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Key Points:6
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• However, most rating curves are still fit manually8
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Abstract10

Streamflow is one of the most important variables in hydrology but is difficult to mea-11

sure continuously. As a result, nearly all streamflow time series are estimated from rat-12

ing curves that define a mathematical relationship between streamflow and some easy-13

to-measure surrogate like water-surface elevation (stage). Most ratings are still fit man-14

ually, which is time-consuming and subjective. To improve that process, the U.S. Ge-15

ological Survey (USGS), among others, is evaluating algorithms to automate that fitting.16

Several automated methods already exist, and each parameterizes the rating curve slightly17

differently. Because of the nonconvex nature of the problem, those differences can greatly18

affect performance. After some trial and error, we settled on reparameterizing the clas-19

sic segmented power law somewhat like a Bayesian physics-informed neural network. Be-20

ing physics-informed and Bayesian, the algorithm requires minimal data and also esti-21

mates uncertainty. Its implementation is open source and easily modified so that oth-22

ers can contribute to improving the quality of USGS streamflow data.23

1 Introduction24

Streamflow time series are widely used in hydrologic research, water resource man-
agement, engineering design, and flood forecasting, but they are difficult to measure di-
rectly. In nearly all time-series applications, streamflow is estimated from rating curves
or “ratings” that describe the relation between streamflow and an easy-to-measure sur-
rogate like stage. The shape of the rating is specific to each streamgage and is governed
by channel conditions at or downstream from the gage, referred to as controls. Section
controls, like natural riffles or artificial weirs, occur downstream from the gage, whereas
channel controls, like the geometry of the banks, represent conditions along the stream
reach (the upstream and downstream vicinity of the gage). Regardless of the type, the
behavior of each control is often well-approximated with standard hydraulic equations
that take the general form of a power law with an offset parameter

q = C(h− h0)b (1)

where q is the discharge (streamflow); h is the height of the water above some datum (stage);25

h0 is the stage of zero flow (the offset parameter); (h− h0) is the hydraulic head; b is26

the slope of the rating curve when plotted in log-log space; and C is a scale factor equal27

to the discharge when the head is equal to one (ISO 18320:2020, 2020). When multiple28

controls are present, the rating curve is divided into segments with one power law cor-29

responding to each control resulting in a multi-segment or compound rating.30

Although automated methods exist, most ratings are still fit manually using a graph-31

ical method of plotting stage and discharge in log-log space. With the appropriate lo-32

cation parameter, each control can be fit to a straight-line segment in log space (Kennedy,33

1984; ISO 18320:2020, 2020). Variants of this method have been used for decades, first34

with pencil and log paper and now with computer-aided software; the fitting is still done35

by manually adjusting parameters until an acceptable fit is achieved.36

Single-segment ratings are relatively easy to fit by automated methods (Venetis,37

1970), but compound ratings are more challenging because their solution is nonconvex38

or multimodal (Reitan & Petersen-Øverleir, 2006). As a result, optimization algorithms39

can become stuck in local optima and fail to converge to the global optimum. General40

function approximators, such as natural splines (Fenton, 2018) or neural networks, can41

be easier to fit but their generality comes at a cost. The form of the power law matches42

that of the hydraulic equations governing uniform open-channel flow, like the Manning43

equation (Manning, 1891). Due to that physical basis, power laws are potentially more44

robust than other generic curve-fitting functions: requiring less data to achieve the same45

fit and being less prone to overfitting.46
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This paper describes a basic algorithm for fitting a segmented power law with off-47

set parameters—the classic rating-curve form— and compares its performance against48

a natural cubic spline; “natural” indicates the second derivatives are set to zero at the49

endpoints. Several algorithms for fitting segmented power laws already exist. Some are50

more physical, meaning their structure corresponds to the governing hydraulic equations51

(Reitan & Petersen-Øverleir, 2008; Le Coz et al., 2014); some are more data-driven with52

more flexible structures like spline (Fenton, 2018) or local regression (Coxon et al., 2015);53

and some are a hybrid of the two (Hrafnkelsson et al., 2021). Each approach has differ-54

ent tradeoffs. More physical approaches require less data but may be nonconvex, which55

makes them challenging to fit, whereas data-driven approaches are easier to fit but re-56

quire more data to constrain their greater flexibility.57

Like our algorithm, the more physical approaches tend to be Bayesian and use sam-58

pling (as opposed to optimization; Ma et al., 2019) and priors to help mitigate problems59

that occur in nonconvex settings. Examples of priors include constraining the exponent60

b to be around 5/3, constraining the number of rating segments, or constraining the tran-61

sitions between segments around a particular stage. Being Bayesian, these algorithms62

inherently estimate uncertainty in the fitted parameters and discharge, which is impor-63

tant for many applications. However, they differ in their exact parameterization, and be-64

cause of their nonconvex nature, slight differences can greatly affect performance.65

Our algorithm distinguishes itself in two ways: its simple implementation, which66

uses a community-developed open-source probabilistic programming library, and its ro-67

bust parameterization. These two aspects are in a way interrelated. With a community-68

developed library, the underlying numerical code is maintained by a broader community69

of developers, so instead of developing that code, we could focus on testing different pa-70

rameterizations for the rating curve.71

2 Implementation72

We implemented our curve-fitting algorithm, along with some additional plotting73

and evaluation tools, test datasets, and tutorials, as a Python package called ratingcurve.74

The algorithm uses PyMC (Salvatier et al., 2016), an open-source Python library for Bayesian75

statistical modeling and probabilistic machine learning. Using PyMC, the core algorithm76

can be expressed in several lines of code, making it easier to extend or modify, like chang-77

ing the priors, the parameterization of the rating curve, or the inference algorithm to achieve78

different tradeoffs of speed and accuracy. This paper demonstrates two such algorithms:79

Automatic Differentiation Variational Inference (ADVI) (Kucukelbir et al., 2017) and80

Hamiltonian Monte Carlo with the No-U-Turn Sampler (NUTS) (Hoffman & Gelman,81

2014). ADVI is an optimization algorithm, whereas NUTS is a sampling algorithm. In82

general, sampling is slower but better for nonconvex problems (Ma et al., 2019).83

2.1 Usage84

Refer to the Open Research Section for links to the source code repository and pack-85

aged versions of ratingcurve. Given observations of discharge (q), stage (h), and, op-86

tionally, the standard error of the discharge observations (e), a two-segment rating is fit87

with88

rating = PowerLawRating(q, h, e, 2)89

trace = rating.fit()90

rating.plot(trace)91

and produces a plot like Figure 1.92
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Figure 1. Two-segment rating curve, with 95-percent prediction interval, for the Green

River near Jensen, Utah (U.S. Geological Survey streamgage 09261000); generated by

rating.plot(trace) and fit using ADVI. The circles with error bars show the observations

and their uncertainty. Horizontal dotted lines show the segment breakpoints and their prediction

intervals.

A rating curve can also be exported as a table for use by other applications, shown93

in Table 1. In addition to the mean discharge for each stage, the table gives the median94

and geometric standard error (GSE), which is multiplied and divided by the median to95

estimate prediction intervals (Limpert et al., 2001).

Table 1. Rating table generated by rating.table(trace). Units are feet (ft) and cubic feet

per second (ft3 s−1); geometric standard error (GSE) is a unitless factor.

Mean Median
Stage Discharge Discharge GSE

ft ft3 s−1 ft3 s−1 -

2.20 1376.14 1376.16 1.0107
2.21 1388.27 1388.27 1.0107
2.22 1400.41 1400.40 1.0107
2.23 1412.57 1412.55 1.0106
2.24 1424.74 1424.73 1.0106
. . . . . . . . . . . .

96
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2.2 Parameterization97

Our rating curve algorithm is similar to the segmented power law used in the man-98

ual method (Kennedy, 1984; ISO 18320:2020, 2020), as well as in automated approaches99

(Reitan & Petersen-Øverleir, 2008; Le Coz et al., 2014), but differs in its parameteriza-100

tion. Conceptually, the Reitan and Petersen-Øverleir (2008) parameterization slices the101

channel cross section horizontally to form each segment: segments stack one on top of102

the other. Once the stage rises beyond the range of a particular control, that control is103

”drowned out” and flow through that segment ceases to increase with stage. Our param-104

eterization slices the channel cross-section vertically, so controls never drown out. The105

Le Coz et al. (2014) parameterization can slice in either direction but differs in that the106

segments are summed after transforming them back to their original scale; whereas, Reitan107

and Petersen-Øverleir (2008) sum the segments in log.108

After testing several parameterizations, one seemed especially reliable and simple:109

slicing the channel cross section vertically into control segments and summing them in110

log, which is somewhat like a ReLU (rectified linear unit) neural network with hydraulic111

controls as neurons112

X = ln(max(h− hs, 0) + ho) (2)

ln(q) = a+ bTX + ε+ εo (3)

where hs are the unknown segment breakpoints; ho is a vector of offsets, the first is 0113

and the rest are 1; max is the element-wise maximum, which returns a vector of size hs;114

a is a bias parameter equal to log(C), the scale factor; b are the slopes of each log-transformed115

segment; ε is the residual error; and εo is the uncertainty in the discharge observations116

(optional). The offset vector ho ensures that X ≥ 0, so additional segments never sub-117

tract discharge.118

The default priors and settings are documented in the package; in general, they do119

not need to be modified. Besides selecting the number of segments, the user can spec-120

ify a prior distribution on the breakpoints. The default assumes the breakpoints are mono-121

tonically ordered and uniformly distributed across the range of the data, hs1 < min(h) <122

hs2 < · · · < hsn < max(h). Alternatively, the user can specify approximate locations123

for each breakpoint and their uncertainty as normal distributions.124

Uncertainty in the discharge observations is typically reported as relative standard125

error (RSE). For convenience, we convert that relative error to a geometric error as εo ∼126

N(0, ln(1+RSE/q)2). For small uncertainties, the difference is negligible, and for large127

uncertainties, it is not known which is better. Like Reitan and Petersen-Øverleir (2008),128

we assume ε is normally distributed with mean zero and variance σ2, ε ∼ N(0, σ2). That129

simplification can create unaccounted heteroscedasticity (Petersen-Øverleir, 2004) but130

generally yields a reasonable estimate for the rating and its uncertainty.131

3 Results132

We compared the performance of the segment power law against a log-transformed133

natural spline on a simulated 3-segment rating curve. Both models use log transforma-134

tions, which helps with heteroscedasticity. The power law is strictly increasing; other-135

wise, both approaches use log transformations, and both are flexible enough to approx-136

imate a wide variety of functions. Unlike the spline, the parameters in the power law have137

physical meaning in that they correspond to parameters in standard hydraulic equations138

for approximating open-channel flow. The segmented power law is notoriously difficult139

to calibrate (Reitan & Petersen-Øverleir, 2008), however, and its performance depends,140

in large part, on its parameterization —we tested several, some mathematically equiv-141

alent, some slicing the cross section vertically or horizontally— as well as its priors. If142
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the calibration challenges are overcome, the power law should yield better fits with fewer143

observations (Reitan & Petersen-Øverleir, 2008).144

Figure 2 shows a side-by-side comparison of a spline and power law fit with 6, 12,145

24, and 48 stage-discharge observations. For best accuracy, the curves were fit using NUTS.146

We also specified that the power law had 3 segments and that the spline had 8 degrees147

of freedom, the same as the power law (1 bias, 3 offsets, 3 slopes, and 1 uncertainty). Oth-148

erwise, default settings were used for both.149
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Figure 2. Segmented-power law (top) and natural spline (bottom) fit with different numbers

of observations (n). The dashed red line is the true rating and the circles are the simulated obser-

vations. Horizontal dotted lines show segment breakpoints and knot locations for the power law

and spline, respectively. The shaded regions depict 95 percent prediction intervals for the rating

and breakpoints.

Although the natural spline was 5-20x faster, it yielded poorer fits, particularly when150

n = 6. Reducing the degrees of freedom might improve performance when n = 6 but151

also sacrifices flexibility when n = 48. By comparison, the power law yielded a good152

fit with six observations— two fewer than the number of model parameters. Our intent153

is not to disparage all splines— both parameterizations are technically splines. Rather,154

we wanted to demonstrate a classic tradeoff between being easy to fit or being accurate,155

which is a characteristic of data-driven and physical approaches.156

In general, the accuracy of data-driven approaches is highly dependent on the ava-157

iability of data. For example, Coxon et al. (2015) recommends a minimum of twenty stage-158

discharge measurements for their data-driven approach. Taken over the lifetime of a stream-159

gage, twenty may be manageable. However, ratings shift through time from erosion, de-160

position, vegtation growth, debris/ice jams, etc. (Herschy & Herschy, 2014; Mansanarez161

et al., 2019), and it may be impracticable to collect twenty measurements between each162

shift. In that case, a more physical approach like the power law may be a better choice,163

because they require fewer observations.164

This paper focuses on one parameterization of the classic multi-segment power law,165

but undoubtably more will emerge, which might achieve better tradeoffs of ease and ac-166

curacy. For example, our comparison uses NUTS, which is accurate but slow. With 6167

observations, NUTS fit the 3-segment power law in around 10 minutes. With 48 obser-168

vations, NUTS completed in 1 minute; a 10x speedup. In general, stronger priors, more169

observations, or fewer segments would reduce that time. By comparison, ADVI gener-170

ally achieved a NUTS-like fit in several seconds, but it occasionally failed to converge171
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on the optimum solution. A better parameterization might yield better convergence with172

a faster inference algorithm.173

4 Conclusions174

Despite the existence of automated methods, most stage-discharge rating curves175

are still fit manually. Although the governing hydraulic equations are relatively simple176

and well-understood, they are notoriously difficult to solve for multiple controls. Among177

the automated methods, no parameterization has emerged as the standard, and func-178

tionally equivalent parameterizations may vary greatly in performance.179

Here, we implement a simple parameterization that works well with minimal data180

and prior information. Notably, it does not address shifts in the rating curve through181

time or hysteresis, and the curve is continuous but not smooth (twice differentiable). Such182

limitations could be addressed, and any such effort will depend, in part, on building from183

a good starting parameterization. Therefore, our simple-yet-reliable parameterization,184

use of a community-developed probabilistic programming library, and packaging provide185

a benchmark for operationalizing automated methods that could promote more widespread186

use, testing, and refinement by the hydrologic community.187

Open Research Section188

The latest version of ratingcurve is available at https://github.com/thodson189

-usgs/ratingcurve, as well as https://code.usgs.gov/wma/uncertainty/ratingcurve.190

Packaged versions are available via PyPI and conda-forge. A link to the official release191

of the version used in this paper will appear here in due course.192
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