References
1. Chiari HJD-DMW. Ueber Veränderungen des Kleinhirns infolge von
Hydrocephalie des Grosshirns1. Dtsch Med Wochenschr 1891; 17: 1172-1175
2. Milhorat
TH,
Chou
MW,
Trinidad
EM
et al. Chiari I malformation redefined: clinical and radiographic
findings for 364 symptomatic patients. Neurosurgery 1999
May;44(5):1005-17.
3.
Siri
Sahib S
Khalsa , Alan
Siu et al. Comparison of posterior
fossa volumes and clinical outcomes after decompression of Chiari
malformation Type I. Journal of Neurosurgery Pediatrics 2017; 19:
511-517.
4. Bagci
AM,
Lee
SH,
Nagornaya
N
et al. Automated posterior cranial fossa volumetry by MRI: applications
to Chiari malformation type I.” American Journal of Neuroradiology 2013
34: 1758-1763.
5. Dagtekin A, Avci E, Kara E, et al. Posterior cranial fossa
morphometry in symptomatic adult Chiari I malformation patients:
comparative clinical and anatomical study. Clin Neurol
Neurosurg 2011;113: 399-403.
6. Nishikawa M, Sakamoto H, Hakuba A et al. Pathogenesis of Chiari
malformation: a morphometric study of the posterior cranial fossa. J
Neurosurg 1997; 86: 40-47.
7. Noudel R, Jovenin N, Eap C et al. Incidence of basioccipital
hypoplasia in Chiari malformation Type I: comparative morphometric study
of the posterior cranial fossa. J Neurosurg 2009; 111: 1046-1052.
8. Jiang T, Gradus JL, Rosellini AJ. Supervised Machine Learning: A
Brief Primer. Behavior Therapy. 2020; 51: 675-87.
9. Zheng H, Yuan J, Chen LJE. Short-term load forecasting using EMD-LSTM
neural networks with a Xgboost algorithm for feature importance
evaluation.
Energies
2017; 10: 1168.
10. Chen T, Guestrin C, editors. Xgboost: A scalable tree boosting
system. Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining; August 2016. 785–794
11. Xu Q, Xiong Y, Dai H, Kumari KM, Xu Q, Ou H-Y, et al. PDC-SGB:
Prediction of effective drug combinations using a stochastic gradient
boosting algorithm. J Theor Biol 2017; 21;417:1-7.
12. Friedman JH. Stochastic gradient boosting.
Computational
Statistics & Data Analysis 2002; 38: 367-78.
13. Mosavi A, Hosseini FS, Choubin B, Goodarzi M, Dineva AA, Sardooi
ERJWRM. Ensemble Boosting and Bagging Based Machine Learning Models for
Groundwater Potential Prediction.
Water Resources
Management 2021; 35: 23–37
14. Sutton CD. Classification and regression trees, bagging, and
boosting.
Handbook
of Statistics 2005;24: 303-29.
15. Breiman L. Random forests.Machine Learning.
2001; 45: 5-32.
16. Urbizu A, Martin BA, Moncho D et al. Machine learning applied to
neuroimaging for diagnosis of adult classic Chiari malformation: role of
the basion as a key morphometric indicator. J Neurosurg. 2018; 129:
779-791.
17 Colak C, Colak MC, Orman MN. The comparison of logistic regression
model selection methods for the prediction of coronary artery disease.
Anadolu Kardiyol Derg. 2007; 7: 6-11.
18. S. Aydin, H. Hanimoglu, T. Tanriverdi et al. Chiari type I
malformations in adult: a morphometric analysis of the posterior cranial
fossa Surg Neurol 2005; 64:237-241
19. F. Karagöz, N. Izgi, S. Kapicioglu Senser. Morphometric measurements
of the cranium in patients with Chiari type I malformation and
comparison with the normal population Acta Neurochir (Wien) 2002; 144:
165-171
20. Halvorson KG, Kellogg RT, Keachie KN et al. Morphometric Analysis of
Predictors of Cervical Syrinx Formation in the Setting of Chiari I
Malformation. Pediatr Neurosurg 2016; 51:137–141
21. Aydin S, Hanimoglu H, Tanriverdi T, et al. Chiari type I
malformations in adults: a morphometric analysis of the posterior
cranial fossa. Surg Neurol 2005; 64: 237‐ 241.
22. Karagoz F, Izgi N, Kapijcijoglu Sencer S. Morphometric measurements
of the cranium in patients with Chiari type I malformation and
comparison with the normal population. Acta Neurochir (Wien) 2002; 144:
165‐ 171.
23. Trigylidas T, Baronia B, Vassilyadi M, et al. Posterior fossa
dimension and volume estimates in pediatric patients with Chiari I
malformations. Childs Nerv Syst 2008; 24: 329‐ 336.
24. Saud S, Jamil B, Upadhyay Y, Irshad KJSET. Performance improvement
of empirical models for estimation of global solar radiation in India: A
k-fold cross-validation approach.
Sustainable
Energy Technologies and Assessments 2020; 40: 100768.
25. Krishan K, Kanchan T: Evaluation of spheno-occipital synchondrosis:
A review of literature and considerations from forensic anthropologic
point of view. J Forensic Dent Sci 2013; 5:72–76,
26. Pang D, Thompson DN: Embryology and bony malformations of the
craniovertebral junction. Childs Nerv Syst 2011; 27: 523–564
27. Cesmebasi A, Loukas M, Hogan E et al. The Chiari malformations: a
review with emphasis on anatomical traits. Clin Anat 2015; 28: 184–194,
28. Chotai S, Medhkour A. Surgical outcomes after posterior fossa
decompression with and without duraplasty in Chiari malformation-I. Clin
Neurol Neurosurg 2014; 125:182–188
29. Isik N, Elmaci I, Kaksi M et al. A new entity: Chiari Zero
malformation and its surgical method. Turk Neurosurg 2011; 21: 264–268
30. Förander P, Sjåvik K, Solheim O et al. The case for duraplasty in
adults undergoing posterior fossa decompression for Chiari I
malformation: a systematic review and meta-analysis of observational
studies. Clin Neurol Neurosurg 2014; 125: 58–64
31. Tubbs RS, Oakes WJ. The Chiari Malformations. J Neurosurg. 2007;
106: 329-330.
32. Zhao JL, Li MH, Wang CL, Meng W: A systematic review of Chiari I
malformation: techniques and outcomes. World Neurosurg 2016; 88: 7–14
Table 1. Basic clinical characteristics of the CM-I group