Reference
Abrahamson, D. (1987). Structure and
development of the glomerular capillary wall and basement membrane.American Journal of Physiology-Renal Physiology, 253 (5),
F783-F794.
Abrahamson, D. R. (1985). Origin of
the glomerular basement membrane visualized after in vivo labeling of
laminin in newborn rat kidneys. The Journal of cell biology,
100 (6), 1988-2000.
Abrahamson, D. R. (1991).Glomerulogenesis in the developing kidney. Paper presented at the
Seminars in nephrology.
Abrahamson, D. R., Hudson, B. G.,
Stroganova, L., Borza, D.-B., & John, P. L. S. (2009). Cellular origins
of type IV collagen networks in developing glomeruli. Journal of
the American Society of Nephrology, 20 (7), 1471-1479.
Adler, S. (1992). Characterization of
glomerular epithelial cell matrix receptors. The American journal
of pathology, 141 (3), 571.
Awdishu, L., & Mehta, R. L. (2017).
The 6R’s of drug induced nephrotoxicity. BMC nephrology, 18 (1),
124.
Bonventre, J. V., Vaidya, V. S.,
Schmouder, R., Feig, P., & Dieterle, F. (2010). Next-generation
biomarkers for detecting kidney toxicity. Nature biotechnology,
28 (5), 436-440.
Caulfield, J. P., & Farquhar, M. G.
(1974). The permeability of glomerular capillaries to graded dextrans:
Identification of the basement membrane as the primary filtration
barrier. The Journal of cell biology, 63 (3), 883-903.
Feher, J. J. (2017).Quantitative human physiology: an introduction : Academic press.
Giffin, R., Robinson, S., & Olson,
S. (2009). Accelerating the development of biomarkers for drug
safety: workshop summary : National Academies Press.
Gomes, M. E., Rodrigues, M. T.,
Domingues, R. M., & Reis, R. L. (2017). Tissue engineering and
regenerative medicine: new trends and directions—a year in review.Tissue Engineering Part B: Reviews, 23 (3), 211-224.
Homan, K. A., Kolesky, D. B.,
Skylar-Scott, M. A., Herrmann, J., Obuobi, H., Moisan, A., & Lewis, J.
A. (2016). Bioprinting of 3D convoluted renal proximal tubules on
perfusable chips. Scientific reports, 6 , 34845.
Jang, K.-J., Mehr, A. P., Hamilton,
G. A., McPartlin, L. A., Chung, S., Suh, K.-Y., & Ingber, D. E. (2013).
Human kidney proximal tubule-on-a-chip for drug transport and
nephrotoxicity assessment. Integrative Biology, 5 (9), 1119-1129.
Jansen, J., Fedecostante, M., Wilmer,
M., Peters, J., Kreuser, U., Van Den Broek, P., . . . Wetzels, J.
(2016). Bioengineered kidney tubules efficiently excrete uremic toxins.Scientific reports, 6 , 26715.
Jansen, J., Fedecostante, M., Wilmer,
M., Van den Heuvel, L., Hoenderop, J., & Masereeuw, R. (2014).
Biotechnological challenges of bioartificial kidney engineering.Biotechnology advances, 32 (7), 1317-1327.
John, P. L. S., & Abrahamson, D. R.
(2001). Glomerular endothelial cells and podocytes jointly synthesize
laminin-1 and-11 chains. Kidney international, 60 (3), 1037-1046.
Kim, B. J., & Wu, M. (2012).
Microfluidics for mammalian cell chemotaxis. Annals of biomedical
engineering, 40 (6), 1316-1327.
Koeppen, B. M., & Stanton, B. A.
(2012). Renal Physiology E-Book: Mosby Physiology Monograph
Series : Elsevier Health Sciences.
Koepsell, H. (2013). The SLC22 family
with transporters of organic cations, anions and zwitterions.Molecular aspects of medicine, 34 (2-3), 413-435.
Li, M., Corbelli, A., Watanabe, S.,
Armelloni, S., Ikehata, M., Parazzi, V., . . . Lazzari, L. (2016).
Three-dimensional podocyte–endothelial cell co-cultures: assembly,
validation, and application to drug testing and intercellular signaling
studies. European Journal of Pharmaceutical Sciences, 86 , 1-12.
Lote, C. J., & Lote, C. J. (1994).Principles of renal physiology : Springer.
Marieb, E. N., & Hoehn, K. (2007).Human anatomy & physiology : Pearson education.
Mauer, S. M. (1994).
Structural-functional correlations of diabetic nephropathy. Kidney
international, 45 (2), 612-622.
McQuarrie, E. P., Shakerdi, L.,
Jardine, A. G., Fox, J. G., & Mackinnon, B. (2011). Fractional
excretions of albumin and IgG are the best predictors of progression in
primary glomerulonephritis. Nephrology Dialysis Transplantation,
26 (5), 1563-1569.
Miner, J. H. (1998). Developmental
biology of glomerular basement membrane components. Current
opinion in nephrology and hypertension, 7 (1), 13-19.
Musah, S., Mammoto, A., Ferrante, T.
C., Jeanty, S. S., Hirano-Kobayashi, M., Mammoto, T., . . . Ingram, M.
(2017). Mature induced-pluripotent-stem-cell-derived human podocytes
reconstitute kidney glomerular-capillary-wall function on a chip.Nature biomedical engineering, 1 (5), 1-12.
Ng, C. P., Zhuang, Y., Lin, A. W. H.,
& Teo, J. C. M. (2012). A fibrin-based tissue-engineered renal proximal
tubule for bioartificial kidney devices: development, characterization
and in vitro transport study. International Journal of Tissue
Engineering, 2013 .
Nieskens, T. T., Peters, J. G.,
Schreurs, M. J., Smits, N., Woestenenk, R., Jansen, K., . . . Wilmer, M.
J. (2016). A human renal proximal tubule cell line with stable organic
anion transporter 1 and 3 expression predictive for antiviral-induced
toxicity. The AAPS journal, 18 (2), 465-475.
Nieskens, T. T., & Wilmer, M. J.
(2016). Kidney-on-a-chip technology for renal proximal tubule tissue
reconstruction. European journal of pharmacology, 790 , 46-56.
Pavenstadt, H., Kriz, W., &
Kretzler, M. (2003). Cell biology of the glomerular podocyte.Physiological reviews, 83 (1), 253-307.
Petrosyan, A., Cravedi, P., Villani,
V., Angeletti, A., Manrique, J., Renieri, A., . . . Da Sacco, S. (2019).
A glomerulus-on-a-chip to recapitulate the human glomerular filtration
barrier. Nature communications, 10 (1), 1-17.
Phillips, J. A., Grandhi, T. S. P.,
Davis, M., Gautier, J.-C., Hariparsad, N., Keller, D., . . . Van Vleet,
T. R. (2020). A pharmaceutical industry perspective on
microphysiological kidney systems for evaluation of safety for new
therapies. Lab on a Chip, 20 (3), 468-476.
Raghavan, V., Rbaibi, Y.,
Pastor-Soler, N. M., Carattino, M. D., & Weisz, O. A. (2014). Shear
stress-dependent regulation of apical endocytosis in renal proximal
tubule cells mediated by primary cilia. Proceedings of the
National Academy of Sciences, 111 (23), 8506-8511.
Sabbisetti, V. S., Waikar, S. S.,
Antoine, D. J., Smiles, A., Wang, C., Ravisankar, A., . . . Lee, M.
(2014). Blood kidney injury molecule-1 is a biomarker of acute and
chronic kidney injury and predicts progression to ESRD in type I
diabetes. Journal of the American Society of Nephrology, 25 (10),
2177-2186.
Sakolish, C., Chen, Z., Dalaijamts,
C., Mitra, K., Liu, Y., Fulton, T., . . . Chiu, W. A. (2020). Predicting
tubular reabsorption with a human kidney proximal tubule
tissue-on-a-chip and physiologically-based modeling. Toxicology in
Vitro, 63 , 104752.
Sakolish, C., Weber, E. J., Kelly, E.
J., Himmelfarb, J., Mouneimne, R., Grimm, F. A., . . . Chiu, W. A.
(2018). Technology transfer of the microphysiological systems: a case
study of the human proximal tubule tissue chip. Scientific
reports, 8 (1), 1-14.
Sakolish, C. M., Esch, M. B.,
Hickman, J. J., Shuler, M. L., & Mahler, G. J. (2016). Modeling barrier
tissues in vitro: methods, achievements, and challenges.EBioMedicine, 5 , 30-39.
Sakolish, C. M., & Mahler, G. J.
(2017). A novel microfluidic device to model the human proximal tubule
and glomerulus. RSC advances, 7 (8), 4216-4225.
Sakolish, C. M., Philip, B., &
Mahler, G. J. (2019). A human proximal tubule-on-a-chip to study renal
disease and toxicity. Biomicrofluidics, 13 (1), 014107.
Sariola, H. (1984). Incomplete fusion
of the epithelial and endothelial basement membranes in interspecies
hybrid glomeruli. Cell differentiation, 14 (3), 189-195.
Schindelin, J., Arganda-Carreras, I.,
Frise, E., Kaynig, V., Longair, M., Pietzsch, T., . . . Schmid, B.
(2012). Fiji: an open-source platform for biological-image analysis.Nature methods, 9 (7), 676-682.
Sciancalepore, A. G., Sallustio, F.,
Girardo, S., Passione, L. G., Camposeo, A., Mele, E., . . . Pisignano,
D. (2014). A bioartificial renal tubule device embedding human renal
stem/progenitor cells. PloS one, 9 (1), e87496.
Tourovskaia, A., Fauver, M., Kramer,
G., Simonson, S., & Neumann, T. (2014). Tissue-engineered
microenvironment systems for modeling human vasculature.Experimental biology and medicine, 239 (9), 1264-1271.
van Midwoud, P. M., Janse, A.,
Merema, M. T., Groothuis, G. M., & Verpoorte, E. (2012). Comparison of
biocompatibility and adsorption properties of different plastics for
advanced microfluidic cell and tissue culture models. Analytical
chemistry, 84 (9), 3938-3944.
Venturoli, D., & Rippe, B. (2005).
Ficoll and dextran vs. globular proteins as probes for testing
glomerular permselectivity: effects of molecular size, shape, charge,
and deformability. American Journal of Physiology-Renal
Physiology, 288 (4), F605-F613.
Weber, E. J., Chapron, A., Chapron,
B. D., Voellinger, J. L., Lidberg, K. A., Yeung, C. K., . . . Neumann,
T. (2016). Development of a microphysiological model of human kidney
proximal tubule function. Kidney international, 90 (3), 627-637.
Wehling, M. (2006). Translational
science in medicine. International journal of pharmaceutical
medicine, 20 (5), 303-310.
Wilmer, M. J., Ng, C. P., Lanz, H.
L., Vulto, P., Suter-Dick, L., & Masereeuw, R. (2016). Kidney-on-a-chip
technology for drug-induced nephrotoxicity screening. Trends in
biotechnology, 34 (2), 156-170.
Woodcock, J., & Woosley, R. (2008).
The FDA critical path initiative and its influence on new drug
development. Annu. Rev. Med., 59 , 1-12.
Wu, Q., Liu, J., Wang, X., Feng, L.,
Wu, J., Zhu, X., . . . Gong, X. (2020). Organ-on-a-chip: recent
breakthroughs and future prospects. BioMedical Engineering OnLine,
19 (1), 9.
Xinaris, C., Benedetti, V., Novelli,
R., Abbate, M., Rizzo, P., Conti, S., . . . Cavallotti, D. (2016).
Functional human podocytes generated in organoids from amniotic fluid
stem cells. Journal of the American Society of Nephrology, 27 (5),
1400-1411.
Xinaris, C., Benedetti, V., Rizzo,
P., Abbate, M., Corna, D., Azzollini, N., . . . Morigi, M. (2012). In
vivo maturation of functional renal organoids formed from embryonic cell
suspensions. Journal of the American Society of Nephrology,
23 (11), 1857-1868.
Zanetti, F. (2020). Kidney-on-a-chipOrgan-on-a-chip (pp. 233-253): Elsevier.