REFERENCE
Ainsworth, E.A., & Long, S.P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist , 165(2), 351-372.
Bihn, E.A., Paul, A.-L., Wang, S.W., Erdos, G.W., & Ferl, R.J. (1997). Localization of 14‐3-3 proteins in the nuclei of Arabidopsis and maize. Plant Joirnal , 12(6), 1439-1445.
Buzas, D.M., Robertson, M., Finnegan, E.J., & Helliwell, C.A. (2011). Transcription‐dependence of histone H3 lysine 27 trimethylation at the Arabidopsis polycomb target gene FLC. Plant Journal , 65(6), 872-881.
Chen, F., Li, Q., Sun, L., & He, Z. (2006). The rice 14-3-3 gene family and its involvement in responses to biotic and abiotic stress. DNA Research , 13(2), 53-63.
Chen, Y.S., Ho, T.D., Liu, L., Lee, D.H., Lee, C.H., Chen, Y.R., Lin, S.Y., Lu, C.A., & Yu, S.M. (2019). Sugar starvation-regulated MYBS2 and 14-3-3 protein interactions enhance plant growth, stress tolerance, and grain weight in rice. Proceedings of the National Academy of Sciences , 116(43), 21925-21935.
Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., & Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Current Biology , 6(3), 325-330.
Cockram, J., Thiel, T., Steuernagel, B., Stein, N., Taudien, S., Bailey, P.C., & O’Sullivan, D.M. (2012). Genome dynamics explain the evolution of flowering time CCT domain gene families in the Poaceae. PLoS One , 7(9), e45307.
Cook, J.H., & Yoshida, S. (1972). Accumulation of 14C-labelled carbohydrate before flowering and its subsequent redistribution and respiration in the rice plant. Japanese Journal of Crop Science , 41(2), 226-234.
Diaz, C., Kusano, M., Sulpice, R., Araki, M., Redestig, H., Saito, K., Stitt, M., & Shin, R. (2011). Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes. BMC Systems Biology , 5, 192.
Fujii, Y., & Kodama, Y. (2015). In planta comparative analysis of improved green fluorescent proteins with reference to fluorescence intensity and bimolecular fluorescence complementation ability.Plant Biotechnology , 32(1), 81-87.
Fujiwara, S., Wang, L., Han, L., Suh, S.-S., Salomé, P.A., McClung, C.R., & Somers, D.E. (2008). Post-translational regulation of theArabidopsis circadian clock through selective proteolysis and phosphorylation of pseudo-response regulator proteins. Journal of Biological Chemistry , 283(34), 23073-23083.
Fukayama, H., Fukuda, T., Masumoto, C., Taniguchi, Y., Sakai, H., Cheng, W., Hasegawa, T., & Miyao, M. (2009). Rice plant response to long term CO2 enrichment: Gene expression profiling. Plant Science , 177(3), 203-210.
Gendron, J.M., Pruneda-Paz, J.L., Doherty, C.J., Gross, A.M., Kang, S.E., & Kay, S.A. (2012). Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor. Proceedings of the National Academy of Sciences , 109(8), 3167-3172.
Gnesutta, N., Kumimoto, R.W., Swain, S., Chiara, M., Siriwardana, C., Horner, D.S., Holt, B.F., & Mantovani, R. (2017). CONSTANS imparts DNA sequence specificity to the histone fold NF-YB/NF-YC dimer. Plant Cell , 29, 1516-1532.
Goda, T., Teramura, H., Suehiro, M., Kanamaru, K., Kawaguchi, H., Ogino, C., Kondo, A., & Yamasaki, M. (2016). Natural variation in the glucose content of dilute sulfuric acid-pretreated rice straw liquid hydrolysates: Implications for bioethanol production. Bioscience, Biotechnology, and Biochemistry , 80(5), 863-869.
Kodama, Y., & Wada, M. (2009). Simultaneous visualization of two protein complexes in a single plant cell using multicolor fluorescence complementation analysis. Plant Molecular Biology , 70, 211-217.
Li, Y., & Xu, M (2017). CCT family genes in cereal crops: A current overview. Crop Journal , 5(6), 449-458.
Lucas, W.J., Bouché-Pillon, S., Jackson, D.P., Nguyen, L., Baker, L., Ding, B., & Hake, S. (1995). Selective Trafficking of KNOTTED1 Homeodomain Protein and Its mRNA Through Plasmodesmata. Science , 270(5244), 1980-1983.
Masaki, T., Tsukagoshi, H., Mitsui, N., Nishii, T., Hattori, T., Morikami, A., & Nakamura, K. (2005). Activation tagging of a gene for a protein with novel class of CCT‐domain activates expression of a subset of sugar‐inducible genes in Arabidopsis thaliana . Plant Journal , 43(1), 142-152.
Masumoto, C., Miyazawa, S., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H., & Miyao, M. (2010). Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation. Proceedings of the National Academy of Sciences , 107(11), 5226-5231.
Matsuoka, D., Yasufuku, T., Furuya, T., & Nanmori, T. (2015). An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity. Plant Molecular Biology , 87, 565-575.
Matsuoka, M., & Numazawa, T. (1991). CIS-acting elements in the pyruvate, orthophosphate dikinase gene from maize. Molecular and General Genetics , 228, 143-152.
Mayfield, J.D., Folta, K.M., Paul, A.-L., & Ferl, R.J. (2007). The 14-3-3 proteins μ and υ influence transition to flowering and early phytochrome response. Plant Physiology , 145, 1692-1702.
Mikami, M., Toki, S., & Endo, M. (2015). Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice.Plant Molecular Biology , 88, 561-572.
Morita, K., Hatanaka, T., Misoo, S., & Fukayama, H. (2014). Unusual small subunit that is not expressed in photosynthetic cells alters the catalytic properties of Rubisco in rice. Plant Physiology , 164, 69-79.
Morita, R., Sugino, M., Hatanaka, T., Misoo, S., & Fukayama, H. (2015). CO2-Responsive CONSTANS, CONSTANS-Like, and Time of Chlorophyll a/b Binding Protein Expression1 Protein is a positive regulator of starch synthesis in vegetative organs of rice. Plant Physiology , 167, 1321-1331.
Morita, R., Inoue, K., Ikeda, K., Hatanaka, T., Misoo, S., & Fukayama, H. (2016). Starch content in leaf sheath controlled by CO2-Responsive CCT Protein is a potential determinant of photosynthetic capacity in rice. Plant and Cell Physiology , 57(11), 2334-2341.
Morita, R., Crofts, N., Shibatani, N., Miura, S., Hosaka, Y., Oitome, N.F., Ikeda, K.I., Fujita, N., & Fukayama, H. (2019). CO2-Responsive CCT Protein stimulates the ectopic expression of particular starch biosynthesis-related enzymes, which markedly change the structure of starch in the leaf sheaths of rice.Plant and Cell Physiology , 60(5), 961-972.
Morita, S., & Nakano, H. (2011). Nonstructural carbohydrate content in the stem at full heading contributes to high performance of ripening in heat‐tolerant rice cultivar Nikomaru. Crop Science , 51(2), 818-828.
Nemoto, Y., Nonoue, Y., Yano, M., & Izawa, T. (2016). Hd1, a CONSTANS ortholog in rice, functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7. Plant Journal , 86(3), 221-233.
Okamura, M., Hirose, T., Hashida, Y., Yamagishi, T., Ohsugi, R., & Aoki, N. (2013). Starch reduction in rice stems due to a lack ofOsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture.Functional Plant Biology , 40(11), 1137-1146.
Ookawa, T., Yasuda, K., Kato, H., Sakai, M., Seto, M., Sunaga, K., Motobayashi, T., Tojo, S., & Hirasawa, T. (2010). Biomass production and lodging resistance in ‘Leaf Star’, a new long-culm rice forage cultivar. Plant Production Science , 13(1), 58-66.
Robson, F., Costa, M.M.R., Hepworth, S.R., Vizir, I., Pin˜eiro, M., Reeves, P.H., Putterill, J., & Coupland, G. (2001). Functional importance of conserved domains in the flowering‐time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.Plant Journal , 28(6), 619-631.
Sato, T., Maekawa, S., Yasuda, S., Domeki, Y., Sueyoshi, K., Fujiwara, M., Fukao, Y., Goto, D.B., & Yamaguchi, J. (2011). Identification of 14‐3‐3 proteins as a target of ATL31 ubiquitin ligase, a regulator of the C/N response in Arabidopsis . Plant Journal , 68(1), 137-146.
Sehnke, P.C., Chung, H.J., Wu, K., & Ferl, R.J. (2001) Regulation of starch accumulation by granule-associated plant 14-3-3 proteins.Proceedings of the National Academy of Sciences , 98(2), 765-770.
Taoka, K., Ohki, I., Tsuji, H., Furuita, K., Hayashi, K., Yanase, T., Yamaguchi, M., Nakashima, C., Purwestri, Y.A., Tamaki, S., Ogaki, Y., Shimada, C., Nakagawa, A., Kojima, C., & Shimamoto, K. (2011). 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen.Nature , 476, 332-335.
Tiwari, S.B., Shen, Y., Chang, H.-C., Hou, Y., Harris, A., Ma, S.F., McPartland,M., Hymus, G.J., Adam, L., Marion, C., Belachew, A., Repetti, P.P., Reuber, T.L., & Ratcliffe, O.J. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis-element. New Phytologist , 187(1), 57-66.
Valverde, F. (2011). CONSTANS and the evolutionary origin of photoperiodic timing of flowering. Journal of Experimental Botany , 62(8), 2453-2463.
Wang, Q., Xie, W., Xing, H., Yan, J., Meng, X., Li, X., Fu, X., Xu, J., Lian, X., Yu, S., Xing, Y., & Wang, G. (2015). Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Molecular Plant , 8(6), 946-957.
Wu, S., & Gallagher, K.L. (2014). The movement of the non-cell-autonomous transcription factor, SHORT-ROOT relies on the endomembrane system. Plant Journal , 80(3), 396-409.
Xu, G., Wang, X., Huang, C., Xu, D., Li, D., Tian, J., Chen, Q., Wang, C., Liang, Y., Wu, Y., Yang, X., & Tian, F. (2017). Complex genetic architecture underlies maize tassel domestication. New Phytologist , 214(2), 852-864.
Xue, W., Xing, Y., Weng, X., Zhao, Y., Tang, W., Wang, L., Zhou, H., Yu, S., Xu, C., Li, X., & Zhang, Q. (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.Nature Genetics , 40, 761-767.
Yao, Y., Du, Y., Jiang, L., & Liu, J.-Y. (2007). Molecular analysis and expression patterns of the 14-3-3 gene family from Oryza sativa .Journal of Biochemistry and Molecular Biology , 40(3), 349-357.
Yoshinaga, S., Takai, T., Arai-Sano, Y., Ishimaru, T., & Kondo, M (2013). Varietal differences in sink production and grain-filling ability in recently developed high-yielding rice (Oryza sativaL.) varieties in Japan. Field Crops Research , 150(20), 74-82.