214S,  p.R220W,  p.R220Q,   p.W246R,  and

p.G249S missense variants (Becirovic et al., 2016). RT-PCR analysis of PRPH2 transcripts

in murine retinas transduced with the wild-type or the mutant  PRPH2 minigene, identified

three different PRPH2 splice isoforms in rods and cones. These splice isoforms consisted of

the unspliced transcript, a transcript in which intron 1 was retained, and the correctly spliced

PRPH2. The p.G249S variant created a new splice donor site, resulting in aberrant splicing

of the protein. This suggests that also point mutations in coding regions might affect splicing

(Becirovic et al., 2016).  

Finally, for studying all types of variants, one could ideally make use of induced pluripotent

stem cell (iPSC) technology. In short, somatic cells are extracted from  PRPH2-associated

IRD patients or from healthy controls, which can then be reprogrammed towards iPSCs. Next

these iPSCs can be differentiated towards retina-like cells thus carrying the variant of interest

(Giacalone  et  al.,  2016;  Öner,  2018),  after  which  a  variety  of  functional  studies  can be

performed,  including  expression  (western  blot),  localization  (immunohistochemistry),  and

morphological (microscopy) studies. A drawback of this approach is that it is very labour- and

time-consuming, as well as expensive.

Taken  together,  these  experimental  studies  are  crucial  to  improve  the  classification  of

PRPH2 variants in order to will aid in the molecular diagnostics of IRDs. 

6.3 Development of therapeutic strategies for PRPH2-associated IRD

A proper classification of possible disease-causing variants is of great importance, not only to

determine the true causal genetic defect in IRD patients, but also for developing therapeutic

strategies. PRPH2 has been a target for gene therapy for over two decades now, mainly due

to the disease burden associated with variants in this gene, as well  as the availability of

several  extremely  well-characterized  animal  models  mimicking  important  phenotypic

characteristics of patient with PRPH2-associated IRD (Conley & Naash, 2014). Currently, at

least three therapeutic strategies can be distinguished: (1) gene replacement therapy; (2)

gene  knock-down  therapy;  and  (3)  delivery  of  neurotrophic  factors.  To  develop  such

therapeutic  strategies,  it  is  important  to  not  only  know  the  genetic  defect  but  also  the

underlying pathophysiological mechanism (e.g. dominant-negative vs. haploinsufficiency).

6.3.1 Gene replacement therapy
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The first proof-of-principle studies regarding gene replacement therapy attempted to correct

IRD phenotypes in Prph2-/- and Prph2+/- mice. For this purpose, a wild-type Prph2 transgene

was delivered, and the results were highly promising since in  Prph2-/-  mice, the structure of

the  OS of  rod  photoreceptor  cells  was  preserved  (Travis  et  al.,  1992).  Furthermore,  in

Prph2+/- mice,  the  expression  of  a  wildtype  Prph2 transgene  rescued  rod  and  cone  OS

structure and function (Nour, Ding, Stricker, Fliesler, & Naash, 2004). In mice harbouring the

recurrent p.R172W variant -  that is considered a dominant-negative variant -, expression of

wildtype PRPH2 also caused structural and functional improvements (Conley, Nour, Fliesler,

& Naash, 2007; Nour, Fliesler, & Naash, 2008). 

6.3.2 Gene knock-down therapy

As some mutations in PRPH2-associated IRD are believed to act in a dominant-negative

manner, such as p.R172W (Conley et al., 2007), and the fact that gene replacement did not

completely correct the dominant phenotype in mice carrying this specific variant, alternative

approaches are needed in order to eliminate the mutant allele. One such approach is the

gene-knockdown approach.  For  PRPH2,  the usage of  shRNA to knock-down the mutant

allele, seems to be the most promising. For example, an shRNAs that was shown to knock-

down Prph2 in vitro, was packaged into an rAAV vector. Upon injection into the subretinal

space of  wildtype  mice,  wildtype  Prph2  levels  were  reduced  by  75%  (Petrs-Silva  et  al.,

2012). Next, they created a vector containing wild-type Prph2 that was proven to be resistant

to  the  aforementioned  shRNA.  Co-delivery  of  these  vectors  resulted  in  the  rescue  of

functional defects caused by the shRNA knockdown and partial recovery of total Prph2 levels

(Petrs-Silva et al., 2012). Similarly,  using electroporation instead of a virus, co-injection of

both an shRNA vector that is able to knock-down both wildtype and mutant  Prph2 and an

shRNA-resistant copy of wild-type Prph2 resulted in degradation of endogenous Prph2 and

stabilized expression of the exogenously delivered Prph2 in mouse retinal explants (Palfi et

al., 2006). Although the efficacy of this kind of therapy has not yet been evaluated in IRD

disease models, these studies show that allele-independent knockdown in combination with

gene  supplementation  represents  a  potential  therapy  to  counteract  genetic  defects  in

PRPH2-associated diseases.

6.3.3 Delivery of neurotrophic factors

Unlike gene replacement and gene-knock down therapies,  also more general  therapeutic

strategies are considered, e.g. the delivery of neurotrophic factors. An advantage of such a

strategy is  that  it  can  be  applied  to  multiple  genetic  subtypes of  IRD.  The  first  proof-of

principle came from a mouse study, in which ciliary neurotrophic factor (CNTF) was injected

into the intravitreal space of Prph2-/- mice (Cayouette, Behn, Sendtner, Lachapelle, & Gravel,
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1998), and lead to an improvement in OS structure. However, at the functional level, only a

small improvement in rods, and no improvement in cones, was observed. In a similar study

performed by another group, CTNF was delivered to p.P216L  Prph2+/- mice.  These mice

showed improved OS structure, but the authors also observed dose-dependent abnormalities

in photoreceptor nuclei  as well  as a decrease in both rod and cone function  (Bok et al.,

2002). Follow-up studies revealed that CNTF alters retinal signalling pathways. Furthermore,

they observed a down-regulation of critical phototransduction genes, such as cone opsins

(Rhee et al., 2007). Although these adverse findings have led to the preclusion to use CNTF

to treat  PRPH2-associated IRD, other neurotrophic factors were investigated. For example,

lentiviruses carrying either fibroblast growth factor-2 (FGF-2) or human pigment epithelial-

derived factor (PEDF) were reported to significantly improve both scotopic a- and b-waves in

Prph2-/-  mice. However, these agents did not restore photoreceptor survival (Miyazaki et al.,

2008). Other non-traditional neurotrophic factors, such as hormones, also have been shown

to result in neuroprotection. Administration of some of these agents, including erythropoietin

(hormone)  (Rex et al., 2004; Rex, Wong, Kodali, & Merry, 2009), and nilvadipine (calcium

channel  blocker)  (Takeuchi,  Nakazawa,  &  Mizukoshi,  2008),  significantly  improved

photoreceptor function in  Prph2-/- and  Prph2+/-  mouse models.  However, more studies are

required to determine both the safety and efficacy of such particular therapeutic approaches. 

7| CONCLUDING REMARKS

Taken together, in this study, we describe 245 reported and seven novel  PRPH2 variants

identified in 891 alleles in 867 index cases, and uploaded these to the LOVD database for

PRPH2, which thus far only included 76 variants. This study thereby provides an important

step towards a complete overview of all PRPH2 variants in a single database. A continuous

addition  of  genetic  data  from  newly  identified  patients  with  PRPH2  variants  is  of  great

importance for a more robust classification of pathogenic variants. Furthermore, additional

data regarding phenotypes might aid the identification of genotype-phenotype correlations.

Our analysis resulted in the in silico classification of all the 245 reported, as well as the seven

novel  identified  PRPH2  variants.  More  importantly,  our  study  illustrates  the  need  of

experimental assays to identify the true causality of the many PRPH2 variants that are now

still  assigned to be variants of uncertain significance.  This will  help to improve molecular

diagnostics  and,  in  the long-term,  hopefully  also support  the development  of  therapeutic

strategies for patients with PRPH2-associated IRD.
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TABLES

Table 1. Previously unreported  PRPH2  variants identified in index cases by MIPs or

the Radboudumc genome diagnostic laboratory 

PID cDNA change Protein change Type of mutation Identified by Phenotype

1 c.2T>C p.? Fail-to-start MIPs Pseudo-STGD

2 c.63G>A p.W21* Nonsense Exome seq. MD/ PD

3 c.63G>A p.W21* Nonsense Sanger seq. MD/ PD

4 c.63G>A p.W21* Nonsense Sanger seq. MD/ PD

5 c.94A>G p.I32V Missense MIPs AMD

6 c.112G>T p.G38* Nonsense MIPs Pseudo-STGD

7 c.122T>C p.L41P Missense Sanger seq. MD/ PD

8 c.133C>T p.L45F Missense MIPs AMD

9 c.136C>T p.R46* Nonsense MIPs Pseudo-STGD

10 c.209dup p.S71Ifs*106 Frameshift MIPs Pseudo-STGD

11 c.253G>A p.A85T Missense Sanger seq. MD/ PD

12 c.271T>A p.Y91N Missense MIPs Pseudo-STGD

13 c.281G>A p.W94* Nonsense MIPs Pseudo-STGD

14 c.303C>G p.Y101* Nonsense Exome seq. MD/ PD

15 c.367C>T p.R123W Missense Exome seq. RP

16 c.377T>C p.L126P Missense Exome seq. RP

17 c.415_417del p.k139del Deletion MIPs Pseudo-STGD

18 c.415_417del p.k139del Deletion MIPs Pseudo-STGD

19 c.423C>A p.Y141* Nonsense MIPs Pseudo-STGD

20 c.424C>T p.Rr142W Missense MIPs Pseudo-STGD

21 c.424C>T p.R142W Missense Exome seq. MD

22 c.424C>T p.R142W Missense Exome seq. RD

23 c.424C>T p.R142W Missense Exome seq. RCD

24 c.424C>T p.R142W Missense Exome seq. MD

25 c.424C>T p.R142W Missense Exome seq. MD

26 c.424C>T p.R142W Missense Exome seq. MD

27 c.424C>T p.R142W Missense Exome seq. MD

28 c.424C>T p.R142W Missense Exome seq. MD

29 c.424C>T p.R142W Missense Exome seq. MD

30 c.424C>T p.R142W Missense Exome seq. CACD

31 c.424C>T p.R142W Missense Exome seq. MD/ CD

32 c.424C>T p.R142W Missense Exome seq. MD

33 c.424C>T p.R142W Missense Exome seq. MD/ PD
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34 c.424C>T p.R142W Missense Exome seq. MD

35 c.424C>T p.R142W Missense Exome seq. MD

36 c.424C>T p.R142W Missense Exome seq. CACD

37 c.424C>T p.R142W Missense Exome seq. MD

38 c.424C>T p.R142W Missense Exome seq. RD

39 c.424C>T p.R142W Missense Sanger seq. CACD

40 c.424C>T p.R142W Missense Sanger seq. CACD

41 c.424C>T p.R142W Missense Sanger seq. MD/ PD

42 c.424C>T p.R142W Missense Sanger seq. CACD

43 c.424C>T p.R142W Missense Sanger seq. CACD

44 c.424C>T p.R142W Missense Sanger seq. CACD

45 c.424C>T p.R142W Missense Sanger seq. CACD

46 c.424C>T p.R142W Missense Sanger seq. CACD

47 c.424C>T p.R142W Missense Sanger seq. MD/ PD

48 c.424C>T p.R142W Missense Sanger seq. MD/ PD

49 c.424C>T p.R142W Missense Sanger seq. CACD

50 c.424C>T p.R142W Missense Sanger seq. CACD

51 c.424C>T p.R142W Missense Sanger seq. CACD

52 c.424C>T p.R142W Missense Sanger seq. MD/ PD

53 c.424C>T p.R142W Missense Sanger seq. CACD

54 c.424C>T p.R142W Missense Sanger seq. CACD

55 c.433_434del p.D145Hfs*31 Frameshift Sanger seq. CACD

56 c.441del p.G148Afs*5 Frameshift MIPs Pseudo-STGD

57 c.441del p.G148Afs*5 Frameshift MIPs Pseudo-STGD

58 c.441del p.G148Afs*5 Frameshift Sanger seq. MD/ PD

59 c.441del p.G148Afs*5 Frameshift Sanger seq. MD/ PD

60 c.441del p.G148Afs*5 Frameshift Exome seq. MD

61 c.458A>G p.K153R Missense Asper RP

62 c.469G>A p.D157N Missense MIPs Pseudo-STGD

63 c.499G>A p.G167S Missense Sanger seq. MD/ PD

64 c.499G>A p.G167S Missense MIPs Pseudo-STGD

65 c.505_507del p.N169del Deletion Sanger seq. MD/ PD

66 c.505_507del p.N169del Deletion Exome seq. RP

67 c.514C>T p.R172W Missense MIPs Pseudo-STGD

68 c.514C>T p.R172W Missense MIPs Pseudo-STGD

69 c.514C>T p.R172W Missense MIPs Pseudo-STGD

70 c.514C>T p.R172W Missense Asper RD

71 c.514C>T p.R172W Missense Sanger seq. MD/ PD
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72 c.514C>T p.R172W Missense Sanger seq. MD/ PD

73 c.514C>T p.R172W Missense Exome seq. CD

74 c.514C>T p.R172W Missense Exome seq. MD

75 c.514C>T p.R172W Missense Exome seq. MD

76 c.515G>A p.R172Q Missense MIPs Pseudo-STGD

77 c.515G>A p.R172Q Missense Exome seq. MD

78 c.515G>A p.R172Q Missense MIPs Pseudo-STGD

79 c.520T>A p.W174R Missense Sanger seq. MD/ PD

80 c.520T>A p.W174R Missense Exome seq. MD

81 c.522G>C p.W174C Missense MIPs Pseudo-STGD

82 c.581+1G>A p.? Splice site MIPs Pseudo-STGD

83 c.581+4dup p.? Splice site Sanger seq. ?

84 c.582-1G>A p.? Splice site MIPs Pseudo-STGD

85 c.582-1G>A p.? Splice site Sanger seq. CACD

86 c.582-2A>T p.? Splice site Sanger seq. CACD

87 c.582_828del p.D194Efs*2 Frameshift MIPs Pseudo-STGD

88 c.583C>T p.R195* Nonsense MIPs Pseudo-STGD

89 c.583C>T p.R195* Nonsense MIPs Pseudo-STGD

90 c.584G>T p.R195L Missense MIPs Pseudo-STGD

91 c.584G>A p.R195Q Missense Sanger seq. CACD

92 c.584G>A p.R195Q Missense MIPs Pseudo-STGD

93 c.614T>C p.L205P Missense Sanger seq. CACD

94 c.623G>A p.G208D Missense MIPs Pseudo-STGD

95 c.623G>A p.G208D Missense Sanger seq. MD/ PD

96 c.623G>A p.G208D Missense Sanger seq. MD/ PD

97 c.623G>A p.G208D Missense MIPs AMD

98 c.628C>T p.P210S Missense MIPs Pseudo-STGD

99 c.633C>A p.F211L Missense Asper RP

100 c.646C>T p.P216S Missense Asper RP

101 c.646C>T p.P216S Missense Exome seq. RCD

102 c.646C>T p.P216S Missense Exome seq. RP

103 c.646C>T p.P216S Missense Exome seq. RP

104 c.646C>T p.P216S Missense Sanger seq. RP

105 c.646C>T p.P216S Missense Exome seq. RP

106 c.656C>G p.P219R Missense Sanger seq. CACD

107 c.657_662del p.R220_P221del Deletion Sanger seq. MD/ PD

108 c.658C>T p.R220W Missense Sanger seq. MD/ PD

109 c.658del p.R220fs*34 Frameshift Exome seq. RCD/ CRD

110 c.658del p.R220fs*34 Frameshift Sanger seq. MD/ PD
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111 c.659G>A p.R220Q Missense Sanger seq. MD/ PD

112 c.665G>A p.C222Y Missense MIPs CRD

113 c.715C>T p.Q239* Missense MIPs AMD

114 c.736T>C p.W246R Missense MIPs AMD

115 c.746del p.G249Afs*7 Frameshift Exome seq. MD/ PD

116 c.749G>A p.C250Y Missense MIPs Pseudo-STGD

117 c.754G>C p.A252P Missense MIPs AMD

118 c.781C>T p.L261F Missense MIPs AMD

119 c.809_810del p.L270Pfs*30 Frameshift MIPs Pseudo-STGD

120 c.850C>T p.R284C Missense MIPs AMD

121 c.866C>T p.S289L Missense MIPs AMD

122 c.866C>T p.S289L Missense MIPs AMD

123 c.866C>T p.S289L Missense MIPs AMD

124 c.866C>T p.S289L Missense MIPs AMD

125 c.866C>T p.S289L Missense MIPs AMD

126 c.866C>T p.S289L Missense MIPs AMD

127 c.866C>T p.S289L Missense MIPs AMD

128 c.866C>T p.S289L Missense MIPs AMD

129 c.866C>T p.S289L Missense MIPs AMD

130 c.866C>T p.S289L Missense MIPs AMD

131 c.866C>T p.S289L Missense MIPs AMD

132 c.866C>T p.S289L Missense MIPs AMD

133 c.866C>T p.S289L Missense MIPs AMD

134 c.866C>T p.S289L Missense MIPs AMD

135 c.866C>T p.S289L Missense MIPs AMD

136 c.866C>T p.S289L Missense MIPs AMD

137 c.866C>T p.S289L Missense MIPs AMD

138 c.866C>T p.S289L Missense Sanger seq. MD/ PD

139 c.923T>A p.L308Q Missense MIPs AMD

140 c.923T>A p.L308Q Missense MIPs AMD

141 c.938C>T p.P313L Missense MIPs AMD

142 c.938C>T p.P313L Missense MIPs AMD

143 c.938C>T p.P313L Missense MIPs AMD

144 c.828+1G>A p.? Splice site Sanger seq. MD/ PD

145 c.829-3_829-1del p.? Splice site MIPs Pseudo-STGD

146 c.897_898del p.S301Rfs*90 Frameshift Exome seq. MD

147 c.946T>G p.W316G Missense Exome seq. MD/ PD

Novel  variants  identified  via  MIPs  are  depicted  in  bold.  Abbreviations  phenotypes:  CACD = Central  areolar
choroidal dystrophy; CD = Cone dystrophy; CRD = Cone-rod dystrophy; MD = Macular dystrophy; PD = pattern
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dystrophy; Pseudo-STGD = pseudo-Stargardt disease; RD = Retinal dystrophy; RP = Retinitis pigmentosa; RCD
= Rod-cone dystrophy.
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Table 2. Distribution of PRPH2 variants found in IRD patients

Variant type Number of unique variants Number of alleles

Missense 137 605

Protein-truncating 85 180

Splice site 10 77

In-frame amino acid insertions/deletions 15 24

Synonymous 3 3

5’- or 3’-UTR 2 2

Total 252 891
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Table 3. Likely pathogenic and pathogenic missense variants

cDNA change Protein

change

Heterozygous Compound

heterozygous

Homozygous Digenic Trigenic Protein

domain

c.38G>A p.R13Q 2 0 0 0 0 N-terminus

c.80C>T p.S27F 1 0 0 0 0 1st TMD

c.202G>C p.G68R 2 0 0 0 0 2nd TMD

c.271T>A p.Y91N 1 2 0 0 0 C-loop

c.271T>C p.Y91H 1 0 0 0 0 C-loop

c.367C>T p.R123W 2 0 0 0 0 D2-loop

c.374C>T p.S125L 1 0 0 0 0 D2-loop

c.377T>C p.L126P 3 0 0 0 0 D2-loop

c.377T>G p.L126R 2 0 0 0 0 D2-loop

c.380A>G p.E127G 2 0 0 0 0 D2-loop

c.389T>C p.L130P 6 0 0 0 0 D2-loop

c.421T>C p.Y141H 2 0 0 0 0 D2-loop

c.422A>G p.Y141C 24 0 0 0 0 D2-loop

c.424C>T p.R142W 93 0 2 0 0 D2-loop

c.425G>A p.R142Q 2 0 0 0 0 D2-loop

c.457A>G p.K153E 1 0 0 0 0 D2-loop

c.458A>G p.K153R 3 0 0 0 0 D2-loop

c.464C>T p.T155I 0 0 0 1 0 D2-loop

c.469G>A p.D157N 5 0 0 0 0 D2-loop

c.494G>T p.C165F 1 0 0 0 0 D2-loop

c.494G>A p.C165Y 4 0 0 0 0 D2-loop

c.493T>C p.C165R 1 0 0 0 0 D2-loop

c.499G>A p.G167S 10 0 0 0 0 D2-loop

c.500G>A p.G167D 3 0 0 0 0 D2-loop

c.515G>A p.R172Q 13 0 0 0 0 D2-loop

c.514C>G p.R172G 1 0 0 0 0 D2-loop

c.514C>T p.R172W 58 0 0 1 1 D2-loop

c.518A>T p.D173V 4 0 0 0 0 D2-loop

c.520T>A p.W174R 2 0 0 0 0 D2-loop

c.533A>G p.Q178R 2 0 0 0 0 D2-loop

c.536G>T p.W179L 1 0 0 0 0 D2-loop

c.535T>C p.W179R 4 0 0 0 0 D2-loop

c.537G>T p.W179C 1 0 0 0 0 D2-loop

c.551A>C p.Y184S 1 0 0 0 0 D2-loop

c.554T>C p.L185P 6 0 2 4 0 D2-loop

c.582T>A p.D194E 1 0 0 0 0 D2-loop

c.583C>G p.R195G 1 0 0 0 0 D2-loop
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c.584G>A p.R195Q 6 0 0 0 0 D2-loop

c.584G>T p.R195L 12 0 0 0 0 D2-loop

c.587T>A p.I196N 1 0 0 0 0 D2-loop

c.589A>G p.K197E 2 0 0 0 0 D2-loop

c.592A>C p.S198R 1 0 0 0 0 D2-loop

c.594C>G p.S198R 3 0 0 0 0 D2-loop

c.599T>A p.V200E 1 0 0 0 0 D2-loop

c.599T>G p.V200G 1 0 0 0 0 D2-loop

c.623G>A p.G208D 12 0 1 0 0 D2-loop

c.625G>A p.V209I 2 0 0 0 0 D2-loop

c.625G>T p.V209F 1 0 0 0 0 D2-loop

c.626T>A p.V209D 2 0 0 0 0 D2-loop

c.628C>T p.P210S 2 0 0 0 0 D2-loop

c.629C>G p.P210R 20 0 1 0 0 D2-loop

c.629C>T p.P210L 2 0 0 0 0 D2-loop

c.631T>C p.F211L 6 0 0 0 0 D2-loop

c.634A>G p.S212G 7 0 0 0 0 D2-loop

c.635G>C p.S212T 4 0 0 0 0 D2-loop

c.636 T>A p.C213S 2 0 0 0 0 D2-loop

c.637T>C p.C213R 1 0 1 0 0 D2-loop

c.638G>T p.C213F 1 0 0 0 0 D2-loop

c.638G>A p.C213Y 6 0 0 0 0 D2-loop

c.639C>G p.C213W 3 0 0 0 0 D2-loop

c.641G>A p.C214Y 2 0 0 0 0 D2-loop

c.641G>C p.C214S 1 0 0 0 0 D2-loop

c.643A>T p.N215Y 1 0 0 0 0 D2-loop

c.646C>T p.P216S 21 0 0 0 0 D2-loop

c.646C>G p.P216A 1 0 0 0 0 D2-loop

c.647C>G p.P216R 1 0 0 0 0 D2-loop

c.656C>G p.P219R 2 0 0 0 0 D2-loop

c.658C>T p.R220W 8 0 0 0 0 D2-loop

c.659G>A p.R220Q 3 0 1 0 0 D2-loop

c.659G>C p.R220P 2 0 0 0 0 D2-loop

c.664T>C p.C222R 2 0 0 0 0 D2-loop

c.665G>C p.C222S 2 0 0 0 0 D2-loop

c.665G>A p.C222Y 2 0 0 0 0 D2-loop

c.668T>A  p.I223N 1 0 0 0 0 D2-loop

c.683C>T p.T228I 5 0 0 0 0 D2-loop

c.730A>C p.N244H 1 0 0 0 0 D2-loop
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c.732C>A p.N244K 2 0 0 0 0 D2-loop

c.732C>G p.N244K 1 0 0 0 0 D2-loop

c.736T>C p.W246R 2 0 0 0 0 D2-loop

c.738G>C p.W246C 1 0 0 0 0 D2-loop

c.745G>A p.G249S 1 0 0 0 0 D2-loop

c.748T>C p.C250R 1 0 0 0 0 D2-loop

c.748T>G p.C250G 3 1 0 1 0 D2-loop

c.748T>A p.C250S 1 0 0 0 0 D2-loop

c.749G>A p.C250Y 2 0 0 0 0 D2-loop

c.749G>T p.C250F 1 0 0 0 0 D2-loop

c.758C>A p.A253E 1 0 0 0 0 D2-loop

c.761T>A p.L254Q 5 0 1 0 0 D2-loop

c.797G>A p.G266D 4 0 0 0 0 4th TMD

c.802G>A p.V268I 1 0 0 0 0 4th TMD

c.850C>T p.R284C 1 0 0 0 0 C-terminus

c.923T>A p.L308Q 2 0 0 0 0 C-terminus

c.946T>G p.W316G 5 0 0 0 0 C-terminus

1st TMD  =  first  transmembrane  domain,  2nd TMD  =  second  transmembrane  domain,  4th  TMD  =  fourth

transmembrane domain, C-loop = cytoplasmic loop, D2-loop = second intradiscal loop. Novel missense variants

are depicted in bold.
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FIGURE LEGENDS

Figure 1. A| Pie-chart showing the distribution of (likely) pathogenic PRPH2 variants in

IRD patients B| Pie-chart showing the ACMG pathogenicity assessment of missense

variants.  About two-third of  the missense variants was classified as pathogenic or  likely

pathogenic.  C|  Location  likely  pathogenic  missense  variants  relative  to  the  protein

structure. The vast majority of the likely pathogenic missense variants are located in the D2

loop. AMD = Age-related macular degeneration; AVMD = Adult vitelliform macular dystrophy;

CACD  =  central  areolar  choroidal  dystrophy;  CD  =  Cone  dystrophy;  CRD  =  Cone-rod

dystrophy;  EOHM  =  Early-onset  high  myopia;  PD  =  pattern  dystrophy;  RP  =  Retinitis

pigmentosa.
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