5. References
1. Tang P, Zhu Q, Wu Z, Ma D. Methane activation: the past and future.Energy Environ Sci . 2014;7:2580-2591.
2. York APE, Xiao T, Green MLH. Brief overview of the partial oxidation of methane to synthesis gas. Top Catal . 2003;22(3-4):345-358.
3. West NM, Miller AJM, Labinger JA, Bercaw JE. Homogeneous syngas conversion. Coord Chem Rev . 2011;255(7-8):881-898.
4. Gunay A, Theopold KH. C-H bond activations by metal oxo compounds.Chem Rev . 2010;110(2):1060-1081.
5. Sharpless KB, Flood TC. Oxotransition Metal Oxidants as Mimics for the Action of Mixed-Function Oxygenases.“NIH Shift” with Chromyl Reagents. J Am Chem Soc . 1971;93(9):2316-2318.
6. Ortiz De Montellano PR. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev . 2010;110(2):932-948.
7. Mahyuddin MH, Shiota Y, Yoshizawa K. Methane selective oxidation to methanol by metal-exchanged zeolites: A review of active sites and their reactivity. Catal Sci Technol . 2019;9(8):1744-1768.
8. Crabtree RH. Alkane C-H activation and functionalization with homogeneous transition metal catalysts: A century of progress - A new millennium in prospect. J Chem Soc Dalt Trans . 2001;(17):2437-2450.
9. Dong Y, Fujii H, Hendrich MP, Leising RA, Pan G, Randall CR, Wilkinson EC, Zang Y, Que L, Fox BG, Kauffmann K, Münck E. A High-Valent Nonheme Iron Intermediate. Structure and Properties of [Fe2(μ-O)2(5-Me-TPA)2] (ClO4)3. J Am Chem Soc . 1995;117(10):2778-2792.
10. Sturgeon BE, Burdi D, Chen S, Huynh BH, Edmondson DE, Stubbe JA, Hoffman BM. Reconsideration of X, the diiron intermediate formed during cofactor assembly in E. coli ribonucleotide reductase. J Am Chem Soc . 1996;118(32):7551-7557.
11. Lee S-K, Nesheim JC, Lipscomb JD. Transient Intermediates of the Methane Monooxygenase Catalytic Cycle. J Biol Chem . 1993;268(29):21569-21577.
12. Liu KE, Salifoglou A, Wang D, Huynh BH, Edmondson DE, Lippard SJ. Spectroscopic Detection of Intermediates in the Reaction of Dioxygen with the Reduced Methane Monooxygenase Hydroxylase from Methylococcus capsulatus (Bath). J Am Chem Soc . 1994;116(16):7465-7466.
13. Hausinger RP. Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol . 2004;39(1):21-68.
14. Martinez S, Hausinger RP. Catalytic mechanisms of Fe(II)- and 2-Oxoglutarate-dependent oxygenases. J Biol Chem . 2015;290(34):20702-20711.
15. Snyder BER, Vanelderen P, Bols ML, Hallaert SD, Böttger LH, Ungur L, Pierloot K, Schoonheydt RA, Sels BF, Solomon EI. The active site of low-temperature methane hydroxylation in iron-containing zeolites.Nature . 2016;536(7616):317-321.
16. Sobolev VI, Dubkov KA, Panna O V., Panov GI. Selective oxidation of methane to methanol on a FeZSM-5 surface. Stud Surf Sci Catal . 1994;81(C):387-392.
17. Knops-Gerrits PP, Goddard WA. Methane partial oxidation in iron zeolites: Theory versus experiment. J Mol Catal A Chem . 2001;166(1):135-145.
18. Hammond C, Forde MM, Ab Rahim MH, Thetford A, He Q, Jenkins RL, Dimitratos N, Lopez-Sanchez JA, Dummer NF, Murphy DM, Carley AF, Taylor SH, Willock DJ, Stangland EE, Kang J, Hagen H, Kiely CJ, Hutchings GJ. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew Chemie - Int Ed . 2012;51(21):5129-5133.
19. Göltl F, Michel C, Andrikopoulos PC, Love AM, Hafner J, Hermans I, Sautet P. Computationally Exploring Confinement Effects in the Methane-to-Methanol Conversion over Iron-Oxo Centers in Zeolites.ACS Catal . 2016;6(12):8404-8409.
20. Reynolds RA, Dunham WR, Coucouvanis D. Kinetic Lability, Structural Diversity, and Oxidation Reactions of New Oligomeric, Anionic Carboxylate−Pyridine Complexes. Inorg Chem . 2002;37(6):1232-1241.
21. Stassinopoulos A, Caradonna JP. A Binuclear Non-Heme Iron Oxo-Transfer Analog Reaction System: Observations and Biological Implications. J Am Chem Soc . 1990;112(19):7071-7073.
22. Xue G, Wang D, De Hont R, Fiedler AT, Shan X, Munck E, Que L. A synthetic precedent for the [FeIV2(O)2] diamond core proposed for methane monooxygenase intermediate Q. Proc Natl Acad Sci . 2007;104(52):20713-20718.
23. Mukerjee S, Stassinopoulus A, Caradonna JP. Iodosylbenzene oxidation of alkanes, alkenes, and sulfides catalyzed by binuclear non-heme iron systems: Comparison of non-heme iron versus heme iron oxidation pathways. J Am Chem Soc . 1997;119(34):8097-8098.
24. Do LH, Lippard SJ. Evolution of strategies to prepare synthetic mimics of carboxylate-bridged diiron protein active sites. J Inorg Biochem . 2011;105(12):1774-1785.
25. Watton SP, Fuhrmann P, Pence LE, Caneschi A, Cornia A, Abbati GL, Lippard SJ. A Cyclic Octadecairon(III) Complex, the Molecular 18-Wheeler. Angew Chemie (International Ed English) . 1997;36(24):2774-2776.
26. Vincent JB, Huffman JC, Christou G, Li Q, Nanny MA, Hendrickson DN, Fong RH, Fish RH. Modeling the Dinuclear Sites of Iron Biomolecules: Synthesis and Properties of Fe2O(OAc)2Cl2(bipy)2 and Its Use as an Alkane Activation Catalyst. J Am Chem Soc . 1988;110(20):6898-6900.
27. Armstrong WH, Roth ME, Lippard SJ. Tetranuclear Iron—Oxo Complexes. Synthesis, Structure, and Properties of Species Containing The Nonplanar {Fe4O2}8+ Core and Seven Bridging Carboxvlate Ligands. J Am Chem Soc . 1987;109(21):6318-6326.
28. Terminal L, Dicarboxylate B. A general method for Assembling (μOxo)bis(μcarboxylato)diiron(III) Complexes with Labile Terminal Sites Using a Bridging Dicarboxylate Ligand. Inorg Chem . 1989;28(26):4557-4558.
29. Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G. Structure and nuclearity of active sites in Fe-zeolites: Comparison with iron sites in enzymes and homogeneous catalysts. Phys Chem Chem Phys . 2007;9(27):3483-3499.
30. Pirngruber GD, Roy PK, Weiher N. An in situ X-ray absorption spectroscopy study of N2O decomposition over Fe-ZSM-5 prepared by chemical vapor deposition of FeCl3. J Phys Chem B . 2004;108(36):13746-13754.
31. Nechita MT, Berlier G, Ricchiardi G, Bordiga S, Zecchina A. New precursor for the post-synthesis preparation of Fe-ZSM-5 zeolites with low iron content. Catal Letters . 2005;103(1-2):33-41.
32. Baek J, Rungtaweevoranit B, Pei X, Park M, Fakra SC, Liu Y-S, Matheu R, Alshmimri SA, Alshehri S, Trickett CA, Somorjai GA, Yaghi OM. Bioinspired Metal−Organic Framework Catalysts for Selective Methane Oxidation to Methanol. J Am Chem Soc . 2018;140:18208-18216.
33. Zheng J, Ye J, Ortuño MA, Fulton JL, Gutiérrez OY, Camaioni DM, Motkuri RK, Li Z, Webber TE, Mehdi BL, Browning ND, Penn RL, Farha OK, Hupp JT, Truhlar DG, Cramer CJ, Lercher JA. Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal-Organic Framework. J Am Chem Soc . 2019;141(23):9292-9304.
34. Osadchii DY, Olivos-Suarez AI, Szécsényi Á, Li G, Nasalevich MA, Dugulan IA, Crespo PS, Hensen EJM, Veber SL, Fedin M V., Sankar G, Pidko EA, Gascon J. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol. ACS Catal . 2018;8(6):5542-5548.
35. Hall JN, Bollini P. Low‐Temperature, Ambient Pressure Oxidation of Methane to Methanol Over Every Tri‐Iron Node in a Metal–Organic Framework Material. Chem – A Eur J . 2020;26(70):16639-16643.
36. Xiao DJ, Bloch ED, Mason JA, Queen WL, Hudson MR, Planas N, Borycz J, Dzubak AL, Verma P, Lee K, Bonino F, Crocellà V, Yano J, Bordiga S, Truhlar DG, Gagliardi L, Brown CM, Long JR. Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron(II) sites. Nat Chem . 2014;6(7):590-595.
37. Verma P, Vogiatzis KD, Planas N, Borycz J, Xiao DJ, Long JR, Gagliardi L, Truhlar DG. Mechanism of oxidation of ethane to ethanol at Iron(IV)-oxo sites in magnesium-diluted Fe2(dobdc).J Am Chem Soc . 2015;137(17):5770-5781.
38. Hirao H, Ng WKH, Moeljadi AMP, Bureekaew S. Multiscale model for a metal-organic framework: High-spin rebound mechanism in the reaction of the oxoiron(IV) species of Fe-MOF-74. ACS Catal . 2015;5(6):3287-3291.
39. Simons MC, Vitillo JG, Babucci M, Hoffman AS, Boubnov A, Beauvais ML, Chen Z, Cramer CJ, Chapman KW, Bare SR, Gates BC, Lu CC, Gagliardi L, Bhan A. Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework. J Am Chem Soc . 2019;141(45):18142-18151.
40. Vitillo JG, Bhan A, Cramer CJ, Lu CC, Gagliardi L. Quantum Chemical Characterization of Structural Single Fe(II) Sites in MIL-Type Metal–Organic Frameworks for the Oxidation of Methane to Methanol and Ethane to Ethanol. ACS Catal . 2019;9:2870-2879.
41. Barona M, Snurr RQ. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS Appl Mater Interfaces . 2020;12(25):28217-28231.
42. Férey G, Serre C, Mellot-Draznieks C, Millange F, Surblé S, Dutour J, Margiolaki I. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction.Angew Chem Int Ed . 2004;43(46):6296-6301.
43. Yoon JW, Seo Y-K, Hwang YK, Chang J-S, Leclerc H, Wuttke S, Bazin P, Vimont A, Daturi M, Bloch E, Llewellyn PL, Serre C, Horcajada P, Grenèche J-M, Rodrigues AE, Férey G. Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angew Chem Int Ed . 2010;49(34):5949-5952.
44. Leclerc H, Vimont A, Lavalley JC, Daturi M, Wiersum AD, Llwellyn PL, Horcajada P, Férey G, Serre C. Infrared study of the influence of reducible iron(III) metal sites on the adsorption of CO, CO2, propane, propene and propyne in the mesoporous metalorganic framework MIL-100. Phys Chem Chem Phys . 2011;13(24):11748-11756.
45. Hall JN, Bollini P. Enabling Access to Reduced Open-Metal Sites in Metal-Organic Framework Materials through Choice of Anion Identity: The Case of MIL-100(Cr). ACS Mater Lett . 2020;2:838-844.
46. Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L. Benzene hydroxylation over FeZSM-5 catalysts: Which Fe sites are active? J Catal . 2004;227(1):138-147.
47. Pirngruber GD, Roy PK, Weiher N. An in Situ X-ray Absorption Spectroscopy Study of N2O Decomposition over Fe-ZSM-5 Prepared by Chemical Vapor Deposition of FeCl3. J Phys Chem B . 2004;108:13746-13754.
48. Wood BR, Reimer JA, Bell AT, Janicke MT, Ott KC. Methanol formation on Fe/Al-MFI via the oxidation of methane by nitrous oxide. J Catal . 2004;225:300-306.
49. Rana BS, Singh B, Kumar R, Verma D, Bhunia MK, Bhaumik A, Sinha AK. Hierarchical mesoporous Fe/ZSM-5 with tunable porosity for selective hydroxylation of benzene to phenol. J Mater Chem . 2010;20:8575-8581.
50. Zhang F, Shi J, Jin Y, Fu Y, Zhong Y, Zhu W. Facile synthesis of MIL-100(Fe) under HF-free conditions and its application in the acetalization of aldehydes with diols. Chem Eng J . 2015;259:183-190.
51. Mao Y, Qi H, Ye G, Han L, Zhou W, Xu W, Sun Y. Green and time-saving synthesis of MIL-100(Cr) and its catalytic performance.Microporous Mesoporous Mater . 2019;274:70-75.
52. Hall JN, Bollini P. Quantification of Open-Metal Sites in Metal-Organic Frameworks Using Irreversible Water Adsorption.Langmuir . 2020;36(5):1345-1356.
53. Rosen AS, Notestein JM, Snurr RQ. Structure–Activity Relationships That Identify Metal–Organic Framework Catalysts for Methane Activation.ACS Catal . 2019;9(4):3576-3587.
54. Barona M, Snurr RQ. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS Appl Mater Interfaces . 2020;12(25):28217-28231.
55. Cho K Bin, Wu X, Lee YM, Kwon YH, Shaik S, Nam W. Evidence for an alternative to the oxygen rebound mechanism in C-H bond activation by non-heme FeIVO complexes. J Am Chem Soc . 2012;134(50):20222-20225.
56. Cho K Bin, Hirao H, Shaik S, Nam W. To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes. Chem Soc Rev . 2016;45(5):1197-1210.
57. Starokon E V., Parfenov M V., Arzumanov SS, Pirutko L V., Stepanov AG, Panov GI. Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J Catal . 2013;300:47-54.
58. Starokon E V., Parfenov M V., Pirutko L V., Abornev SI, Panov GI. Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J Phys Chem C . 2011;115(5):2155-2161.