REFERENCES
Adams, J.M., Faure, H., Faure-Denard, L., McGlade, J.M., & Woodward,
F.I. (1990). Increases in terrestrial carbon storage from the Last
Glacial Maximum to the present. Nature , 348 , 711–714.
https://doi.org/10.1038/348711a0
Allison, V.J. (2002). Nutrients,
arbuscular
mycorrhizas and competition interact to influence seed production and
germination success in Achillea millefolium . Functional
Ecology , 16 , 742–749.
Bai, Y., Wu, J., Clark, C.M., Naeem, S., Pan, Q., Huang, J., Zhang, L.,
& Han, X. (2010). Tradeoffs and thresholds in the effects of nitrogen
addition on biodiversity and ecosystem functioning: evidence from inner
Mongolia Grasslands. Global Change Biology , 16 , 358–372.
https://doi.org/10.1111/j.1365-2486.2009.02142.x
Basto, S., Thompson, K., Phoenix, Gl, Sloan, V., Leake, J., & Rees, M.
(2015). Long-term nitrogen deposition depletes grassland seed banks.Nature Communications , 6 , 6185.
https://doi.org/10.1038/ncomms7185
Bogdziewicz, M., Crone, E.E., Steele, M.A., Zwolak, R., & Rafferty, N.
(2017). Effects of nitrogen deposition on reproduction in a masting
tree: benefits of higher seed production are trumped by negative biotic
interactions. Journal of Ecology , 105 , 310–320.
https://doi.org/10.1111/1365-2745.12673
Bowman, W.D., Gartner, J.R., Holland, K., & Wiedermann, M. (2006).
Nitrogen critical loads for alpine vegetation and terrestrial ecosystem
response: are we there yet? Ecological Applications , 16 ,
1183–1193.
Brys, R., Jacquemyn, H., & De Blust, G. (2005). Fire increases
aboveground biomass, seed production and recruitment success ofMolinia caerulea in dry heathland. Acta Oecologica ,28 , 299–305. https://doi.org/10.1016/j.actao.2005.05.008
Crowley, K.F., McNeil, B.E., Lovett, G.M., Canham, C.D., Driscoll, C.T.,
Rustad, L.E., Denny, E., Hallett, R.A., Arthur, M.A., Boggs, J.L.,
Goodale, C.L., Kahl, J.S., McNulty, S.G., Ollinger, S.V., Pardo, L.H.,
Schaberg, P.G., Stoddard, J.L., Weand, M.P., & Weather, K.C. (2012). Do
nutrient limitation patterns shift from nitrogen toward phosphorus with
increasing nitrogen deposition across the Northeastern United States?Ecosystems , 15 , 940–957.
https://doi.org/10.1007/s10021-012-9550-2
DiManno, N.M., & Ostertag, R. (2016). Reproductive response to nitrogen
and phosphorus fertilization along the Hawaiian archipelago’s natural
soil fertility gradient. Oecologia , 180 , 245–255.
https://doi.org/10.1007/s00442-015-3449-5
Domingues, T.F., Ishida, F.Y., Feldpausch, T.R., Grace, J., Meir, P.,
Saiz G., Sene, O., Schrodt, F., Sonké, B., Taedoumg, H., Veenendal,
E.M., Lewis, S., & Lloyd, J. (2015). Biome-specific effects of nitrogen
and phosphorus on the photosynthetic characteristics of trees at a
forest-savanna boundary in Cameroon. Oecologia , 178 ,
659–672. https://doi.org/10.1007/s00442-015-3250-5
Elser, J.J., Bracken, M.E.S., Cleland, E.E., Gruner, D.S., Harpole,
G.W., Hillebrand, H., Ngai, J.T., Seabloom, E.W., Shurin, J.B., &
Smith, J.E. (2007). Global analysis of nitrogen and phosphorus
limitation of primary producers in freshwater, marine and terrestrial
ecosystems. Ecology Letters , 10 , 1135–1142.
https://doi.org/10.1111/j.1461-0248.2007.01113.x
Fujita, Y., Venterink, H.O., Van Bodegom, P.M., Douma, J.C., Heil, G.,
Hölzel, N., Jabłońska, E., Kotowski, W., Okruszko, T., Pawlikowski, P.,
de Ruiter, P.C., & Wassen, M.J. (2014). Low investment in sexual
reproduction threatens plants adapted to phosphorus limitation.Nature , 505 , 82–86. https://doi.org/10.1038/nature12733
George, T.S., Hinsinger, P., & Turner, B.L. (2016). Phosphorus in soils
and plants–facing phosphorus scarcity. Plant and Soil ,401 , 1–6. https://doi.org/10.1007/s11104-016-2846-9
Graciano, C., Goya, J.F., Frangi, J.L., & Guiamet, J.J. (2006).
Fertilization with phosphorus increases soil nitrogen absorption in
young plants of Eucalyptus grandis . Forest Ecology and
Management , 236 , 202–210.
https://doi.org/10.1016/j.foreco.2006.09.005
Groom, P.K., & Lamont, B.B. (2009). Phosphorus accumulation in
Proteaceae seeds: a synthesis. Plant and Soil , 334 ,
61–72. https://doi.org/10.1007/s11104-009-0135-6
Harpole, W.S., Ngai, J.T., Cleland, E.E., Seabloom., E.W., & Borer,
E.T. (2011). Nutrient co-limitation of primary producer communities.Ecology Letters , 14 , 852–862.
https://doi.org/10.1111/j.1461-0248.2011.01651.x
Harpole, W.S., & Suding, K.N. (2011). A test of the niche dimension
hypothesis in an arid annual grassland. Oecologia , 166 ,
197–205. https://doi.org/10.1007/s00442-010-1808-9
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer,
E.T., Chase, J., Fay, P.A., Hautier, Y., Hillebrand, H., MacDougall,
A.S., Seabloom, E.W., Williams, R., Bakker, J.D., Cadotte, M.W.,
Chaneton, E.J., Chu, C., Cleland, E.E., D’Antonio, C., Davies, K.F.,
Gruner, D.S., Hagenah, N., Moore, J.L., Morgan, J.W., Prober, S.M.,
Risch, A.C., Schuetz, M., Stevens, C.J., & Wragg, P.D. (2016). Addition
of multiple limiting resources reduces grassland diversity.Nature , 537 , 93–96. https://doi.org/10.1038/nature19324
HilleRisLambers, J., Harpole, W.S., Schnitzer, S., Tilman, D., & Reich,
P.B. (2009). CO2, nitrogen, and diversity differentially
affect seed production of prairie plants. Ecology , 90 ,
1810–1820. https://doi.org/10.2307/25592691
Johnson, D., Leake, J.R., & Lee, J.A. (1999). The effects of quantity
and duration of simulated pollutant nitrogen deposition on root-surface
phosphatase activities in calcareous and acid grasslands: a bioassay
approach. New Phytologist , 141 , 433–442.
https://doi.org/10.1046/j.1469-8137.1999.00360.x
Li, X., Li, Q., Yang, T., Nie, Z., Chen, G., & Hu, L. (2016a).
Responses
of plant development, biomass and seed production of direct sown oilseed
rape (Brassica napus ) to nitrogen application at different stages
in Yangtze River Basin. Field Crops Research , 194 , 12–20.
https://doi.org/10.1016/j.fcr.2016.04.024
Li, Y., Hou, L., Song, B., Yang, L., & Li, L. (2017). Effects of
increased nitrogen and phosphorus deposition on offspring performance of
two dominant species in a temperate steppe ecosystem. Scientific
Reports , 7 , 40951. https://doi.org/10.1038/srep40951
Li, Y., Niu, S., & Yu, G. (2016b). Aggravated phosphorus limitation on
biomass production under increasing nitrogen loading: a meta-analysis.Global Change Biology , 22 , 934–943.
https://doi.org/10.1111/gcb.13125
Liu, Y., Mu, J., & Niklas, K. (2012). Global warming reduces plant
reproductive output for temperate multi-inflorescence species on the
Tibetan plateau. New Phytologist , 195 , 427–436.
https://doi.org/10.1111/j.1469-8137.2012.04178.x
Liu, Y., Zhao, C., Guo, J., Zhang, L., Xuan, J., Chen, A., & You, C.
(2021). Short-term phosphorus addition augments the effects of nitrogen
addition on soil respiration in a typical steppe. Science of the
Total Environment , 761 , 143211.
https://doi.org/10.1016/j.scitotenv.2020.143211
Long, M., Wu, H.H., Smith, M.D., La Pierre, K.J., Lü, X.T., Zhang, H.Y.,
Han, X.G., & Yu, Q. (2016). Nitrogen deposition promotes phosphorus
uptake of plants in a semi-arid temperate grassland. Plant and
Soil , 408 , 475–484. https://doi.org/10.1007/s11104-016-3022-y
Luzuriaga, A.L., Escudero, A., Olano, J.M., & Loidi, J. (2005).
Regenerative role of seed banks following an intense soil disturbance.Acta Oecologica , 27 , 57–66.
https://doi.org/10.1016/j.actao.2004.09.003
Ma, B., & Herath, A. (2016). Timing and rates of nitrogen fertiliser
application on seed yield, quality and nitrogen-use efficiency of
canola. Crop & Pasture Science , 67 , 167–180.
https://doi.org/10.1071/CP15069
Marcelis, L.F.M., Heuvelink, E., Hofman-Eijer, L.R.B., Bakker, J.D., &
Xue, L.B. (2004). Flower and fruit abortion in sweet pepper in relation
to source and sink strength. Journal of Experimental Botany ,55 , 2261–2268. https://doi.org/10.1093/jxb/erh245
Marklein, A.R., & Houlton, B.Z. (2012). Nitrogen inputs accelerate
phosphorus cycling rates across a wide variety of terrestrial
ecosystems. New Phytologist , 193 , 696–704.
https://doi.org/10.1111/j.1469-8137.2011.03967.x
Menge, D.N.L., & Field, C.B. (2007). Simulated global changes alter
phosphorus demand in annual grassland. Global Change Biology ,13 , 2582–2591. https://doi.org/10.1111/j.1365-2486.2007.01456.x
Niklas, K.J., Owens, T., Reich, P.B., & Cobb, E.D. (2005).
Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth.Ecology Letters , 8 , 636–642.
https://doi.org/10.1111/j.1461-0248.2005.00759.x
Ostertag, R. (2010). Foliar nitrogen and phosphorus accumulation
responses after fertilization: an example from nutrient-limited Hawaiian
forests. Plant and Soil , 334 , 85–98.
https://doi.org/10.1007/s11104-010-0281-x
Patel, K.D., Chawla, S.L., Patil, S., & Sathyanarayana, E. (2017).
Interaction effect of nitrogen and phosphorus on growth, flowering and
yield of bird of paradise (Strelitzia reginae ).International Journal of Current Microbiology and Applied
Sciences , 6 , 1566–1570.
https://doi.org/10.20546/ijcmas.2017.609.192
Peñuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M.,
Bopp, L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin,
E., Vicca, S., Obersteiner, M., & Janssens, I.A. (2013). Human-induced
nitrogen-phosphorus imbalances alter natural and managed ecosystems
across the globe. Nature Communications , 4 , 2934.
https://doi.org/10.1038/ncomms3934
Peng, Y., Li, F., Zhou, G., Fang, K., Zhang, D., Li, C., Yang, G., Wang,
G., Wang, J., & Yang, Y. (2017). Linkages of plant stoichiometry to
ecosystem production and carbon fluxes with increasing nitrogen inputs
in an alpine steppe. Global Change Biology , 23 ,
5249–5259. https://doi.org/10.1111/gcb.13789
Petraglia, A., Tomaselli, M., Mondoni, A., Brancaleoni, L., &
Carbognani, M. (2014). Effects of nitrogen and phosphorus supply on
growth and flowering phenology of the snowbed forb Gnaphalium
supinum L. Flora , 209 , 271–278.
https://doi.org/10.1016/j.flora.2014.03.005
Phoenix, G.K., Emmett, B.A., Britton, A.J., Caporn, S.J.M., Dise, N.B.,
Helliwell, R., Jones, L., Leake, J.R., Leith, I.D., Sheppard, L.J.,
Sowerby, A., Pilkington, M.G., Rowe, E.C., Ashmore, M.R., & Power, S.A.
(2012). Impacts of atmospheric nitrogen deposition: responses of
multiple plant and soil parameters across contrasting ecosystems in
long‐term field experiments. Global Change Biology , 18 ,
1197–1215. https://doi.org/10.1111/j.1365-2486.2011.02590.x
Pierce, S., Bottinelli, A., Bassani, I., Ceriani, R.M., & Cerabolini,
B.E.L. (2014). How well do seed production traits correlate with leaf
traits, whole-plant traits and plant ecological strategies? Plant
Ecology , 215 , 1351–1159.
https://doi.org/10.1007/s11258-014-0392-1
Ronnenberg, K., Hensen, I., & Wesche, K. (2011). Contrasting effects of
precipitation and fertilization on seed viability and production ofStipa krylovii in Mongolia. Basic and Applied Ecology ,12 , 141–151. https://doi.org/10.1016/j.baae.2010.12.002
Ruffel, S., Krouk, G., Ristova, D., Shasha, D., Birnbaum, K.D., &
Coruzzi, G.M. (2011). Nitrogen economics of root foraging: transitive
closure of the nitrate-cytokinin relay and distinct systemic signaling
for N supply vs. demand. Proceedings of the National Academy of
Sciences of the United States of America , 108 , 18524–18529.
https://doi.org/10.1073/pnas.1108684108
Shi, Y., Gao, S., Zhou, D., Liu, M., Wang, J., Knops, J.M.H., & Mu, C.
(2017). Fall nitrogen application increases seed yield, forage yield and
nitrogen use efficiency more than spring nitrogen application inLeymus chinensis , a perennial grass. Field Crops Research ,214 , 66–72. https://doi.org/10.1016/j.fcr.2017.08.022
Sims, L., Pastor, J., Lee, T., & Dewey, B. (2012a). Nitrogen,
phosphorus and light effects on growth and allocation of biomass and
nutrients in wild rice. Oecologia , 170 , 65–76.
https://doi.org/10.1007/s00442-012-2296-x
Sims, L., Pastor, J., Lee, T., & Dewey, B. (2012b). Nitrogen,
phosphorus, and light effects on reproduction and fitness of wild rice.Botany , 90 , 876–883. https://doi.org/10.1139/b2012-057
Singh, S., Thenua, O., & Singh, V. (2018). Effect of phosphorus and
sulphur fertilization on yield and quality of mustard & chickpea in
intercropping system under different soil moisture regimes.Journal of Pharmacognosy and Phytochemistry , 7 ,
1520–1524.
Solis, A., Vidal, I., Paulino, L., Johnson, B.L., & Berti, M.T. (2013).
Camelina seed yield response to nitrogen, sulfur, and phosphorus
fertilizer in South Central Chile. Industrial Crops and Products ,44 , 132–138. https://doi.org/10.1016/j.indcrop.2012.11.005
Stephenson, A.G. (1981). Flower and fruit abortion: Proximate causes and
ultimate functions. Annual Review of Ecology and Systematics ,12 , 253–279.
Su, L., Yang, Y., Li, X., Wang, D., Liu, YC., Liu, YZ., Yang, Z., & Li,
M. (2018). Increasing plant diversity and forb ratio during the
re-vegetation processes of trampled areas and trails enhance soil
infiltration. Land Degradation & Development , 29, 4025-4034.
https://doi.org/10.1002/ldr.3173
Suriyagoda, L.D., Ryan, M.H., Renton, M., & Lambers, H. (2014). Plant
responses to limited moisture and phosphorus availability: a
meta-analysis. Advances in Agronomy , 124 , 143–200.
https://doi.org/10.1016/B978-0-12-800138-7.00004-8
Tang, Z., Deng, L., An, H., Yan, W., & Shangguan, Z. (2017). The effect
of nitrogen addition on community structure and productivity in
grasslands: A meta-analysis. Ecological Engineering , 99 ,
31–38. https://doi.org/10.1016/j.ecoleng.2016.11.039
Vitousek, P.M., Porder, S., Houlton, B.Z., & Chadwick, O.A. (2010).
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen-phosphorus interactions. Ecological Applications ,20 , 5–15. https://doi.org/10.1890/08-0127.1
Wang, J.F., Xie, J.F., Zhang, Y.T., Gao, S., Zhang, J.T., & Mu, C.S.
(2010). Methods to Improve Seed Yield of based on Nitrogen Application
and Precipitation Analysis. Agronomy Journal , 102 ,
277–281. https://doi.org/10.2134/agronj2009.0254
Wang, M., Hou, L., Zhang, Q., Yu, X., & Zhao, L. (2017). Influence of
Row Spacing and P and N Applications on Seed Yield Components and Seed
Yield of (Siberian Wildrye L.). Crop Science , 57 ,
2205–2212. https://doi.org/10.2135/cropsci2016.08.0713
Willis, S.G., & Hulme, P.E. (2004). Environmental severity and
variation in the reproductive traits of Impatiens glandulifera .Functional Ecology , 18 , 887–898.
https://doi.org/10.2307/3599117
Willson, M.F. (1983). Plant reproductive ecology. Wiley-Interscience,
New York.
Wu, Z.Y., & Raven, P.H. (2006). Flora of China. Vol. 22 (Poaceae).
Beijing: Science Press, St. Louis, USA: Missouri Botanic Garden Press.
Xia, J., & Wan, S. (2013). Independent effects of warming and nitrogen
addition on plant phenology in the Inner Mongolian steppe. Annuals
of Botany , 111 , 1207–1217. https://doi.org/10.1093/aob/mct079
Xu, D., Fang, X., Zhang, R., Gao, T., Bu, H., & Du, G. (2015).
Influences of nitrogen, phosphorus and silicon addition on plant
productivity and species richness in an alpine meadow. AoB
Plants , 7 , plv125. https://doi.org/10.1093/aobpla/plv125
Yang, G., Liu, N., Lu, W., Wang, S., Ka, H., Zhang, Y., Xu, L., & Chen,
Y. (2014). The interaction between arbuscular mycorrhizal fungi and soil
phosphorus availability influences plant community productivity and
ecosystem stability. Journal of Ecology , 102 , 1072–1082.
https://doi.org/10.1111/1365-2745.12249
Zhan, S., Wang, Y., Zhu, Z., Li, W., & Bai, Y. (2017). Nitrogen
enrichment alters plant N:P stoichiometry and intensifies phosphorus
limitation in a steppe ecosystem. Environmental and Experimental
Botany , 134 , 21–32.
https://doi.org/10.1016/j.envexpbot.2016.10.014
Zhao, A., Liu, L., Xu, T., Shi, L., Xie, W., Zhang, W., Fu, S., Feng,
H., & Chen, H. (2018a). Influences of Canopy Nitrogen and Water
Addition on AM Fungal Biodiversity and Community Composition in a Mixed
Deciduous Forest of China. Frontiers in Plant Science , 9 ,
1842. https://doi.org/10.3389/fpls.2018.01842
Zhao, Y., Yang, B., Li, M., Xiao, R., Rao, K., Wang, J., Zhang, T., &
Guo, J. (2018b). Community composition, structure and productivity in
response to nitrogen and phosphorus additions in a temperate meadow.Science of the Total Environment , 654 , 863–871.
https://doi.org/10.1016/j.scitotenv.2018.11.155
Zheng, J., She, W., Zhang, Y., Bai, Y., Qin, S., & Wu, B. (2018).
Nitrogen enrichment alters nutrient resorption and exacerbates
phosphorus limitation in the desert shrub Artemisia ordosica .Ecology and Evolution , 8 , 9998–10007.
https://doi.org/10.1002/ece3.4407
TABLE 1 Results (F ratios) of three-way ANOVAs on the effects of
N and P addition on the seed production, inflorescence number, seed
number per inflorescence, tiller number, density, and height in a
temperate steppe of Inner Mongolia, China.