Reference
Aguero, M., Fernandez, J., Romero, L., Sanchez Mascaraque, C., Arias, M., & Sanchez-Vizcaino, J. M. (2003). Highly sensitive PCR assay for routine diagnosis of African swine fever virus in clinical samples.J Clin Microbiol , 41 (9), 4431-4434.https://doi.org/10.1128/jcm.41.9.4431-4434.2003
Arias, M., Jurado, C., Gallardo, C., Fernandez-Pinero, J., & Sanchez-Vizcaino, J. M. (2018). Gaps in African swine fever: Analysis and priorities [Review]. Transbound Emerg Dis , 65 Suppl 1 , 235-247.https://doi.org/10.1111/tbed.12695
Biagetti, M., Cuccioloni, M., Bonfili, L., Cecarini, V., Sebastiani, C., Curcio, L., Giammarioli, M., De Mia, G. M., Eleuteri, A. M., & Angeletti, M. (2018). Chimeric DNA/LNA-based biosensor for the rapid detection of African swine fever virus. Talanta , 184 , 35-41.https://doi.org/10.1016/j.talanta.2018.02.095
Bu, Y., Huang, H., & Zhou, G. (2008). Direct polymerase chain reaction (PCR) from human whole blood and filter-paper-dried blood by using a PCR buffer with a higher pH. Anal Biochem , 375 (2), 370-372.https://doi.org/10.1016/j.ab.2008.01.010
Dixon, L. K., Stahl, K., Jori, F., Vial, L., & Pfeiffer, D. U. (2020). African Swine Fever Epidemiology and Control. Annu Rev Anim Biosci , 8 , 221-246.https://doi.org/10.1146/annurev-animal-021419-083741
Fernandez-Pinero, J., Gallardo, C., Elizalde, M., Robles, A., Gomez, C., Bishop, R., Heath, L., Couacy-Hymann, E., Fasina, F. O., Pelayo, V., Soler, A., & Arias, M. (2013). Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library.Transbound Emerg Dis , 60 (1), 48-58.https://doi.org/10.1111/j.1865-1682.2012.01317.x
Flannery, J., Moore, R., Marsella, L., Harris, K., Ashby, M., Rajko-Nenow, P., Roberts, H., Gubbins, S., & Batten, C. (2020). Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products. Foods , 9 (9).https://doi.org/10.3390/foods9091148
Gallardo, C., Fernandez-Pinero, J., & Arias, M. (2019). African swine fever (ASF) diagnosis, an essential tool in the epidemiological investigation. Virus Res , 271 , 197676.https://doi.org/10.1016/j.virusres.2019.197676
Gallardo, C., Nieto, R., Soler, A., Pelayo, V., Fernandez-Pinero, J., Markowska-Daniel, I., Pridotkas, G., Nurmoja, I., Granta, R., Simon, A., Perez, C., Martin, E., Fernandez-Pacheco, P., & Arias, M. (2015). Assessment of African Swine Fever Diagnostic Techniques as a Response to the Epidemic Outbreaks in Eastern European Union Countries: How To Improve Surveillance and Control Programs. J Clin Microbiol ,53 (8), 2555-2565.https://doi.org/10.1128/JCM.00857-15
Kang, K., Yang, K. L., Zhong, J. S., Tian, Y. X., Zhang, L. M., Zhai, J. X., Zhang, L., Song, C. X., Gou, C. Y., Luo, J., & Gou, D. M. (2014). A direct real-time polymerase chain reaction assay for rapid high-throughput detection of highly pathogenic North American porcine reproductive and respiratory syndrome virus in China without RNA purification. Journal of Animal Science and Biotechnology ,5 . https://doi.org/Artn 45
10.1186/2049-1891-5-45
Kermekchiev, M. B., Kirilova, L. I., Vail, E. E., & Barnes, W. M. (2009). Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucleic Acids Res , 37 (5), e40.https://doi.org/10.1093/nar/gkn1055
King, D. P., Reid, S. M., Hutchings, G. H., Grierson, S. S., Wilkinson, P. J., Dixon, L. K., Bastos, A. D. S., & Drew, T. W. (2003). Development of a TaqMan® PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods , 107 (1), 53-61.https://doi.org/10.1016/s0166-0934(02)00189-1
Leelawong, M., Adams, N. M., Gabella, W. E., Wright, D. W., & Haselton, F. R. (2019). Detection of Single-Nucleotide Polymorphism Markers of Antimalarial Drug Resistance Directly from Whole Blood. J Mol Diagn , 21 (4), 623-631.https://doi.org/10.1016/j.jmoldx.2019.02.004
Li, L., He, J. A., Wang, W., Xia, Y., Song, L., Chen, Z. H., Zuo, H. Z., Tan, X. P., Ho, A. H., Kong, S. K., Loo, J. F., Li, H. W., & Gu, D. (2019). Development of a direct reverse-transcription quantitative PCR (dirRT-qPCR) assay for clinical Zika diagnosis. Int J Infect Dis ,85 , 167-174.https://doi.org/10.1016/j.ijid.2019.06.007
Liu, X., Zhang, C., Zhao, M., Liu, K., Li, H., Li, N., Gao, L., Yang, X., Ma, T., Zhu, J., Hui, W., Hua, K., & Cui, Y. (2018). A direct isothermal amplification system adapted for rapid SNP genotyping of multifarious sample types. Biosens Bioelectron , 115 , 70-76.https://doi.org/10.1016/j.bios.2018.05.021
World Organisation for Animal Health (OIE). (2018). African swine fever. OIE terrestrial manual 2018.
Revilla, Y., Perez-Nunez, D., & Richt, J. A. (2018). African Swine Fever Virus Biology and Vaccine Approaches. Adv Virus Res ,100 , 41-74.https://doi.org/10.1016/bs.aivir.2017.10.002
Schulz, K., Staubach, C., & Blome, S. (2017). African and classical swine fever: similarities, differences and epidemiological consequences.Vet Res , 48 (1), 84.https://doi.org/10.1186/s13567-017-0490-x
Teklue, T., Sun, Y., Abid, M., Luo, Y., & Qiu, H. J. (2020). Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis , 67 (2), 529-542.https://doi.org/10.1111/tbed.13364
Thatcher, S. A. (2015). DNA/RNA preparation for molecular detection.Clin Chem , 61 (1), 89-99.https://doi.org/10.1373/clinchem.2014.221374
Wang, Y., Xu, L., Noll, L., Stoy, C., Porter, E., Fu, J., Feng, Y., Peddireddi, L., Liu, X., Dodd, K. A., Jia, W., & Bai, J. (2020). Development of a real-time PCR assay for detection of African swine fever virus with an endogenous internal control. Transbound Emerg Dis .https://doi.org/10.1111/tbed.13582
Xu, Y., & Zheng, Z. (2016). Direct RNA detection without nucleic acid purification and PCR: Combining sandwich hybridization with signal amplification based on branched hybridization chain reaction.Biosens Bioelectron , 79 , 593-599.https://doi.org/10.1016/j.bios.2015.12.057
Ye, X., Li, L., Li, J., Wu, X., Fang, X., & Kong, J. (2019). Microfluidic-CFPA Chip for the Point-of-Care Detection of African Swine Fever Virus with a Median Time to Threshold in about 10 min. ACS Sens , 4 (11), 3066-3071.https://doi.org/10.1021/acssensors.9b01731
Zhang, Z., Kermekchiev, M. B., & Barnes, W. M. (2010). Direct DNA amplification from crude clinical samples using a PCR enhancer cocktail and novel mutants of Taq. J Mol Diagn , 12 (2), 152-161.https://doi.org/10.2353/jmoldx.2010.090070