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Abstract

Elucidation of signalling events in a pathogen is potentially important to tackle the infection caused

by  it.  Such  events  mediated  by  protein  phosphorylation  play  important  roles  in  infection  and

therefore to predict the phosphosites and substrates of the serine/threonine protein kinases, we have

developed a Machine learning based approach and predicted the phosphosites for Mycobacterium

tuberculosis serine/threonine  protein  kinases  using  kinase-peptide  structure-sequence  data.  This

approach utilizes features derived from kinase 3D-structure environment and known phosphosite

sequences to generate Support Vector Machine based kinase specific predictions of phosphosites

making  it  suitable  for  prediction  of  phosphosites  of  STPKs  with  no  or  scarce  data  of  their

phosphosites. Support vector machine outperformed the four machine learning algorithms we tried

(random forest, logistic regression, support vector machine and k-nearest neighbours) with aucROC

value of 0.88 on the independent testing dataset and a ten-fold cross validation accuracy of ~81.6%

for the final model. Our predicted phosphosites of M. tuberculosis STPKs form an useful resource

for experimental biologists enabling elucidation of STPK mediated post-translational regulation of

important  cellular  processes.  The  training  features  file  and  model  files,  together  with  usage

instructions file, are available at: https://github.com/vipulbiocoder/Mtb-KSPP
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1  INTRODUCTION

Mycobacterium tuberculosis (Mtb)  genome encodes  Serine/Threonine  protein  kinases  (STPKs),

which phosphorylate specific Serine/Threonine residues of substrate proteins, to post-translationally

regulate the function of cellular proteins. In eukaryotes, STPKs play essential roles in majority of

biological pathways,  regulating cellular processes for efficient growth and survival of the cells.

Similar to their  roles in eukaryotes, these STPKs may facilitate the growth and survival of  M.

tuberculosis, especially in the host, by reprogramming its intracellular signalling network as well as

that  of  the  host  cell.  Understanding the  roles  of  Mtb STPKs might  therefore  reveal  important

functions of these in the physiology of Mtb and moreover,  in its  ability to establish successful

infection.

Ser/Thr protein phosphorylation involves recognition of distinct short peptide motifs on substrate

proteins by the protein kinases leading to a phosphate moiety being transferred from Adenosine

Triphosphate (ATP) to either Serine (Ser) or Threonine (Thr) residues.  Recent studies of the STPKs

of Mtb have revealed a high degree of structural homology of kinase domains between bacterial and

eukaryotic  STPKs.  Moreover,  they  share  similar  mechanisms  of  substrate  recognition  and

regulation.  Mtb genome encodes 11 genes for STPKs, named PknA, PknB, PknD, PknE, PknF,

PknG, PknH, PknI, PknJ, PknK, PknL1. However, all the in-vivo substrates of these STPKs and thus

their role in regulation of cellular processes are not fully characterized experimentally. Some of the

available  information  includes  PknA and PknB being involved in  regulation  of  cell  shape  and

possibly cell division2. The activity of Mtb STPKs may be regulated in different stages of infection,

for example, an in-vitro study has shown that the activity of PknB is reduced during latency and

elevated upon resumption of replication3.

In absence of comprehensive experimental data, computational prediction of substrates of STPKs of

M. tuberculosis might reveal their functional roles. Several phosphosite prediction tools have been

developed to predict phosphorylation sites from amino acid sequences of kinases, or those of shared

substrates. These comprise identification of simple motifs using pattern search methods, or the use

of  machine  learning  methods  such  as  Artificial  Neural  Networks  (ANN)4 and  Support  Vector

Machines  (SVM)5.  Examples  of  such  predictive  algorithms  include  Scansite6,  NetPhos  and

NetPhosK7,8,  KinasePhos9, DISPHOS10, GPS11, NetPhosBac12 and PredPhospho13. Scansite converts

the  data  from  oriented  peptide  library  and  phage  display  experiments  into  a  position-specific

scoring matrix (PSSM) and generates protein sequence motifs recognized by the respective kinases.

The  NetPhos  3.17,8 server  predicts  generic  and  kinase  specific  serine,  threonine  or  tyrosine



phosphorylation  sites  in  eukaryotic  proteins  using  ensembles  of  neural  networks.  KinasePhos9

builds Profile Hidden Markov Models (HMM) from each group of known phosphorylation site

sequences corresponding to protein kinase classes and predicts phosphorylation sites within given

protein  sequences.  DISPHOS10 applies  position-specific  amino  acid  frequencies  and  intrinsic

disorder score to build models for phosphosites prediction.  Musite14 incorporates three types of

features viz, amino acid frequencies, k nearest neighbor (KNN) scores and disorder scores to build

SVM models to predict  phosphosites in six organisms and 13 kinase-specific  phosphosites.  All

these tools assist in predicting substrates of STPKs.

Most of the computational phosphosite predictors described above are not organism-specific and

their ability to predict the phosphosites of bacterial STPKs is not well known since they are based

only on known phosphosites of eukaryotic STPKs. Further, most of them do not take into account

the phosphosites nor the structural information of the bacterial STPKs. To address this issue, we

have developed a Support Vector Machine based tool which uses structural information of Mtb

STPKs and sequences  of  eukaryotic  phosphosites  to  predict  phosphosites  for  Mtb STPKs.  The

generalized workflow of our method has been shown in Figure 1.

An interesting aspect of signalling mechanisms is that the eukaryotic STPKs exhibit a high degree

of cross-regulation. For example, CK2 and AKT cross-regulate their respective functions, through

phosphorylation and also by cross-talk among downstream signalling effectors to cause sustained

AKT activation15. In another case, the kinase PKCε plays a role in lipid-induced insulin resistance

through cross talk with p70S6K via shared substrates16. Similarly, there may also be cross-talks

between  Mtb STPKs  and among  their  predicted  substrates.  Such  cross-talks  would  enable  co-

ordinated  regulation  of  the  network  components  and  the  cellular  processes  driven  by  them.

Consequently, there is a possibility that the STPKs may modulate the activity of hubs of the various

cellular processes of Mtb.

In this paper, we present MTB-KSPP (Mycobacterium  tuberculosis Kinase  Specific  Phosphosites

Predictor), a method which incorporates structural information from peptide-binding cleft of the

kinases which enables prediction of kinase-specific phosphosites with limiting amounts of data of

experimental  phosphosites.  Moreover,  our  method  predicts  the  phosphosites  using  only  seven-

residue long phosphopeptide sequences centered on the potential phosphosite. We use the window

size of only seven-residues since our method is based on information from the peptide-binding cleft

of  each kinase and in  most  of  the kinase-peptide complex structures  in  the Protein Data Bank

(PDB)17 have  three-residues  on  the  C-terminal  side  of  the  phospho-acceptor  (Ser/Thr)  residue.



Moreover, we observed that it is usually the three residues on the either side of the central Ser/Thr

phospho-acceptor, which make maximum contacts with the kinase residues in the peptide binding

pocket.  Therefore,  to  maintain  consistency  we  used  hepta-peptide  sequences  (centered  on  the

known or potential phospho-acceptor residue) for all our analyses.

2  MATERIALS AND METHODS

2.1 Homology modelling of Mtb STPKs

 For building homology models, a template structure of Ser/Thr protein kinase was selected with the

query STPK domain sequence determined by performing a Protein BLAST (blastp)18 search using

the  PDB  as  the  reference  database.  In  case  of  multiple  protein  structure  hits  with  the  same

percentage of identity, protein structure with better resolution was chosen as the template. Among

all the selected template STPK structures, one was understandably that of a STPK from Mtb but

lacked structural information for the activation segment region of the kinase. For example, Mtb

PknB lacking structural information for the activation segment has been shown in Figure 2. We

therefore applied loop modelling to generate a favourable conformation of the activation segment

region.  The input  sequence alignment files were generated and used to build models using the

command-line version of the software Modeller 9.1419. For each STPK, 100 models were built and

DOPE score19 was calculated for them. The details of homology models of Mtb STPKs are listed in

Supplementary Table 1.  The model  to  be used for further analysis  was selected based on their

DOPE score ranking and favourable conformation of the activation loop. The geometry of the best

structure model of each Mtb STPK was evaluated using the MOLPROBITY20 and QMEAN21 tools

for determining structure quality.

2.2 Modelling of substrate peptide into catalytic cleft of Mtb STPKs

In order to model a substrate peptide in the active site of each of the Mtb STPKs, we extracted the

structures of eukaryotic STPK-peptide complexes, each with a unique sequence of a bound peptide.

Among the many STPK structures available in the PDB, only some of these had a peptide bound at

the enzyme's catalytic cleft  and there were multiple (redundant) structures corresponding to the

same STPK-peptide complex. After removing such redundancy and other structures such as those in

complex  with  other  proteins  (e.g.  Cyclins),  10  unique  STPK-peptide  complex  structures  were

retained.  The  selected  structures  were  meticulously  analysed  by  visualizing  them  in  PyMol

molecular viewer software. These eukaryotic STPK-peptide complexes were used to calculate the

average coordinates of Cα and Cβ atoms of the peptides bound at the catalytic cleft of the eukaryotic

STPKs.



We used an experimentally determined structure of phosphorylase kinase (PDB ID: 2PHK)22 to

superimpose each of the models of Mtb STPKs and transferred the average coordinates of  the

peptides bound at the catalytic cleft of the eukaryotic STPKs to the models of Mtb STPKs. These

modified homology models of Mtb STPKs were used to retrieve the interactable kinase residues for

the  different  amino-acid  positions  of  the bound peptide  used  for  the calculation of  the various

features/variables to be used in building machine learning based models. The eukaryotic STPKs

residue sets  corresponding to  different peptide binding pockets were also retrieved in the same

manner.

2.3 Generation of residue contact matrices between substrate and kinases

The site of phosphorylation on the substrate peptide is referred to as P0, while the three residues

flanking the phosphorylation site on the N- and C-termini are referred to as P−3, P−2, P−1 and P+1,

P+2 and P+3, respectively. The contacting residue-pairs between the kinase and its bound-peptide

were determined using four different distance cut-off criteria - the Cα atoms of the substrate peptide

and any atom of the kinase residues being at a distance ≤5 Å, ≤6 Å, ≤7 Å and ≤8 Å respectively.

Similar analysis was done using the Cβ atoms of the substrate peptide's residues and any atom of the

kinase residues. This information from the 'peptide interacting kinase residues' vs 'bound peptide

residue position' matrices was then used for calculating the amino-acid pair compatibility based data

features23,24.  Similarly,  'peptide  interacting  kinase  residues'  vs  'bound  peptide  residue  position'

matrices using different distance cut-offs were made using the homology models of Mtb STPKs.

2.4 Retrieval of peptide sequences for generation of data features

Rich  data  are  available  on  the  sequences  that  are  phosphorylated  by  eukaryotic  kinases  either

through high-throughput studies, or through individual kinases-substrate interactions. A search was

therefore conducted through standard search engines and in publicly available databases to retrieve

information about the protein substrates of the eukaryotic kinases and their respective phosphosites.

Only those STPKs were considered whose X-ray structures have been solved in complex with a

substrate  peptide  bound at  the  active  site  cleft  of  the  STPK.  Various  online  databases  such as

PhosphositePlus25,  UniProtKb26 and  Phospho.ELM27 were used to  retrieve  a  total  of  2064 non-

redundant  eukaryotic  phosphosites  for  the  ten  STPKs for  which  kinase-peptide  complex X-ray

structures are available in PDB. Most of these phosphosite sequences were 15 amino acid residues

long and centered  on Serine/Threonine.  From each such phosphosite,  the  central  hepta-peptide

stretch was extracted for consideration of positive training data. Another search strategy employed

to  retrieve  the  known  kinase-specific  phosphosites  of  Mtb  STPKs  through  UniProtKb26 and

published literature resulted in the identification of 221 phosphosites which were pooled with the

2064 phosphosites of eukaryotic STPKs making the total number of phosphosites used to 2285. The



hepta-peptide  sequences  to  be  used  for  negative  data  generation  were  compiled  by  randomly

selecting Ser/Thr-centered hepta-peptides, other than known eukaryotic STPK phosphosite/s in the

respective protein sequences. The Ser/Thr-centered hepta-peptide sequence stretches from all the

proteins of the Mtb proteome26 were extracted to develop the input features set. The information

related to the known phosphosites used in this study is reported in Supplementary file S1.

2.5  Generation  of  training  dataset  (positive  and  negative  instances)  and  prediction  input

datasets

Using amino-acid statistical pair potentials, amino-acid pair compatibility matrices and the 'peptide

interacting kinase residues' vs 'bound peptide residue position' matrix for each eukaryotic STPK, the

kinase residue/s-peptide residue pair-potential and compatibility values for each peptide position of

the known phosphosite sequences were derived as described below.

The method for determining contact residues between STPKs and substrate peptide residues

is already described above. Three distance cut-off ranges (≤6 Å, ≤7 Å and ≤8 Å) were finally used

for each of the six residues of the substrate peptide thereby resulting in 6*3 i.e. 18 different data

feature values for each hepta-peptide. Similarly, using Cβ atoms of the substrate peptide residues as

a  reference,  another  18  different  data  feature  values  for  each  hepta-peptide  were  derived.

Combining both, 36 data feature values were derived for each type of amino-acid pair-potentials

and amino-acid residue pairs compatibility matrices for every hepta-peptide sequence. This resulted

in a total of 144 data feature values for each hepta-peptide to be used as positive dataset features in

training the Machine Learning model. Sequences for the negative training dataset were derived by

randomly choosing Ser/Thr-centered hepta-peptides, other than the known phosphosite/s, from the

substrate  proteins.  The  features  for  the  negative  dataset  and  prediction  input  dataset  (Ser/Thr-

centered hepta-peptides from the sequences of Mtb proteins) were derived in the same way using

the hepta-peptide sequences from the respective datasets.

2.6 Calculation of the intrinsic disorder

To calculate the intrinsic disorder, the sequences of all Mtb proteins and those of substrate proteins

of each of the various eukaryotic kinases under study were downloaded from UniProtKb. These

sequences were individually input into a stand-alone version of IUPRED 1.028 to derive Intrinsic

Disorder (IDR) value for each amino acid residue of a given sequence. Further, using locally written

Python programs, 'Average Intrinsic Disorder' values for seven-residue long peptide segments over

the entire sequence were derived by iteratively sliding the seven-residue window by one position.

The average IDR values of the phosphosites of eukaryotic STPKs were then retrieved and used as a

positive data feature. The negative data feature comprised of the average IDR values corresponding



to  the sequences  of the Negative dataset.  Also,  the average IDR values  of the  prediction input

sequences dataset from M. tuberculosis were retrieved which was used as feature in the input data

for predictions.

2.7 Features selection and model optimization

 All the training features were compiled in a single file and scaled in a -1 to +1 range. To select the

most predictive features, feature selection was carried out in LibSVM using Fischer score (F-score)

which is a simple and effective criterion to measure the discrimination between a feature and the

label. This method assigns a weight to each feature and ranks the features accordingly. All of the

145 features were found to have predictive value after feature selection process. Grid optimization

method of LibSVM was used for deriving optimal values of cost and gamma parameters to build

optimal performance SVM models. A generalized model was built to predict the phosphosites of

Mtb STPKs.  Separate models were built  for deriving the phosphosite predictions for PknA and

PknK due to lack of kinase interactable residues data at one of the peptide positions.  These final

models were used in the machine learning based predictions of phosphosites for the 11 STPKs from

Mtb.

2.8 Evaluation of model performance

The predictive performance of the trained models was evaluated using the following metrics used in

machine learning.

Accuracy=
TP+TN

TP+TN +FN +FP

Precision=
TP

TP+FP

Recall/Sensitivity=
TP

TP+FN

Specificity=
TN

TN +FP

F 1 score=
2TP

2TP+FP+FN

MCC=
TP ×TN − FP × FN

√(TP+FP ) (TP+FN ) (TN +FP ) (TN +FN )

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives and

false negatives, respectively. The Receiver-Operating Characteristic (ROC) curves and precision-

recall  curves were plotted and the Area Under  the Curve (AUC) values were calculated as the

measures to evaluate and compare the predictive performance of our method with the NetPhos 2.0



and NetPhosBac STPK phosphosites prediction methods.

2.9 Deriving the preferred sequence motifs for Mtb STPKs

Using the large number of predicted sequences we attempted to extract information regarding the

compatibility of a substrate peptide to be recognized by the cognate kinase. This was done first by

deriving the consensus sequences by calculating the statistical significance for a residue at each

aligned position of predicted phosphosites and compared with random unphosphorylated hepta-

peptides. We then analysed the consensus sequence in the context of the 3D model of each Mtb

STPK. Two kinds of 7-residue motifs were attempted to be understood - the one which each kinase

strongly prefers as its substrate, and the other which is strongly disallowed. Using the predicted

high-confidence  (prediction  probability  estimate  ≥  0.99)  phosphosites  and  random

unphosphorylated  hepta-peptides  we developed hepta-peptide  sequence  motifs  specific  for  each

Mtb STPK. The predicted consensus sequence motifs specific for each Mtb STPK were developed

using the sequence logo tool 'Two Sample Logo'29. This tool calculates the statistical significance

for occurrence of a residue at each position in the aligned groups of sequences, where the null

hypothesis is that the residue is generated according to the same distribution in both positive and

negative samples.

2.10 Gene ontology enrichment analysis

The predicted substrates of Mtb STPKs were used to investigate enrichment of cellular processes

among them. We used the PANTHER30,31 web-tool which uses Gene Ontology (GO) terms (cellular

processes) of the proteins of Mtb and runs Fischer's Exact test on a query list of proteins to identify

the statistically enriched GO terms among the query list. The GO defines concepts/classes used to

describe gene/protein function,  and relationships  between these concepts.  It  classifies  functions

along  three  aspects  namely,  molecular  function  (MF),  cellular  component  (CC)  and  biological

process (BP). The gene ontology analysis would shed light upon the physiological changes and the

infection stages at which each of the kinases plays an important role.

2.11 Validation using the known phosphosites

To  perform  a  validation  of  our  predicted  phosphosites  we  data-mined  and  compiled  the

experimentally  known phosphosites  of  Mtb STPKs  from the  published  literature.  For  this,  we

carried out a PubMed search of articles reporting the identification of phosphosites of Mtb STPKs

in Mtb proteins. Keywords such as 'Mycobacterium tuberculosis + phosphosite', 'Mycobacterium

tuberculosis  +  phosphorylation',  etc  were  used  to  retrieve  the  articles  reporting  Ser/Thr

phosphorylation events in Mtb proteome. The articles included STPK specific sites and also the



phosphoproteomic studies which usually do not pinpoint on the underlying STPKs. We found a total

of 221 phosphosites for the ten STPKs of Mtb. We did not find any phosphosites reported for PknI.

We  also  found  another  1030  non-kinase  specific  Mtb  phosphosites  from  three  published

phosphoproteomic studies32–34 and one yet unpublished phosphoproteomic study (Vinay Nandicoori,

personal communication). After combining the above two sets of phosphosites and removing the

redundant sites we obtained 972 known phosphosite sequences in the Mtb proteome which had

three residues upstream and downstream the phospho-acceptor serine/threonine residue and these

were used to validate our predicted phosphosites.

3  RESULTS

3.1 Construction of machine learning models and features selection

The protein structure-sequence features found to have a predictive value in identification of the

phosphosites of each kinase are amino-acid statistical  pair  potentials23,  amino-acid residue pairs

Hydrophobe  compatibility,  Charge  compatibility  and  Size  compatibility  values24.  The

phosphorylation site region of the STPK substrate proteins is usually disordered35,36. Therefore, we

used average intrinsic disorder of the hepta-peptides encompassing the phosphorylation sites as a

data feature for the machine learning.  A total of 145 features, namely 36 each for four different

types of amino-acid pair compatibility matrices and one feature of the average Intrinsic Disorder of

the hepta-peptide, were derived for positive dataset (phosphosite hepta-peptide set); negative dataset

(randomly chosen Ser/Thr-centered hepta-peptides set) and predictions input datasets i.e. (Ser/Thr-

centered hepta-peptides from the sequences of Mtb proteins).

Various kernels of LibSVM were tried out for model building among which the Radial Basis

Function (RBF) kernel resulted in SVM models with the highest prediction accuracy after ten-fold

cross-validation evaluation of model. After compiling data of all feature types, feature selection

procedure  was  carried  out  in  LibSVM  and  all  the  145  features  were  found  to  contribute  in

enhancing the predictive performance as the highest accuracy model was generated using all the

145 features. We developed an independent  test  dataset  consisting a  set  of  3582 sequences for

training  a  model  and  a  testing  dataset  of  988  to  evaluate  the  predictive  performance  of  our

methodology  by  calculating  performance  metrics  such  as  Accuracy,  F1-score,  MCC  score,

Precision, Recall and Specificity for the model as shown in Table 1. This dataset contained 505

phosphosites and 483 non-phosphosites. We evaluated four different machine learning algorithms

namely,  Random  Forest,  Logistic  Regression,  Support  Vector  Machine  (SVM)  and  K-nearest

neighbours by receiver operator characteristic (ROC) curve analysis, to select the most predictive

algorithm for our training data features. SVM outperformed all the others with an AUC-ROC value

of 0.88 while Random Forest and Logistic Regression both had the next best value AUC-ROC of



0.87 as shown in Figure 3. The final model was built by using 4424 phosphosite sequences (2212

phosphosites and 2212 non-phosphosites) and evaluation of the final SVM model by 10-fold cross-

validation  approach  resulted  in  81.6% prediction  accuracy.  The  receiver  operator  characteristic

(ROC) curve analysis as shown in Figure 3 led to an AUC (area under curve) value of 0.88. The

precision-recall  curve  analysis  also  showed  a  high  AUC value  of  0.88  for  SVM based  model

(Supplementary Figure 1). These characteristics therefore suggested that the model has a high value

of prediction.

3.2 Benchmarking the performance with other phosphosite prediction tools

We  compared  the  performance  of  MTB-KSPP  with  other  tools  available  for  prediction  of

phosphosites  of  STPKs.  Most  of  the  tools  available  for  phosphosite  predictions  have  been

developed for specific eukaryotic STPKs or a limited number of families of eukaryotic STPKs and

only  one  tool  -  NetPhosBac  –  is  available  for  prediction  of  phosphosites  of  bacterial  STPKs.

Therefore,  most of these could not be used to compare the performance of MTB-KSPP, which

predicts  phosphosites  in  a  kinase  independent  manner.  Consequently,  we selected  NetPhos  2.0

which is a general predictor of the phosphosites of STPKs and NetPhosBac – a tool developed for

the prediction of phosphosites of bacterial STPKs to compare against the predictive performance of

MTB-KSPP. The independent test datasets made were used to evaluate the predictive performance

of our tool with other tools using ROC curve analysis and precision-recall curve analysis. Since the

other tools do not have option for customized model training, we used their pre-trained models

available as online web-servers to derive the predictions on the testing set. The ROC curves and the

precision-recall  curves  were  plotted  in  Scikit-learn37 (Figure  4  and  Supplementary  Figure  2,

respectively) using different thresholds of the scores provided by each method and the AUC (area

under the curve) and the average precision values were calculated for the ROC and precision-recall

curves.  MTB-KSPP  performed  significantly  better  than  the  other  two  tools  used  in  this

benchmarking with the aucROC values of 0.56 NetPhosBac, 0.71 NetPhos 2.0, and 0.88 for MTB-

KSPP (Figure  4).  Similarly,  the  precision-recall  curve  of  MTB-KSPP shows  better  predictive

performance with the average-precision (AP) value of 0.88 compared with 0.71 for NetPhos 2.0,

and  0.57  for  NetPhosBac  1.0  (Supplementary  Figure  2).  Our  method  shows  an  overall  better

predictive performance compared to these tools based on other evaluation metrics as shown in Table

2.

3.3 Predictions of phosphosites and substrates of Mtb STPKs

A very high number of sites in Mtb proteome were predicted as potential phosphosites for Mtb

STPKs as shown in Table 3. To reduce the number of predictions and retain only those the hepta-



peptide sites which have a very high chance of being true phosphosites of each kinase we filtered

our  predictions  based  on  the  probability  estimate  values  of  SVM predictions.  The  number  of

predicted  high-confidence  (probability  estimate  ≥  0.99)  phosphosites  and  substrates  varied  for

different Mtb STPKs as shown in Table 3. The highest number of phosphosites were predicted for

PknD with 4767 phosphosites belonging to 2419 protein substrates. Whereas, PknG has only 09

predicted phosphosites falling into identical number of substrates which is the least among all Mtb

STPKs. The reason for this variability in the predicted number of substrates is not clear at this stage.

The  predicted  phosphosites  (with  probability  estimate  ≥  0.80)  in  Mtb  proteins  are  listed  in

Supplementary file S2.

3.4 Gene Ontology (GO) enrichment analysis

The GO enrichment analysis on the predicted substrates of four kinases, viz, PknB, PknD,

PknF and PknL based on Fisher’s exact test with Bonferroni correction p < 0.05 shows enrichment

of important biological processes vital for the growth and survival of the pathogen. The predicted

substrate  proteins  of  other  STPKs  did  not  show  enrichment  of  any  biological  processes.  For

example, substrates of PknD and PknL show 2.7-fold and 3.3-fold enrichment, respectively in fatty

acid biosynthesis  and 1.5-fold and 1.7-fold  enrichment,  respectively  in  amino-acid metabolism.

PknD substrates also show 1.6-fold enrichment enrichment in lipid metabolism and PknL substrates

show a 2.5-fold enrichment in DNA metabolic process thus highlighting the plausible roles of these

kinases  in  modulation  of  activities  of  these important  cellular  processes.  The predicted  protein

substrates were also found to be enriched for generic processes including primary metabolic process

(GO:0044238),  metabolic  process  (GO:0008152)  and  cellular  amino  acid  metabolic  process

(GO:0006520). The details of the enrichment scores and the concerned GO terms of the enriched

biological processes of the Mtb STPKs are listed in Supplementary file S3.

3.5 Preferred sequence motifs for Mtb STPKs

The consensus sequence motifs derived from all the predicted substrates of the kinases reflect the

preference of specific amino acids by the kinases at various peptide positions. Kinases PknB, PknD,

PknE, PknJ and PknL have a large number of predicted substrates, which is explained by a relaxed

preference (many amino acids preferred at multiple positions) at many positions, on the other hand,

kinases such as PknA, PknG and PknI had only a few predicted phosphosite substrates which is

supported by their strict requirement/allowance of only one or two amino acids at various positions

of the peptide. For example, consensus motif of PknG (as shown in Figure 5), which has only 09

predicted high confidence phosphosites, shows that it strictly requires Tryptophan at +3 position,

and a simultaneous strong depletion or a lack of Arginine at -1 position and lack of Glycine at +2



position. The consensus motif of PknB (Figure 5) shows the N-terminal first position to be highly

enriched with  the  acidic  residues  Aspartate  and Glutamate  and depletion  of  the  basic  residues

Arginine and Lysine. Similarly, in consensus motif of PknJ, the C-terminal end (+3 position) shows

high enrichment for the acidic residues Aspartic acid and Glutamic acid and depletion in proportion

of basic residues Arginine and Lysine. It is interesting to note that consensus motifs of most STPKs

could  be  derived  based  on  the  predicted  substrate  sequences.  We  believe  therefore,  that  the

predictions of substrates will have a high value in analysing the biological roles of these kinases.

3.6  Structural  evidences  for specific  interactions  of  consensus  peptide  residues  with  Mtb

STPKs’ residues

Using the sequences of predicted high confidence phosphosites with prediction probability estimate

≥ 0.99 we found the presence of consensus sequence motifs for Mtb STPKs and observed that these

motifs have considerable difference with each other as seen from their sequence logos (Figure 5).

The  consensus  sequence  as  obtained  by  comparison  of  predicted  substrates  can  be  easily

rationalized based on the three-dimensional structures of Mtb STPKs. For example, in the PknB

substrate peptide predictions the consensus sequence show strong preference for an acidic residue at

the -3 position. Complementary to this peptide site, the binding pocket of the kinase shows presence

of the basic amino acid Arg-101 (Figure 6) in the crystal structure of PknB (PDB ID: 1O6Y), which

is within a distance of <6 Å of the Cα atom of the N-terminal residue (-3 position) of the bound

peptide.  Similarly,  at  the  same position  in  the  consensus  sequence  for  PknB substrate  peptide,

depletion of basic residues is also seen. Thus, preference of the PknB is reflected in the consensus

motif derived from predicted phosphosites for PknB.

Another  illustration  of  this  relates  to  the  PknJ  substrate  peptide  predictions,  where  the

consensus sequence shows strong preference for acidic residues at the +3 position. Complementary

to this peptide site, Arginine-45 and Arginine-150 (Figure 6) are present in the binding pocket of

PknJ (Figure 6), which may potentially interact with the acidic residue of the bound peptide at its C-

terminal end (+3 position). Similarly, this site shows depletion of basic residues in the consensus

motif. Therefore, as expected, in the consensus peptide derived from the predicted phosphosites for

PknJ, the preferred residues by this binding pocket of PknJ are the acidic amino acids Aspartic acid

and Glutamic acid.

3.7 Validation of the predicted phosphosites

We validated the high-confidence predicted phosphosites for Mtb STPKs by analysing their overlap

with already known Mtb phosphosites compiled from the previous studies on Mtb Ser/Thr protein

phosphorylation. Predictions for the kinases PknB, PknD, PknE, PknF and PknL could pick 36, 48,



33, 17 and 43 phosphosites respectively, from the already known set of 1182 phosphosites in the

Mtb proteome. The validation results for other STPKs are listed in Table 4.

DISCUSSION

Our analysis shows that amino acids compatibility and pair potentials based features have high

predictive value in prediction of phoshorylation sites. Our method not only selects the position-

specific  features  of  phosphosite  sequence  fragments  but  also  intrinsically  captures  the  binding

affinity of various peptide-binding pocket positions in the kinase active site. While the phosphosite's

average  intrinsic  disorder  feature  can  capture  the  structural  properties  of  phosphosite  sequence

fragments.

The  experimental  data  on  phosphorylation  of  Mtb  proteins  is  inadequate  and  thus  a

computational prediction approach used in this study will aid in identification and validation of

additional  phosphosites  in  the  Mtb  proteome.  In  addition  to  the  known  phosphosites  of  the

eukaryotic STPKs used to derive features, we also included the limited number of experimentally

identified  phosphosites  of  Mtb STPKs to  generate  a  machine  learning model  for  prediction  of

phosphosites of Mtb STPKs. Due to bias of experimental techniques of phosphosite identification

towards  protein which have higher  in-vivo abundance,  known phosphosites are  also potentially

biased for proteins of higher abundance and lack information on phosphosites of low abundance

proteins or proteins which may express in only specific environmental conditions. We have made

use of structural information of Mtb STPKs to predict phosphosites since training the SVM model

only  on  eukaryotic  phosphosites  could  not  efficiently  predict  the  limited  number  of  known

phosphosites of Mtb STPKs. Our analysis suggests that structural models of kinases can aid in

predictions of post-translational modifications (PTMs) especially for the kinases which lack or have

limiting amount of experimentally known phosphosites. Therefore, MTB-KSPP can be adopted to

predict phosphosites across different species and other types of PTM.

It is tempting to speculate that kinases such as the PknG for which only nine phosphosites

were predicted in the Mtb proteome may have a role in phosphorylating only the host proteins, with

little  effect  on  the  Mtb proteins.  We observed  that  a  distinct  motif  emerges  out  the  predicted

phosphosites of each Mtb STPK which signifies the amino acids preferred by these kinases at their

different peptide binding pockets. This finding could provide important insights into the mechanism

of substrate  recognition by these kinases and may also shed light  upon the functional modules

regulated by these kinases both individually and in combination with other kinases. The results

from our gene ontology analysis of the predicted substrates of Mtb STPKs indeed show that cellular

processes fatty acid synthesis, lipid metabolism and DNA metabolism which crucial for infection

are regulated by few of the Mtb STPKs. A further thorough investigation into the structure and



dynamics of the signalling network and regulatory network in context of gene expression changes

across  various  physiological  conditions  would  unravel  more  details  about  the  mechanisms

employed  by  these  STPKs  for  efficient  modulation  of  cellular  physiology  which  assists  the

pathogen in adapting itself in harsh environmental conditions such as, hypoxia and high acidity

encountered inside the macrophages. Our phosphosite predictions could efficiently retrieve several

of the known phosphosites of Mtb STPKs which highlights the efficiency of our approach to predict

new peptide sites in Mtb proteins that can be potentially phophorylated by one or more of the Mtb

STPKs.  The  outcomes  from our  Mtb  STPKs  phosphosite  prediction  and  analysis  may  form a

valuable  resource  for  the  researchers  working  on  Mtb  and  may  provide  starting  points  in

investigating various aspects of Mtb infection and its persistence.

Supporting  information:  Supporting  data  file  and  supplementary  data  files  have  been  made

available at Proteins journal website.
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Tables:

Table 1. Evaluation metrics of our SVM based method on the independent testing dataset

Performance evaluation measure Value

Accuracy 80.3%

Precision 0.82

Recall/Sensitivity 0.79

Specificity 0.82

F1-score 0.803

MCC-score 0.606

AUC-ROC 0.88

Average Precision: Precision-Recall 0.86

Table 2. Evaluation metrics for comparing our method with other phosphosite prediction tools

Method/tool Accuracy
(%)

F1-score MCC-score Precision Recall Average 
precision

Mtb-KSPP 80.3 0.803 0.606 0.82 0.79 0.86

NetPhos2.0 65.9 0.69 0.32 0.64 0.75 0.76

NetPhosBac1.0 53.7 0.42 0.093 0.585 0.33 0.63

Table  3.  Number  of  predicted  high-confidence  (probability  >=  0.99)  phosphosites  and

substrates for Mtb STPKs

Mtb STPK No. of predicted phosphosites No.  of  predicted  protein
substrates

PknA 53 52

PknB 1949 1434

PknD 4767 2419

PknE 1078 892

PknF 951 790

PknG 09 09

PknH 877 746

PknI 123 116

PknJ 1940 1435

PknK 944 800

PknL 4209 2353



Table  4.  Overlap  of  predicted  phosphosites  of  Mtb  STPKs  with  experimentally  known

phosphosites

Mtb STPK No. of predicted phosphosites No.  of  known phosphosites  in
predicted phosphosites

PknA 53 0

PknB 1949 36

PknD 4767 48

PknE 1078 33

PknF 951 17

PknG 09 0

PknH 877 12

PknI 123 03

PknJ 1940 12

PknK 944 15

PknL 4209 43

Figure legends:

Figure 1. Framework of the structure-sequence features based phosphosites predictor MTB-KSPP.

The input features is a matrix of 4570 * 145 (no. of features) generated by deriving mean value for

each peptide-residue position for the hepta-peptide sequences centered at the phosphosites and non-

phosphosites (4570 training instances). Residue pairs list for each peptide position were formulated

from hepta-peptides  and  kinase-peptide  interacting  residues  matrix  of  corresponding  STPK for

which  the  amino-acid  pair  potentials  and amino-acid  pair  compatibility  matrices  were  derived.

Also, the average Intrinsic disorder value was calculated for each hepta-peptide training instance.

Figure  2.  Comparison  of  kinase  structures  from  Eukaryotes  and  Prokaryotes.  The  eukaryotic

serine/threonine protein kinase Phosphorylase kinase (in gray colour) (PDB ID: 2PHK) superposed

with  PknB  (in  purple  colour)  (PDB  ID:  1O6Y),  a  serine/threonine  protein  kinase  from

Mycobacterium tuberculosis. The Activation Loop part missing in PknB's structure is highlighted in

purple colour in the phosphorylase kinase structure.



Figure 3. ROC curves plot comparing the predictive performance of our SVM based method with

other machine learning algorithms.

Figure 4. ROC curves plot of  benchmarking the predictive performance of MTB-KSPP with other

tools available for STPK phosphosite prediction.

Figure 5. Graphical representations of the predicted sequence motifs recognized by Mtb STPKs

PknA, PknB, PknF and PknG. The X-bar indicates the positions of the amino-acid residue of the

peptide motif centered on Serine/Threonine (position 4). The numbers on the Y-bar indicate the

percentage enrichment of the amino-acid residues at individual positions of the predicted peptide

motif recognized by each Mtb STPK.

Figure 6. (A) The kinase residue Arg-101 (in Yellow colour) of Mtb PknB kinase (in lightblue

colour) is within an interactable distance of the N-terminal end -3 position residue of the bound

peptide  (in  lightpink  colour)  modelled  in  the  peptide  binding  pocket  of  PknB.  The  predicted

consensus motif  for PknB substrate  peptide shows enrichment  of acidic  residues  Aspartate  and

Glutamate at -3 position (Cα atom is coloured Red). (B) The kinase residues Arg-45 and Arg-150 (in

Yellow colour) of Mtb PknJ kinase (in lightblue colour) are within an interactable distance of the C-

terminal end +3 position residue of the bound peptide (in lightpink colour) modelled in the peptide

binding pocket of PknJ. The predicted consensus motif for PknJ substrate peptide shows enrichment

of acidic residues Aspartate and Glutamate at +3 position (Cα atom is coloured Red).
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