5. References
1. Tang P, Zhu Q, Wu Z, Ma D. Methane activation: the past and future.Energy Environ Sci . 2014;7:2580-2591.
2. York APE, Xiao T, Green MLH. Brief overview of the partial oxidation
of methane to synthesis gas. Top Catal . 2003;22(3-4):345-358.
3. West NM, Miller AJM, Labinger JA, Bercaw JE. Homogeneous syngas
conversion. Coord Chem Rev . 2011;255(7-8):881-898.
4. Gunay A, Theopold KH. C-H bond activations by metal oxo compounds.Chem Rev . 2010;110(2):1060-1081.
5. Sharpless KB, Flood TC. Oxotransition Metal Oxidants as Mimics for
the Action of Mixed-Function Oxygenases.“NIH Shift” with Chromyl
Reagents. J Am Chem Soc . 1971;93(9):2316-2318.
6. Ortiz De Montellano PR. Hydrocarbon hydroxylation by cytochrome P450
enzymes. Chem Rev . 2010;110(2):932-948.
7. Mahyuddin MH, Shiota Y, Yoshizawa K. Methane selective oxidation to
methanol by metal-exchanged zeolites: A review of active sites and their
reactivity. Catal Sci Technol . 2019;9(8):1744-1768.
8. Crabtree RH. Alkane C-H activation and functionalization with
homogeneous transition metal catalysts: A century of progress - A new
millennium in prospect. J Chem Soc Dalt Trans .
2001;(17):2437-2450.
9. Dong Y, Fujii H, Hendrich MP, Leising RA, Pan G, Randall CR,
Wilkinson EC, Zang Y, Que L, Fox BG, Kauffmann K, Münck E. A High-Valent
Nonheme Iron Intermediate. Structure and Properties of
[Fe2(μ-O)2(5-Me-TPA)2]
(ClO4)3. J Am Chem Soc .
1995;117(10):2778-2792.
10. Sturgeon BE, Burdi D, Chen S, Huynh BH, Edmondson DE, Stubbe JA,
Hoffman BM. Reconsideration of X, the diiron intermediate formed during
cofactor assembly in E. coli ribonucleotide reductase. J Am Chem
Soc . 1996;118(32):7551-7557.
11. Lee S-K, Nesheim JC, Lipscomb JD. Transient Intermediates of the
Methane Monooxygenase Catalytic Cycle. J Biol Chem .
1993;268(29):21569-21577.
12. Liu KE, Salifoglou A, Wang D, Huynh BH, Edmondson DE, Lippard SJ.
Spectroscopic Detection of Intermediates in the Reaction of Dioxygen
with the Reduced Methane Monooxygenase Hydroxylase from Methylococcus
capsulatus (Bath). J Am Chem Soc . 1994;116(16):7465-7466.
13. Hausinger RP. Fe(II)/α-ketoglutarate-dependent hydroxylases and
related enzymes. Crit Rev Biochem Mol Biol . 2004;39(1):21-68.
14. Martinez S, Hausinger RP. Catalytic mechanisms of Fe(II)- and
2-Oxoglutarate-dependent oxygenases. J Biol Chem .
2015;290(34):20702-20711.
15. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L,
Pierloot K, Schoonheydt RA, Sels BF, Solomon EI. The active site of
low-temperature methane hydroxylation in iron-containing zeolites.Nature . 2016;536(7616):317-321.
16. Sobolev VI, Dubkov KA, Panna O V., Panov GI. Selective oxidation of
methane to methanol on a FeZSM-5 surface. Stud Surf Sci Catal .
1994;81(C):387-392.
17. Knops-Gerrits PP, Goddard WA. Methane partial oxidation in iron
zeolites: Theory versus experiment. J Mol Catal A Chem .
2001;166(1):135-145.
18. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL,
Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor
SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ.
Direct catalytic conversion of methane to methanol in an aqueous medium
by using copper-promoted Fe-ZSM-5. Angew Chemie - Int Ed .
2012;51(21):5129-5133.
19. Göltl F, Michel C, Andrikopoulos PC, Love AM, Hafner J, Hermans I,
Sautet P. Computationally Exploring Confinement Effects in the
Methane-to-Methanol Conversion over Iron-Oxo Centers in Zeolites.ACS Catal . 2016;6(12):8404-8409.
20. Reynolds RA, Dunham WR, Coucouvanis D. Kinetic Lability, Structural
Diversity, and Oxidation Reactions of New Oligomeric, Anionic
Carboxylate−Pyridine Complexes. Inorg Chem . 2002;37(6):1232-1241.
21. Stassinopoulos A, Caradonna JP. A Binuclear Non-Heme Iron
Oxo-Transfer Analog Reaction System: Observations and Biological
Implications. J Am Chem Soc . 1990;112(19):7071-7073.
22. Xue G, Wang D, De Hont R, Fiedler AT, Shan X, Munck E, Que L. A
synthetic precedent for the
[FeIV2(O)2] diamond core proposed
for methane monooxygenase intermediate Q. Proc Natl Acad Sci .
2007;104(52):20713-20718.
23. Mukerjee S, Stassinopoulus A, Caradonna JP. Iodosylbenzene oxidation
of alkanes, alkenes, and sulfides catalyzed by binuclear non-heme iron
systems: Comparison of non-heme iron versus heme iron oxidation
pathways. J Am Chem Soc . 1997;119(34):8097-8098.
24. Do LH, Lippard SJ. Evolution of strategies to prepare synthetic
mimics of carboxylate-bridged diiron protein active sites. J Inorg
Biochem . 2011;105(12):1774-1785.
25. Watton SP, Fuhrmann P, Pence LE, Caneschi A, Cornia A, Abbati GL,
Lippard SJ. A Cyclic Octadecairon(III) Complex, the Molecular
18-Wheeler. Angew Chemie (International Ed English) .
1997;36(24):2774-2776.
26. Vincent JB, Huffman JC, Christou G, Li Q, Nanny MA, Hendrickson DN,
Fong RH, Fish RH. Modeling the Dinuclear Sites of Iron Biomolecules:
Synthesis and Properties of Fe2O(OAc)2Cl2(bipy)2 and
Its Use as an Alkane Activation Catalyst. J Am Chem Soc .
1988;110(20):6898-6900.
27. Armstrong WH, Roth ME, Lippard SJ. Tetranuclear Iron—Oxo
Complexes. Synthesis, Structure, and Properties of Species Containing
The Nonplanar
{Fe4O2}8+ Core and
Seven Bridging Carboxvlate Ligands. J Am Chem Soc .
1987;109(21):6318-6326.
28. Terminal L, Dicarboxylate B. A general method for Assembling
(μOxo)bis(μcarboxylato)diiron(III) Complexes with Labile Terminal Sites
Using a Bridging Dicarboxylate Ligand. Inorg Chem .
1989;28(26):4557-4558.
29. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G.
Structure and nuclearity of active sites in Fe-zeolites: Comparison with
iron sites in enzymes and homogeneous catalysts. Phys Chem Chem
Phys . 2007;9(27):3483-3499.
30. Pirngruber GD, Roy PK, Weiher N. An in situ X-ray absorption
spectroscopy study of N2O decomposition over Fe-ZSM-5
prepared by chemical vapor deposition of FeCl3. J
Phys Chem B . 2004;108(36):13746-13754.
31. Nechita MT, Berlier G, Ricchiardi G, Bordiga S, Zecchina A. New
precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with
low iron content. Catal Letters . 2005;103(1-2):33-41.
32. Baek J, Rungtaweevoranit B, Pei X, Park M, Fakra SC, Liu Y-S, Matheu
R, Alshmimri SA, Alshehri S, Trickett CA, Somorjai GA, Yaghi OM.
Bioinspired Metal−Organic Framework Catalysts for Selective Methane
Oxidation to Methanol. J Am Chem Soc . 2018;140:18208-18216.
33. Zheng J, Ye J, Ortuño MA, Fulton JL, Gutiérrez OY, Camaioni DM,
Motkuri RK, Li Z, Webber TE, Mehdi BL, Browning ND, Penn RL, Farha OK,
Hupp JT, Truhlar DG, Cramer CJ, Lercher JA. Selective Methane Oxidation
to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000
Metal-Organic Framework. J Am Chem Soc . 2019;141(23):9292-9304.
34. Osadchii DY, Olivos-Suarez AI, Szécsényi Á, Li G, Nasalevich MA,
Dugulan IA, Crespo PS, Hensen EJM, Veber SL, Fedin M V., Sankar G, Pidko
EA, Gascon J. Isolated Fe sites in metal organic frameworks catalyze the
direct conversion of methane to methanol. ACS Catal .
2018;8(6):5542-5548.
35. Hall JN, Bollini P. Low‐Temperature, Ambient Pressure Oxidation of
Methane to Methanol Over Every Tri‐Iron Node in a Metal–Organic
Framework Material. Chem – A Eur J . 2020;26(70):16639-16643.
36. Xiao DJ, Bloch ED, Mason JA, Queen WL, Hudson MR, Planas N, Borycz
J, Dzubak AL, Verma P, Lee K, Bonino F, Crocellà V, Yano J, Bordiga S,
Truhlar DG, Gagliardi L, Brown CM, Long JR. Oxidation of ethane to
ethanol by N2O in a metal–organic framework with
coordinatively unsaturated iron(II) sites. Nat Chem .
2014;6(7):590-595.
37. Verma P, Vogiatzis KD, Planas N, Borycz J, Xiao DJ, Long JR,
Gagliardi L, Truhlar DG. Mechanism of oxidation of ethane to ethanol at
Iron(IV)-oxo sites in magnesium-diluted Fe2(dobdc).J Am Chem Soc . 2015;137(17):5770-5781.
38. Hirao H, Ng WKH, Moeljadi AMP, Bureekaew S. Multiscale model for a
metal-organic framework: High-spin rebound mechanism in the reaction of
the oxoiron(IV) species of Fe-MOF-74. ACS Catal .
2015;5(6):3287-3291.
39. Simons MC, Vitillo JG, Babucci M, Hoffman AS, Boubnov A, Beauvais
ML, Chen Z, Cramer CJ, Chapman KW, Bare SR, Gates BC, Lu CC, Gagliardi
L, Bhan A. Structure, Dynamics, and Reactivity for Light Alkane
Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic
Framework. J Am Chem Soc . 2019;141(45):18142-18151.
40. Vitillo JG, Bhan A, Cramer CJ, Lu CC, Gagliardi L. Quantum Chemical
Characterization of Structural Single Fe(II) Sites in MIL-Type
Metal–Organic Frameworks for the Oxidation of Methane to Methanol and
Ethane to Ethanol. ACS Catal . 2019;9:2870-2879.
41. Barona M, Snurr RQ. Exploring the Tunability of Trimetallic MOF
Nodes for Partial Oxidation of Methane to Methanol. ACS Appl Mater
Interfaces . 2020;12(25):28217-28231.
42. Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour
J, Margiolaki I. A hybrid solid with giant pores prepared by a
combination of targeted chemistry, simulation, and powder diffraction.Angew Chem Int Ed . 2004;43(46):6296-6301.
43. Yoon JW, Seo Y-K, Hwang YK, Chang J-S, Leclerc H, Wuttke S, Bazin P,
Vimont A, Daturi M, Bloch E, Llewellyn PL, Serre C, Horcajada P,
Grenèche J-M, Rodrigues AE, Férey G. Controlled Reducibility of a
Metal-Organic Framework with Coordinatively Unsaturated Sites for
Preferential Gas Sorption. Angew Chem Int Ed .
2010;49(34):5949-5952.
44. Leclerc H, Vimont A, Lavalley JC, Daturi M, Wiersum AD, Llwellyn PL,
Horcajada P, Férey G, Serre C. Infrared study of the influence of
reducible iron(III) metal sites on the adsorption of CO,
CO2, propane, propene and propyne in the mesoporous
metalorganic framework MIL-100. Phys Chem Chem Phys .
2011;13(24):11748-11756.
45. Hall JN, Bollini P. Enabling Access to Reduced Open-Metal Sites in
Metal-Organic Framework Materials through Choice of Anion Identity: The
Case of MIL-100(Cr). ACS Mater Lett . 2020;2:838-844.
46. Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L. Benzene
hydroxylation over FeZSM-5 catalysts: Which Fe sites are active? J
Catal . 2004;227(1):138-147.
47. Pirngruber GD, Roy PK, Weiher N. An in Situ X-ray Absorption
Spectroscopy Study of N2O Decomposition over Fe-ZSM-5
Prepared by Chemical Vapor Deposition of FeCl3. J
Phys Chem B . 2004;108:13746-13754.
48. Wood BR, Reimer JA, Bell AT, Janicke MT, Ott KC. Methanol formation
on Fe/Al-MFI via the oxidation of methane by nitrous oxide. J
Catal . 2004;225:300-306.
49. Rana BS, Singh B, Kumar R, Verma D, Bhunia MK, Bhaumik A, Sinha AK.
Hierarchical mesoporous Fe/ZSM-5 with tunable porosity for selective
hydroxylation of benzene to phenol. J Mater Chem .
2010;20:8575-8581.
50. Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W. Facile synthesis of
MIL-100(Fe) under HF-free conditions and its application in the
acetalization of aldehydes with diols. Chem Eng J .
2015;259:183-190.
51. Mao Y, Qi H, Ye G, Han L, Zhou W, Xu W, Sun Y. Green and time-saving
synthesis of MIL-100(Cr) and its catalytic performance.Microporous Mesoporous Mater . 2019;274:70-75.
52. Hall JN, Bollini P. Quantification of Open-Metal Sites in
Metal-Organic Frameworks Using Irreversible Water Adsorption.Langmuir . 2020;36(5):1345-1356.
53. Rosen AS, Notestein JM, Snurr RQ. Structure–Activity Relationships
That Identify Metal–Organic Framework Catalysts for Methane Activation.ACS Catal . 2019;9(4):3576-3587.
54. Barona M, Snurr RQ. Exploring the Tunability of Trimetallic MOF
Nodes for Partial Oxidation of Methane to Methanol. ACS Appl Mater
Interfaces . 2020;12(25):28217-28231.
55. Cho K Bin, Wu X, Lee YM, Kwon YH, Shaik S, Nam W. Evidence for an
alternative to the oxygen rebound mechanism in C-H bond activation by
non-heme FeIVO complexes. J Am Chem Soc .
2012;134(50):20222-20225.
56. Cho K Bin, Hirao H, Shaik S, Nam W. To rebound or dissociate? This
is the mechanistic question in C-H hydroxylation by heme and nonheme
metal-oxo complexes. Chem Soc Rev . 2016;45(5):1197-1210.
57. Starokon E V., Parfenov M V., Arzumanov SS, Pirutko L V., Stepanov
AG, Panov GI. Oxidation of methane to methanol on the surface of FeZSM-5
zeolite. J Catal . 2013;300:47-54.
58. Starokon E V., Parfenov M V., Pirutko L V., Abornev SI, Panov GI.
Room-temperature oxidation of methane by α-oxygen and extraction of
products from the FeZSM-5 surface. J Phys Chem C .
2011;115(5):2155-2161.