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Abstract

We present the derivation of a new response method termed first order po-
larization propagator approximation. The electronic structure is given by a
density functional representation. We provide a detailed derivation of the
method along with explicit expressions for the relevant integrals and matrix
elements.
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1 Introduction

We have presented a detailed derivation of a new response method that is denoted
first-order polarization propagator approximation (FOPPA). It is a method, that
bridges the time-dependent self-consistent field approach and the second-order po-
larization propagator (SOPPA) method.!® We have formulated the method in terms
of conventional response theory and give the mathematical derivation of the method.
Response theory jointly with electronic structure theory has been developed within
the last sixty years starting with the work by Linderberg and Ohrn.*5 Response



theory has clearly influenced the manner by which researchers calculate static and
frequency dependent molecular properties.® !> The developed methods have included
electronic structure methods from Hartree-Fock and density functional theory to the
high-level correlated electronic structure methods such as coupled cluster and con-
figuration interaction. Response methods have also been extended to include inves-
tigations where the investigated molecule is surrounded by an environment. The
environment could be a solvent, a protein or a surface.

Generally, it is clear that theoretical and computational chemistry has pushed the
boundaries for describing molecular systems, chemical reactions, and molecular prop-
erties within the last 5 decades. This has occurred due to the substantial increase
of computer power along with numerous developments of new and efficient methods
and numerical implementations. Therefore, theoretical and computational chemistry
play an extremely important role in any modern chemical laboratory and provide cru-
cial insight into a lot of chemical phenomena.'® A new normal in a modern chemical
laboratory is the concept of "the golden standard”, namely the use of a high-level
computational method. This method is the coupled cluster description of electronic
structure and the specific method is termed CCSD(T).*11718

First we have introduced the underlying assumptions for the method, and we have
presented the derivations using density functional theory for the electronic structure
of the molecule. We continue by presenting the working equations for linear response
time-dependent density functional theory and derive the FOPPA matrix equation.
Based on the previous sections we are able to present explicit expressions for the
matrix elements of the FOPPA matrix equations in section 4. In the final section
we conclude and discuss the potential use of the method. We have given a detailed
derivation of the equations that form the basis for FOPPA, and thereby we have
provided a guide for new researchers to enter the world of response theory. We hope
that this detailed derivation will encourage new and young researchers to engage in
the further developments of response theory.



2 Linear Response TD-DFT

The extension of Kohn-Sham (KS) DFT to time-dependent DFT (TD-DFT) is ob-
tainable due to the theorems, that validate the correspondence between the electron
density and an external potential in both time-dependent and time-independent do-
mains, deduced and proved by E. Runge and E. K. U. Gross.!? Starting with the
time-dependent Schrodinger equation.

9 KS(=> _ I KS(=>
ho (W, 1) = H(T, )| W5 (7, 1) (1)

The parameterization of the time dependence is achieved by following the frame-
work of response theory (LR-TD-DFT).?® The time dependence is implemented in
the hamiltonian of the reference system H (t) by a perturbation. The perturbation
consists of an internal field dependence of the reference system and an external field
dependence.

H(7 1) = Hyeg (7) + Hrepio (7,1) + BT 1) (2)
The time-dependent KS hamiltonian for the unperturbed system is defined as:
HES (P t) = Hyop(T) 4 Hyegomt (T, 1) (3)
The external field is turned on at ¢y, by the Heaviside step function 0(t).
Hip(7.1) = 6(t — to) Hipy (7 1) (4)

The time-dependent Schrodinger equation then becomes:

RS (7 0) = (957, 0) + AU 1)) RS, ) )

Since the electron density is time-dependent, the KS equation for the molecular
orbitals also becomes time-dependent.

at!wm(z t)) = ——V + Dear (77 /m”’ dr} + ixo(7,t )] | (i, 1))
(6)
f%xt(ﬁa t) = @"ef(fi)) + f)(t) (7)

Here, i denotes the combined spatial and spin coordinate of the electron. The
exchange-correlation potential is time-dependent, meaning that it depends on the



initial electron density and the entire time domain, i.e. the time-dependent KS equa-
tion has a memory. The adiabatic approximation states that the memory effects can
be neglected.?! 23

oxc(r7,t) = Oxco(r7) (8)

The time-dependent KS Fock operator h(rz, is defined:
) = =5V + () + [ B PO G5 + b7 )
T’L

Hence the time-dependent KS equation can be written as:

!wKS(Z 1) = h(7,0)|ea (i, 1)) (10)

The wavefunction is time—dependent and can be expressed in terms of the unper-
turbed wavefunction.

[UH5(7, 1)) = O ESO(7)) (11)

R(t) is the anti-hermitian time propagation operator, and it is defined in terms of
operators from second quantization theory for convenience. The operator that takes
one electron form ¢; and place it in ¢, is defined as:

42 <Q0a|q1 |<Pz ai Z Aaz Z a a'za (12)

Ay = (@a|di|pi) is the matrix element, and E,, = al_a;, is the excitation operator
consisting of @l and a,,, which are the creation and annihilation operators with
respect to one electron in an orbital with spin o, respectively. ¢; is an operator that
first annihilate and then create an electron in the same orbital.

Hence k(t) is defined as:

= ra)Eu R = —A(?) (13)

The electron density is similarly described in terms of second quantization theory.
pT) = (5T o7 = 7)ol Zso ) oS (P)Eu (14)

The time dependence of the electron density is caused by the time-dependent wave-
function.



p(7 1) = (WS (7, 0]p(7) W5 (7, 1) (15)
= (WISO(T) O ()OS0 (7)) (16)

The electron density and the time propagation operator can be expanded in terms
of perturbation order.

p(7 1) = pO(F) + p V(7 1) + pP (7, ) + .. (17)
B(t) =04+ D) + £P() + ... (18)
The Taylor series expansion of the exponential time propagation operator is:
1
A =14+ (RO + D) +..) + 5(/%“)(15) +E@ @)+ )2+ (19)

If a weak field is considered, only the zeroth order and the linear term contribute
to the expansion.?’ Writing out the electron density and collecting terms up to first
order gives:

Pl 11) = (WSO (7|50 ()OS0 (7)) (20)
= (WRSO(3) |0 () WSO (7)) (21)
+ SO RO (), O SOT)) + . (22)

The unperturbed and first order perturbed electron densities are identified.

PO(T) = (UEFO ) 5O (7) [ O (7)) (23)
—Zso (7) @i (P WSO (7)| By | 05O (7)) (24)
PO, 1) = (WESO(P)|[RD (1), o (7)) W0 (7)) (25)
—Zcp (7)o S (TS O @) RO (1), E] [ 0F5O (7)) (26)

Defining the perturbatlon density matrices D((l?).
Dy = (WSO (7) B0 SO (7)) (27)

D(l.)(t) _ <\I]KS,(O)(?)

ar

[ (8), Eu][ 05O 7)) (28)

Hence, the unperturbed and first order perturbed electron densities can be written

as.
* 0
Zgo Pl (7)) DY (29)



Zgo 7Y okS(7) D) (1) (30)

The hamiltonian of the system is already expanded in orders of perturbation. In

general:
H(7 ) =Y HESO(7 1) =3 b : (31)

n=1 n=1 az

s> " (7, 1) = (@IS (7RSS + 5™ (1) + 0G0 ()]0 (7)) (
= (X5 () 0RES|pFS (7)) + (ES (MW (D|FS (7)) (33
+ (S (PO GL () |0F 5 (7)) (
= Rl + 550 (1) + 0% (1)

izgs does not contribute to any perturbations, since it does not depend on the electron
density. Similar to the electron density and the time propagation operator, only terms
up to the first order perturbation is considered. The matrix elements are evaluated.

J) = (PRSPt )Iso (7)) (36)
|7

@) [ 1 |

=Z<soa (M)t (7)== [l ()5 (7)) DY (8) (38)
, |7 |

7t N
= ?Id |15 (7)) (37)

1 —/ 1 —> —/
=2 ani D (O guirs = (0 (M) () | e o () (7))

0 bai(t) = <¢§S<*>w§§é< >\¢KS<*>> (40)
()| [ 57 07 A7) (1)

The expectation values of time-independent operators P can be evaluated. The first
order perturbation of the expectation value becomes:

(WS (T, 0[P (7, 1) 1) = (wRS0)(
— (BRSO

)" PemfOE RSO ()) - (42)
IR @), PIORSOG)  (43)

*i *i

However, it is more convenient to write &) (t) in terms of frequency, since frequency
dependent properties are desirable and easier to handle. The domain-transformation
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is achieved by the Fourier transform.

o0
(1) = / AWM=ty
—o0
The expectation value of the time-independent operator can then be written as

(W10 (7) (5 0), POy = [

[e.9]

(44)
e (RSO () [k D, P)|TES O (7)) dw

(45)
The linear response of the expectation value is:?

(D(t, F(t))| Plo(t, Z / t — 7@ |[Py(t), Our(7)]| @) dr

(46)
O,.1(7) is a perturbation operator, P;(t) the interacting representation of P, and
AN

F,(7) is the field strength. Identifying the hamiltonian for the linear response and
defining the linear response function ((P;(t); Oa.;(7)))

= ZFa(T)O I(T)

(47)
(Pr(); O (1)) = 2200t — 7@ [Pr(1), Ous (7)]| 84 (48)
Hence, the expectation value for the linear response can be written as
(@(1, F(£))|[Pl(t, F(1)™ = /OO<<151(75); HW(t)))dr (49)

The transformation from time domain to frequency domain, for the first order per-
turbed hamiltonian, is similarly done by the Fourier transformation

= / HW et (50)

The linear response of the expectation value becomes:

—>

(@(t, F (1)) Plo(t, (1)) = /_oo e (Pr(t); HY))wdw (51)

e}

Thus, the linear response function can then be identified as

o = (SO )[R, P[5 0(7)) (52)

7



7 still needs to be parameterized, and in order to do so, a new time-independent

operator () is considered. The operator Q is made time-dependent by an unitary
transformation.

Q(t) = e Qe™ (53)

The expectation value of Q(t) is
(UES(7, 0] Q)[WH(7, 1)) = (WFHON(7)| e F Qe D" O N RSO (7)) (54)
= (UESO @) QRO (7)) (55)

Taking the derivative with respect to time on both sides of the previous equation
results in a zero on the right hand side, since neither depend on the time.

0

(S, QOIS (7, ) + (057, ) 220 s )

+ (TSP, 1)]Q(1) tI‘PKS(?,t»:O (56)

The derivative of the wavefunction is given by the time-dependent Schrodinger equa-
tion.
0 1

ot zh(

Thus, substituting the expression into the eqn. (56), the Ehrenfest theorem is ob-
tained. The Ehrenfest theorem describes how the expectation value evolves in time.

S URS(P 1)) = — (HFS(7,t) + HO)(7, 1) [055(7 1)) (57)

= L s () + B 0)Q01 0@ 0) + (w570 220 ks gy

iR ot
¥ QUES(T, 1) + AINT O)IWS(T,0) =0 (58)
o (s i 220 4 (G0, 7570+ BTV =0 (59

In order to collect all terms in one commutator, the first term is rewritten.

eli(t)
(s (7, in 22 s 7)) = inqus (7, 2 9 sy (o)
= im0, S w6

Hence, the Ehrenfest theorem can be written as:

(WSS OQ), TS0 + ADT,0) + il ess ) =0 (62)



This equation can be expanded in orders of perturbations. Including only the un-
perturbed and first order perturbation the equation becomes:

)
(WS OF)[Q, AU, 1) + in D) wrso ),

i (\I/KS7(O)(7)\{ A( [ —& t)Qe HKS( )]e"%(t)} |\I/KS,(O)(7~’>>(1) =0 (63)

The last term is the first order correction and is denoted ()(). It can be rewritten
by expanding the exponential time propagation operator and neglecting higher order
terms.

<>(1) _ <\I,KS,(O)(7>)| {ef%(t) [e—l%(t)Qef%(t)’ﬁKS(?7 t)]e—fs(t)} |\IJKS,(O)(?)>(1) ( )
= (WSO QU+ RO IS (7, 4)(1 - KO) (65)

= (L4 RO (7,01 = KO Q w50 (7)) (66)

) (67)

= (UESO@)[Q, RO (1)), A5 O(F, )] + AW (7, )] [wHSO (7))

~

Substituting ()¥) into the eqn. (63) and moving (UES©(P)[[Q, HL)(7, 1)) [ WESO (7))
over to the other side by using the commutator property [a,b] = —[b, a].

(WSO (F)[Q RO 0), SO 0] + B, 0) + in 2Oy gresio )

= (WESO(P)|[AL)(7, 1), Q)UK (7)) (68)

Writing 2 () and HM(t) in their Fourier transformations and rearranging the equa-
tion.

eSO QD RSO 0] + FESO

+ hwi RSO (7 ))dw—/ e RSO (P) | [H Loy, QUUUHS (7)) (69)

— 00

Since Fourier transformations are uniquely determined, the following can be con-
cluded.

(UESOR) Q. [#D, XSO )] + HAESW 4 hwr(D]| @K (7))
= (URSO(7)| (AL, QIEFSO(7)) (70)



In principal, this is the fundamental equation of LR-TD-DFT, however, for the pur-

pose of numerical implementation, it is desirable to rewrite it as a system of equations.

Starting with 7 and writing:

A = RoniBai = d'r (71)

q' and 14‘(,,1 ) are defined as:

ql = ( By ) kD = | kY, (72)

The time-independent operator Q can then be expressed as a linear combination of
the elements in q, resulting in a set of equations.

(WESO)(7) g, [#0, HESO(7 )] + HESD 4 ha(D]| e RSO (7))
— (OESO ) AL, g eESOF)) (73)

w,

Similar, writing HSQH as:

w ea:t - Z hw ,at (74)

Biei = i + 00 (75)

w,at =Ju ,at

The operators in A&X5() can be rewritten.

(51}0
B0 ol = ngb] O+ (o |/ XC 07 0d7 |k (7)) (76)

—Z r)lﬁw ()5 (7)) (77)

<wKS<><?>[ ) B[ 95 O(F)) (78)
() [ Sel S @ eS0T sy )
SO s Ebmw““( ) (50)
_ dxc KS,(0)(7 KS,(0
;[?_ﬁ 5] @SR, B
51)

10



1 6@XC:| KS/—>\ KS/ —' 1 5UXC KS
S5t = = (o (M) " (7 )= + (M)
T ], ~ O Ty + e )
(82)
Substituting ijas;u) and &\ into eqn. (73) and rearranging gives:
(WSO ()] | [al, SO, ]| wESOF))R) + 37 (WF9O(7)[q,

aibj

} (WSO (P, Byl W50 (7))
aibj

1 0
x [WESO(7 {.,, S
R T
(SO g, q SO (7)) D = (WSO AL

weztv ”\I]KS (?» (83)
The electronic Hessian matrix E, the overlap matrix S and the first order Hamilto-

nian matrix HSJ ixt are defined.

1 o0
\IJKS,(O) - XC \IJKS,(O) - T 1% \IJKS,(O) —> 84
><| (7’)) |—>r/_—>7,| 5p(—>r) mbj< (r)’[qa b]” (T>> ( )

S = (VESO(7)[qf, g]|wrO (7)) (85)
HO ), = (WESO@) AL, &) w0 7)) (86)

The expression for kY can finally be established.

(E — hwS)k(D = HS | (87)
g Rc(j) = (E - th) Hw ext (88)

With the parameterization of k) the linear response function can be rewritten as:?*

(Pr(t); HY) o = (UESOF)[[50), P 0RO (7)) (89)
= (UFSO)[qf P]!WKS(O)( )k (90)
= PHE - hws)THY ), (91)

11



P being the matrix element:
P = (UF5O(7)|[q, PUFSO(77)) (92)

The excitation energies are calculated as poles of the linear response function, and
the transition dipole moments as residuals by the electronic dipole moment operator
EN . . : . :

it. Localizing the poles is equivalent to solving the matrix problem.

E = hwS (93)

3 Working equation of LR-TD-DFT

The application of response theory to TD-DFT resulted in the following linear re-
sponse function:?*

(Pr(t); D)) = PHE — hwS)TH] L, (94)

The vertical excitation energy from the ground state |\I/éo)> to the I-th excited state

\\1/§°>> is evaluated as a pole of the linear response function. The linear response
function has a pole if and only if E = hwS, which can be formulated as the following
pole condition.

hwS —E =0 (95)
The principal propagator matrix M is defined as:
M =hS - E (96)

The principal propagator matrix is singular, when the frequency is:

w=+ S=1 (97)

Now, one can search directly for the poles of the linear response function.?> However,
if the principal propagator matrix is singular, then there exists a non-trivial solution

for the linear equation:
(hwS —E)X = 0 (98)

X being a vector containing the corresponding eigenstates. Rearranging the equation
and forming the following eigenvalue problem:

EX = hwSX (99)

12



All excited states must be generated from a reference state and a complete basis set
consisting of all excitation and de-excitation operators {¢hg, 4hg, °hy, 9hy, ...°hy, hy,}.
The superscripts e and d stand for excitation and de-excitation respectively, and n
is the number of electrons involved. The KS ground state is the reference state for
TD-DFT. Thus all excited states can be generated by:

[0) = h, |0 (100)

The operators are called state transfer operators, and the time-dependent operators
q from the expression of the electronic Hessian matrix E, the overlap matrix S, per-
turbation matrix P and the first order Hamiltonian matrix Hi{lxt are expressed in
terms of the state transfer operators. The following notation is used.?

. ey At

() (4) (m)
N eflz q'q

h, = =1 102

(103)

With a complete set of state transfer operators, the linear response function can be
written as:

Miy: My, - - TI(HS,th)
<<151(t);19£”>>w:(TI(PT) TI (P ) My, May - T,HO),)
(104)

TT(P') and T,(HV

wext) are property gradient vectors and are defined as:

TT(P') = (TT(PT) TF(PY)) (105)
= (RS O[T, PwKSO) (RSO, PIURs))  (100)

eT (H(l) ) <\I,KS,(0)|[121(1) ATH\I,KS,(O)>
TI(HS)ext) — 1 w,ext — w,extr d (107)

(wEs O, §)[wEsO0)

13



The M;; matrix element is the principal propagator matrix.
Mi1 = hwS11 — Eqq (108)

With the overlap matrix element S;; and the Hessian matrix element Eq;.
g . _ eeSll edS11 _ <\IJKS’(O)H(A], qTH\IjKS,(O)> <\IJKS( )Hq Q]|\I’KS( )>
11 — deS11 ddS11 - <\IJKS’(O)|[(:1T,qT”\IfKS’(O)> <\I,KS( H H\IJKS >
(109)

eeR edE
- (B uE) )

eeE <\I’KS ,(0) |[ [q’ HKS \IIKS + Z @KS T,Eai]|\I/KS’(O)>

aibj

1 MXC} K5,(0 2 KS
X | oy | (WO, Byl [9EHO)(111)
LT =7 6p(T) aibj ’

edE11 _ <\I/KS’(0)|[QT, [qT,ﬁKS’(O)m\IfKS’(O)) Z(@KS |[ T Em”\I/KS (0))>
aibj

1 N 519)(_(3

7 =71 p(7)

} (WSO, By, ][ WSOy (1)
aibj

dep | = <\IJKS,(0)|[(A1, [, F[KS,(O)]”\I,KS,(O)> Z<\I,KS,(O)H€L Eai]|¢!K57(0)>

aibj

1 517)(0} KS.(0 A KS
X == + — (v ’()anEb‘”‘I’ ’(O)> (113)
LT =7 0p(7) ] i ’

My, = <\1;K57(0)|[q, [qT7]f[KS,(O)m\I,KS,(O)> Z<\IJKS (o)H H\IJKS( )>
atibj
1 (5’{])(0 ‘| KS ~ KS
LT =7 op(7) aibj ?

The equation for the linear response function is exact, when all possible state trans-
fer operators are included. The first-order polarization propagator approximation
(FOPPA) includes only the one-electron state transfer operators, thus the expansion
is no longer exact.®? The FOPPA matrix equation can be written in terms of the

14



solution vector X(w).

X(w

(Pr(t); HDY),, = (eT"{(P*) dT"{(P*)) (dX(“’D (115)

—1
ex(w) s ceq . edS11 B R, edEll °Ty (HSLXO (116)
X (w) de§;; 948y, °E;; Eq,; dTl(H(llxt)

w,

Evaluation of the overlap matrices gives:

€08y, = (WESO)|[g, §i[wES©)y — (gKS.O) gk — 1 (117)
*I811 = (¥70)[q, )| w"5O) = 0 (118)
S = (WO, g1 w5 0) = 0 (119)
98,1 = (WO g1, g][WH ) = 08y = —1 (120)

The electronic Hessian matrices can similar be evaluated, and the expressions are
given later in this section. It is noted that the electronic Hessian is no longer ex-
act, since only one-electron state transfer operators are used, thus the matrices are
denoted differently. Noticing that ®°E;; = (49Eq;)* as well as ®4E;; = (4°E;)*,
and by using the new labels ®®*E;; = A and ®*4E;; = B, the solution vector can be
rewritten as:®%

X (w) 1 0 A B B °Ty (H{ )
(dx<w>> = |h (0 —1) - (B* A*) (dT1<H£},th>> 2
4 Explicit expressions for the A and B matrices

In order to derive the expressions for the A and B matrices and to interpret the
solution vector X(w), one needs to consider the time-dependent KS equation and
the orthonormality condition.

a

50,1, F) = h(iT, 1 D)l (i.1, P (122)
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(56t el 5,8, F)) = 6 (123)

F is included to indicate, that the time-dependent KS equation is solved 1terat1vely
with a perturbing field F present. The field F is given by the dipole approximation:?

1 ) )
Folt) = Fo(w)cos(wt) = §fa(w)(em + e (124)
If assumed that any arbitrary variation of the wavefunction is allowed, then Frenkel’s

variational principle is equivalent to the time-dependent KS equation (Proof in ap-
pendix A), and one can write:26:27

(A0 7 = in g 150 ) el P G Py ()

The perturbed spmorbltals ©BS (4t F ) are then expanded in a set of unperturbed
spinorbitals {¢® (i)} obtained by solving the KS equation.?

all

Z K5 (i) Uya(F) (126)

Uqa(j-: ) is the expansion coefficient. Insertlng the expansion into eqn. (125) gives:

(h(rl,t F) - ) azllgo >—ea azllw > (127)

Left multiplication with another unperturbed spinorbital gpfs and integration over
all space yields:

all all

Z o(F)Uga(F) = €a(F) Z‘Squqa(]:) (128)
q
qu(j-: ) being the time-dependent perturbed KS matrix:
Ku(F) = (0“7, F) — @ﬁ—lw °()) (129)

In the framework of perturbation theory, qu(j-: ) ea(j-: ), and Uy(t, 7 ) are expanded
in orders of the perturbing field.?

Kpo(F) = KO + = Z]—“ KUY 4. (130)

apq
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=e® 4 = ZF (131)

Upa( F) = UQ + 3 Z Fal)UD, + ... (132)

Considering terms up to first order, the equation becomes:

all
> (K5 S A+ 5 SR
q

all

all
= 0)2%_2:;: JUsha + 3 Z;r egjaz U (133)

The equation can be reduced:

all all all

> (K@U + KEOUD) = €0 Y 0l + D000 (13
q q q
The spinorbitals are similar expanded in orders of the perturbing field:
OES(i,4, F) = Z]—“ (Uofgp(w) WUl (- )e—iwt) + ..
N (135)
K,y(F) can then be written as:
= N1T = = . a .
Kpo(F) = @y 0)[A(T, £, F) — iz log () (136)

= (o0 + 5 ¥ Rt (U@ + UG cwiet) s

The unperturbed time-dependent KS matrix is identified as:

R N S 00 I 10 i
K1(72)<F) = <@£{S(Z)|{ - §V22 + Ueact(rivt) +/ |,,7’Z(i —) dT’j * 6);%—70(_:))

—mmh¢ 5(0)) = V8, (140)

17



The first order perturbed time-dependent KS matrix is:
1 . iw — 1w
— (3T R0 (UL e + Uy (e )

lieos .

X (——)VZ- + Vet (77, 1) +
Z Fal (U&( Je! + U§%3q<—w>e—w)>
= < Zf (UL w)e™
Tjs - 5UXC(771') L0 1 KS

drj + —=—+ —th— ¢|= o
+/|ﬁ—77ﬂ ri + 5p(7) i 2%:.7—" (W) (1)

1) iwt
KU, @) ) + ce

I —
{ - §Vz2 + @emt(rivt>

(141)

(142)

(143)

(144)

(145)

(146)

c.c. denotes the complex conjugate, and if assumed that the spinorbitals are real:

K(l) <Z]: Uc(quzp(w)e_wt { _vz2 + Veat (73, 1)
5@X0(ﬁ) 0
m el hat}‘zf( IS i)

1 —iwt
X Uévgq(w)e >

— (SRS + S (/c - nwsm)

J tu

(US;< Jous + U >6tj)

Krst, and S,s are defined as:

Krwen = (550055 )] ( L ”XC@) oS ()5 ()

|7 — 775l op(r;)

Srs = 57“5

18
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(148)

(149)

(150)

(151)
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The matrix containing the unperturbed expansions coefficients is diagonal.
U = b,0 (154)

Eqn. (134) is simplified by using the expression for the unperturbed KS matrix and
the expansion coefficient matrix:

UL+ K, = UL, + €l)64a (155)
& () —eMull), = D s. — KL, (156)

Assuming p # a, the parameterization of the matrix containing the first order ex-
pansion coefficients can be obtained:

~ K,
1 _ o,pa
ul), = SORO] (157)
ep - ea

Inserting the expression for the first order perturbed time-dependent KS matrix and
rearranging:

occ vir

U8ef? = ) = = (AL ) 4 3% (Ko — o)
i tu
X (U ()8 + UL (w )5tj)) (158)
o (S0 BOIeES () = (e 56+ZZ( s~ 1S, )
x UD (w) +ZZ( i — )Uoﬁlg] (w) (159)

The following two matrices are defined:?%28
Apags = <€1(30) - ego))(quéaj + Kpagj (160)

The equation can then be written in a more compact form:
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occ vir

S DAY @) =Y ([Apa,qj — S0 (@)

Jj g

a,q)

+ [Bpa,qj - hwsrs} U(l)y‘*(w)) (162)

If the perturbation is real (-w), then Ua @ = Ua 4j» and if the perturbation is imagi-
nary (+w), then US;]* = —Uo(:;j.?’ Thus the equation can be rewritten:

occ vir

SO0 = 200 (Vs ] % [Py 1. ] )

< (£ U (w) (163)

This can be written as a matrix equation:® 2528

cH" . A B 1 0 U (—w)
_<dH53)ext “Ea) o )| ot e

q-1
1 0 A B “H . U (—w)
- (0 ‘1> It A*> (dHi et \ U8 (@) 1o
The matrices containing the expansions coefficients can be identified as the solution
vectors:
1 e
U (~w)\ _ (*X(w) (166)
UM (w) 91X (w)
For convenience, the transition vectors °X and 94X are labeled X and Y respectively.

Recalling that the vertical excitation energy is calculated as poles of the linear re-
sponse function, the working equation for LR-TD-DFT can finally be stated:?®

@26 R e
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5 Conclusion

We have formulated a new version of response theory namely the first-order polar-
ization propagator approximation, and it is termed FOPPA. We have given a very
detailed introduction to the method while utilizing the general framework of response
theory. We have provided expressions for the matrix elements that enter when solv-
ing the matrix equations related to FOPPA. We have provided a presentation that
will help new researchers to the gain and understanding of the underlying assump-
tions and tricks within response theory.

We plan to implement these equations in the electronic structure program Dalton
QCP.2%:39 We have given a detailed derivation of the equations that form the basis
for FOPPA, and thereby we have provided a guide for new researchers to enter the
world of response theory. We hope that this detailed derivation will encourage new
and young researchers to engage in the further developments of response theory.
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8 Appendix A

Frenkel’s variational principle states:

9 .
<5ﬁj’ih§ —H(t)|¥)=0 (168)
U is the many-electron wavefunction consisting of the spinorbitals {¢;} and H(t) is
the sum of one-electron hamiltonians {h;(t)}. Assuming that any arbitrary variation
of the wavefunction is allowed, then Frenkel’s variational principle is equivalent to
the time-dependent Schrodinger equation. If the variation of the wavefunction is

given by:

0W) = e(ih% — H(t)|D) (169)
¢ being some parameter, and if the expectation value:
(oW |ow) =0 (170)
Then we must have:
00) = e(z’h% — H(t)|¥) =0 (171)

This can be rearranged to give the time-dependent Schrodinger equation.?”

) .
ih ) = (D] ) (172)
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Now, if this is true, then the following must also be true.

(f%(t) - h%) 6a) = calia) (173)

Which validates the use of Frenkel’s variational principle in eqn. (125). O
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