Appendix A. Supplementary
data
Supplementary data related to this article can be found in supporting
information.
Reference:
Bilotta, G. S. & Brazier, R. E. (2008). Understanding the influence of
suspended solids on water quality and aquatic biota. Water Res42(12): 2849-2861.
Blackburn, T. H. (1979). Method for measuring rates of NH4+ turnover in
anoxic marine sediments, using a 15N-NH4+ dilution technique.Applied and Environmental Microbiology 37(4): 760-765.
Bruesewitz, D. A., Gardner, W. S., Mooney, R. F. & Buskey, E. (2015).
Seasonal Water Column NH4+ Cycling
Along a Semi-arid Sub-tropical River–Estuary
Continuum: Responses to Episodic Events and Drought Conditions.Ecosystems 18(5): 792-812.
Chen, F., Hou, L., Liu, M., Zheng, Y., Yin, G., Lin, X., Li, X., Zong,
H., Deng, F., Gao, J. & Jiang, X. (2016). Net anthropogenic nitrogen
inputs (NANI) into the Yangtze River basin and the relationship with
riverine nitrogen export. J GEOPHYS RES-BIOGEO 121(2): 451-465.
Collos, Y., Vaquer, A., Johnston, A. M., Pons, V., Bibent, B. &
Richard, S. (2001). Carbon Fixation, Ammonium Uptake and Regeneration in
an Equatorial Lake: Biological Versus Physical Control. Journal of
Plankton Research 23(3): 263-270(268).
Connelly, T. L., Baer, S. E., Cooper, J. T., Bronk, D. A., Wawrik, B. &
Wommack, K. E. (2014). Urea Uptake and Carbon Fixation by Marine Pelagic
Bacteria and Archaea during the Arctic Summer and Winter Seasons.Applied and Environmental Microbiology 80(19): 6013-6022.
Dai, Z., Du, J., Zhang, X., Su, N. & Li, J. (2011). Variation of
Riverine Material Loads and Environmental Consequences on the Changjiang
(Yangtze) Estuary in Recent Decades (1955-2008). Environ. Sci.
Technol. 45: 223-227.
Di, Z., Hong, Z. & Shan, B. (2015). Using sedimentary
phosphorus/nitrogen as indicators of shallow lake eutrophication:
concentrations or accumulation fluxes. Environmental Earth
Sciences 74(5): 3935-3944.
Diaz, R. J. & Rosenberg, R. (2008). Spreading dead zones and
consequences for marine ecosystems. Science 321(5891): 926-929.
Gardner, W. S., Cavaletto, J. F., Bootsma, H. A., Lavrentyev, P. J. &
Troncone, F. (1998). Nitrogen cycling rates and light effects in
tropical Lake Maracaibo, Venezuela. Limnology and Oceanography43: 1814-1825.
Gardner, W. S., Lavrentyev, P. J., Cavaletto, J. F., McCarthy, M. J.,
Eadie, B. J., Johengen, T. H. & Cotner, J. B. (2004). Distribution and
dynamics of nitrogen and microbial plankton in southern Lake Michigan
during spring transition 1999–2000. J Geophys Res 109.
Gardner, W. S., Newell, S. E., McCarthy, M. J., Hoffman, D. K., Lu, K.,
Lavrentyev, P. J., Hellweger, F. L., Wilhelm, S. W., Liu, Z.,
Bruesewitz, D. A. & Paerl, H. W. (2017). Community Biological Ammonium
Demand: A Conceptual Model for Cyanobacteria Blooms in Eutrophic Lakes.Environ. Sci. Technol. 51(14): 7785-7793.
Glibert, P. M., Lipschultz, F., J., M. J. & Altabet, M. A. (1982).
Isotope dilution models of uptake and remineralization of ammonium by
marine plankton. Limnology and Oceanography 27(4): 639-650.
Gudasz, C., Sobek, S., Bastviken, D., Koehler , B. & Tranvik, L. J.
(2015). Temperature sensitivity of organic carbon mineralization in
contrasting lake sediments. J Geophys Res: Biogeosciences 120.
Hampel, J. J., McCarthy, M. J., Gardner, W. S., Zhang, L., Xu, H., Zhu,
G. & Newell, S. E. (2017). Nitrification and ammonium dynamics in Lake
Taihu, China: seasonal competition for ammonium between nitrifiers and
cyanobacteria. Biogeosciences Discussions : 1-43.
Hampel, J. J., McCarthy, M. J., Neudeck, M., Bullerjahn, G. S., McKay,
R. M. L. & Newell, S. E. (2019). Ammonium recycling supports toxic
Planktothrix blooms in Sandusky Bay, Lake Erie: Evidence from stable
isotope and metatranscriptome data. Harmful Algae 81: 42-52.
Jiang, X., Zhang, L., Gao, G., Yao, X., Zhao, Z. & Shen, Q. (2019).
High rates of ammonium recycling in northwestern Lake Taihu and adjacent
rivers: An important pathway of nutrient supply in a water column.Environ Pollut 252: 1325-1334.
Jiang, Z., Liu, J., Chen, J., Chen, Q., Yan, X., Xuan, J. & Zeng, J.
(2014). Responses of summer phytoplankton community to drastic
environmental changes in the Changjiang (Yangtze River) estuary during
the past 50 years. Water Res 54: 1-11.
Jin, X. & Tu, Q. (1990). The Stand Methods for Observation and
Analysis in Lake Eutrophication. Beijing: Chinese Environmental Science
Press.
Li, S., Liu, C., Li, J., Liu, X., Chetelat, B., Wang, B. & Wang, F.
(2010). Assessment of the Sources of Nitrate in the Changjiang River,
China Using a Nitrogen and Oxygen Isotopic Approach. Environ. Sci.
Technol. 44: 1573-1578.
Liang, C. & Xian, W. (2018). Changjiang nutrient distribution and
transportation and their impacts on the estuary. Cont Shelf Res165: 137-145.
Lin, X., Hou, L., Liu, M., Li, X., Yin, G., Zheng, Y. & Deng, F.
(2016). Gross Nitrogen Mineralization in Surface Sediments of the
Yangtze Estuary. PLoS One 11(3): e0151930.
Liu, T., Xia, X., Liu, S., Mou, X. & Qiu, Y. (2013). Acceleration of
denitrification in turbid rivers due to denitrification occurring on
suspended sediment in oxic waters. Environ. Sci. Technol. 47(9):
4053-4061.
Liu, X., Beusen, A. H. W., Van Beek, L. P. H., Mogollon, J. M., Ran, X.
& Bouwman, A. F. (2018). Exploring spatiotemporal changes of the
Yangtze River (Changjiang) nitrogen and phosphorus sources, retention
and export to the East China Sea and Yellow Sea. Water Res 142:
246-255.
Mccarthy, M. J., Lavrentyev Peter, J., Yang, L., Zhang, L., Chen, Y.,
Qin, B., Gardner & Wayne, S. (2007a). Nitrogen dynamics and microbial
food web structure during a summer cyanobacterial bloom in a
subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China).Hydrobiologia 581(1): 195-207.
Mccarthy, M. J., S., G. W., J., L. P., M., M. K., J., J. F. & M., K. D.
(2007b). Effects of Hydrological Flow Regime on Sediment-water Interface
and Water Column Nitrogen Dynamics in a Great Lakes Coastal Wetland (Old
Woman Creek, Lake Erie). Journal of Great Lakes Research 33(1):
219-231.
Muller, B., Berg, M., Yao, Z. P., Zhang, X. F., Wang, D. & Pfluger, A.
(2008). How polluted is the Yangtze river? Water quality downstream from
the Three Gorges Dam. Sci Total Environ 402(2-3): 232-247.
Mulvenna, P. F. & Graham, S. (1992). A modified manual method for the
determination of Urea in seawater using diacetylmonoxime reagent.Estuar Coast Shelf S 34: 429-438.
Odman, F., Ruth, T. & Ponter, C. (1999). Validation of a field
filtration technique for characterization of suspended particulate
matter from freshwater. Part I. Major elements. Applied
Geochemisrty 14: 301-317.
Paerl, H. W., Xu, H., McCarthy, M. J., Zhu, G., Qin, B., Li, Y. &
Gardner, W. S. (2011). Controlling harmful cyanobacterial blooms in a
hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient
(N & P) management strategy. Water Res 45(5): 1973-1983.
Qin, B., Zhu, G., Gao, G., Zhang, Y., Li, W., Paerl, H. W. &
Carmichael, W. W. (2010). A drinking water crisis in Lake Taihu, China:
linkage to climatic variability and lake management. Environ
Manage 45(1): 105-112.
Sipler, R. E., Baer, S. E., Connelly, T. L., Frischer, M. E., Roberts,
Q. N., Yager, P. L. & Bronk, D. A. (2017). Chemical and
photophysiological impact of terrestrially-derived dissolved organic
matter on nitrate uptake in the coastal western Arctic. Limnology
and Oceanography 62(5): 1881-1894.
Tang, D., Di, B., Wei, G., Ni, I. H., Oh, I. S. & Wang, S. (2006).
Spatial, seasonal and species variations of harmful algal blooms in the
South Yellow Sea and East China Sea. Hydrobiologia 568(1):
245-253.
Turner, A. & Millward, G. E. (2002). Suspended Particles: Their Role in
Estuarine Biogeochemical Cycles. Estuarine, Coastal and Shelf
Science 55(6): 857-883.
Wang, H., Yang, Z., Wang, Y., Saito, Y. & Liu, J. P. (2008).
Reconstruction of sediment flux from the Changjiang (Yangtze River) to
the sea since the 1860s. Journal of Hydrology 349(3-4): 318-332.
Wong, G. T. F., Gong, G.-C., Liu, K.-K. & Pai, S.-C. (1998). ”Excess
nitrate” in the East China Sea. Estuarine, Coastal and Shelf
Science 46: 411-418.
Wu, Z., Liu, Y., Liang, Z., Wu, S. & Guo, H. (2017). Internal cycling,
not external loading, decides the nutrient limitation in eutrophic lake:
A dynamic model with temporal Bayesian hierarchical inference.Water Res 116: 231-240.
Xia, X., Liu, T., Yang, Z., Zhang, X. & Yu, Z. (2013). Dissolved
organic nitrogen transformation in river water: Effects of suspended
sediment and organic nitrogen concentration. Journal of Hydrology484: 96-104.
Xia, X., Yang, Z. & Zhang, X. (2009). Effect of Suspended-Sediment
Concentration on Nitrification in River Water: Importance of Suspended
Sediment-Water Interface. Environ. Sci. Technol. 43: 3681-3687.
Xue, J., Liu, W., Jiang, X., Zhao, Z., Zhang, L., Cai, Y. & Wang, X.
(2019). Ammonium recycling and its influencing factors along the
littoral zone of the middle reaches of Yangtze River. Resources
and Environment in the Yangtze Basin 28(11): 2735-2742.
Yan, W., Mayorga, E., Li, X., Seitzinger, S. P. & Bouwman, A. F.
(2010). Increasing anthropogenic nitrogen inputs and riverine DIN
exports from the Changjiang River basin under changing human pressures.Global Biogeochemical Cycles 24: 1-14.
Yang, S. L., Zhang, J. & Xu, X. J. (2007). Influence of the Three
Gorges Dam on downstream delivery of sediment and its environmental
implications, Yangtze River. Geophys Res Lett 34.
Yao, X., Zhang, L., Zhang, Y., Xu, H. & Jiang, X. (2016).
Denitrification occurring on suspended sediment in a large, shallow,
subtropical lake (Poyang Lake, China). Environ Pollut 219:
501-511.
Yi, Y., Yang, Z. & Zhang, S. (2011). Ecological risk assessment of
heavy metals in sediment and human health risk assessment of heavy
metals in fishes in the middle and lower reaches of the Yangtze River
basin. Environmental Pollution 159(10): 2575-2585.
Yin, G., Hou, L., Liu, M., Liu, Z. & Gardner, W. S. (2014). A novel
membrane inlet mass spectrometer method to measure15NH4+ for
isotope-enrichment experiments in aquatic ecosystems.Environmental Science and Technology 48(16): 9555-9562.
Zhang, W., Gu, J., Li, Y., Lin, L., Wang, P., Wang, C., Qian, B., Wang,
H., Niu, L., Wang, L., Zhang, H., Gao, Y., Zhu, M. & Fang, S. (2019).
New Insights into Sediment Transport in Interconnected River-Lake
Systems Through Tracing Microorganisms. Environ. Sci. Technol.53(8): 4099-4108.
Zheng, Z.-Z., Wan, X., Xu, M. N., Hsiao, S. S.-Y., Zhang, Y., Zheng,
L.-W., Wu, Y., Zou, W. & Kao, S.-J. (2017). Effects of temperature and
particles on nitrification in a eutrophic coastal bay in southern China.J Geophys Res: Biogeosciences 122(9): 2325-2337.
Zhou, M., Shen, Z. & Yu, R. (2008). Responses of a coastal
phytoplankton community to increased nutrient input from the Changjiang
(Yangtze) River. Continental Shelf Research 28: 1483-1489.
Zhou, Y., Xu, X., Han, R., Li, L., Feng, Y., Yeerken, S., Song, K. &
Wang, Q. (2019). Suspended particles potentially enhance nitrous oxide
(N2O) emissions in the oxic estuarine waters of eutrophic lakes: Field
and experimental evidence. Environ Pollut 252(Pt B): 1225-1234.